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Abstract— In today’s industrial scenario, the high cost 

involved in manufacturing is the major concern apart from the 

environmental factors. With the manufacturing cost reaching sky 

high levels, the use of a suitable optimization technique has 

become one major requirement while designing any 

manufacturing process. The current study involves a series of 

milling experiments on Inconel 718 alloy. Minimum quantity 

lubrication has been used as the cooling technique alongside the 

flood and the dry conditions. The combined objective functions 

were generated using ANOVA. Particle swarm optimization 

(PSO) technique was used to optimize the input parameters i.e. 

the cutting speed (Vc), cutting feed (F) and the depth of cut (ae) 

in order to minimize the tool wear (Vbmax). A series of 

validation experiments were performed and the PSO technique 

proved to be a highly effective method in predicting the tool wear 

(Vbmax), also allowing a simultaneous comparison amongst the 

cooling methods, thus, suggesting MQL to be a better cooling 

technique when compared to the dry and the flood cooling. 

Keywords— particle swarm optimization; Inconel 718; 

lubrication; surface roughness; depth of cut; MQL; tool wear 

I. INTRODUCTION AND LITERATURE SURVEY 

With the increasing economical and ecological pressures, 
the manufacturing industry seeks for newer technologies and 
materials for cooling of the cutting zone. New international 
manufacturing standards have been set up. The industries 
signing up for such standards will have to make certain 
necessary amendments in their production procedures. Air, 
water, land, raw material etc have to be taken into account [1–
5]. Inconel 718 is a well known difficult to machine nickel 
based super alloy that has found a very wide application in 

various industries like aircraft and nuclear industry. This alloy 
has a property to retain its properties at very high temperatures 
as well. But it is these properties that cause huge difficulties in 
the machining process of inconel 718 like poor surface finish 
or short tool life. Also, the the high speed machining is not 
possible while machining this alloy because of the exceptional 
hardness and thus resulting in a very low productivity. One 
possible solution to this problem of a short tool life is using 
proper cooling techniques to control the heat generation at the 
work tool interface and in turn improve the tool life. The flood 
cooling is the basic technique used for cooling since decades to 
reduce the interface temperature while the MQL (minimum 
quantity lubrication) also known as near dry machining in the 
process that involves the utilization of a very low quantity of a 
coolant or a lubricant mixed with a carrier gas. 

A fair amount of literature is available in the field of 
machining of inconel 718 alloy over the past two decades. 
Jawaid et al (2001), conducted experiments regarding the face 
milling if inconel 718 where the effect of cutting speed and 
feed on the tool wear were investigated by using a PVD TiN 
coated and uncoated tungsten carbide inserts. It was concluded 
that the uncoated inserts performed better at lower speeds while 
the coated inserts gave a better performance at higher speeds 
[6]. Sharman et al (2001), worked in the area of tool life using 
TiAlN and CrN coated tungsten carbide ball end milling 
cutters. Although the cutting speeds were maintained at 150 m 
/min but the longest tool life was obtained at 90 m/min with 
TiAlN coatings, thus explaining the crucialness of the choice of 
coating to influence the tool life [7]. Li et al (2006), conducted 
experiments to study the tool wear propagations and cutting 
force variations in the end milling of inconel 718. They found 
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that the initial flank wear was the main factor in effecting the 
tool life. The analysis on cutting forces performed showed that 
the thermal effects were the main reasons for the peak force 
variation within a single pass [8]. Krain et al (2007) tried to 
optimize the tool life and productivity while milling of inconel 
718. The study consisted of evaluated the feed rate, tool 
material, geometry and the radial depth of cut on the tool life. 
They concluded that no particular geometry or tool material 
gave overall optimal result, rather specific combinations gave 
specific results [9]. Yazid et al (2012) studied the surface 
integrity of inconel 718 while turning it with PVD coated 
carbide tool and cooling was performed with MQL. It was 
shown that severe deformations took place in the 
microstructure while performing the machining and the results 
proved that MQL improved the surface integrity [10]. Shokrani 
et al (2012) on the other hand used liquid nitrogen as a coolant 
while studying its effect on the surface roughness of inconel 
718 while machining using PVD TiAlNcoated solid carbide 
end mills. The results indicated a reduction in 30-40 % Ra and 
Rz respectively [11]. Kasim et al (2013) investigated the tool 
wear by using a ball type end mill. A PVD coated tool was 
used and the cutting parameters were varied. It was pointed out 
that the dominant wear was near the nose and also a maximum 
temperature of 521 deg. Celsius was recorded which was far 
lower than the critical temperature of 650 deg. Celsius [12]. 
Ucun et al (2013) studied the effect of coating material on the 
tool wear in comination with the MQL process. It was shown 
that AlTiN, AlTiN+AlCrN and AlCrN displayed better 
performances compared to TiAlN+Wc/c [13]. Aramcharoan 
and Chuan (2014) carried on the cryogenic milling of Inconel 
718 alloy. Responses in terms of tool wear and cutting forces 
were evaluated. It was shown that the use of a cryogenic fluid 
in conparison to the conventional cooling techniques lead to 
lesser tool wear and cutting forces [14]. Sharma et al (2014) 
conducted a very detailed study on the machining of various 
materials including tutanium, aluminum, steel, inconel etc. It 
was clearly concluded that the cooling techniques do play an 
important role in effecting the tool life while milling inconel 
alloys [15]. Thus, from the detailed study it is very much 
evident that MQL an effective technique for cooling inconel 
718 alloy while milling. 

(a) Particle swarm optimization (PSO) 

This optimization technique possesses a very simple 
concept and is easliy implementable in a few lines of a 
computer code. It was initially developed by James Kennedy 
and Russel Eberheart in 1995 [16]. It combines the 
characterestics of noth evolution strategies (ES) and generic 
algorithms (GA). It easily takes care of continuous 
optimization problems unlike the generic algorithms. The basic 
concept of this technique lies in the examination of the 
movements of a group of natural creatures like birds and 
reconfiguring the created model into a computer. These groups 
of creatures or birds often behave like a swarm. Thus, the 
movement of each agent or creature inside a swarm may be 
modelled using simple vectors. These flocks of birds (also 
called intelligent agents or particles) are set across the search 
space in a random way and several iterations are conducted for 
these randomly moving particles. Each particle updates its 
current location during an iteration with a certain velocity on 

the basis of pbest i.e. the best searched position of that particle 
and gbest i.e. the best particle position in the entire population. 
In case the particle best location in a progressive iteration 
surpasses the global best, the pbest location automatically gets 
replaced by the gbest location on the basis of the equation: 

       (1)                                                                                       

Where, = ‘ith’ particle velocity at ‘kth’ iteration; w= inertia 
weight; c1, c2= learning rates; R1, R2= random numbers 
between 0 & 1; pbesti = pbest location of ‘ith’ particle; gbest= 
gbest location of swarm; = [ ], ‘ith’ 

particle current position at ‘kth’ iteration in N-Dimensional 
search space 

After calculation of velocity, the next position of ‘ith’ 
particle is calculated as given below: 
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Inertia weight can be selected to be any arbitrary value or 
following equation could be used to determine the inertia 
weight used in the (1) equation: 

                                       (3) 

Where, 

 = maximum inertia weight;  = minimum inertia 
weight;  = current iteration;  = total number of 
iteration 
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This criterion assists in controlling the speed of the particles 
by giving them velocity in the opposite direction, thus keeping 
the search space within desirable limits [17]. Zhou et al (2006) 
made use of neural networks trained by PSO and BP 
algorithms for predicting the diameter errors in the boring 
process. It was concluded that PSO trained neural networks led 
to a better optimization of the process when compared to the 
BP algorithm [18]. In another rare effort, Zuperl et al (2007) 
implemented the PSO technique on the milling process to 
optimize speed and feed. Cutting force was taken as the output 
parameter. It was noticed that PSO gave good results by 
reducing the machining time and improving the material 
removal rate [19]. Majumdar (2013), also applied PSO 
technique to the EDM process. Confirmation experimentation 
was performed and the usefulness of the results was validated 
[20]. Yusup et al (2012) made an exhaustive study on the use 
of PSO in the various metal cutting operations in the recent 
years. It was concluded that PSO is a highly effective technique 
for optimizing the parameters in the various machining 
operations. Machining costs and surface roughness have been 
the commonly calculated responses in most of the studies [21]. 
It is very much clear from the literature that the PSO technique 
has time and again proven its utility in optimizing the process 
parameters for the optimal results. A few studies in the field of 
machining have also been recorded where PSO technique has 
been utilized. Not much literature is available where the 
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milling of Inconel 718 has been optimized using the PSO 
technique and that too when MQL plays along. So, it opens up 
a broad area for the following study to explore and that too in 
reducing the tool wear using the PSO technique. 

II. EXPERIMENTAL SETUP AND PROCEDURE 

a 

 

Figure 1(a) 

 

  

Fig. 1. (a) Cutting tool inserts (b) MQL setup (c) Tool maker’s microscope 
(d) Experimental setup 

(a) Experimental materials and setup 

The present study made use of Inconel 718 alloy in the 

form of cylindrical bars of diameter 123 mm and height 100 

mm. The workpiece hardness was maintained at 33 HRC. The 

experiments were performed on a brigeport high speed 

milling machine (BMC 1500). The cutting tool inserts used 

for performing the experiments were ISCAR IC830 as shown 

in fig. 1 (a). The MQL setup used was NOGA minicool 

model with a distance 25 mm and the jet angle of 300 as 

shown in fig. 1 (b). The oil used up in the experimentation 

was the Rhenus FU 60 water soluble oil. The tool wear was 

measured on a Mitutoyo tool maker’s microscope as shown in 

fig. 1 (c). The complete experimental setup has been shown in 

the fig. 1 (d). 

(b) Experimental parameters 

The experiments were carried out in a single path double 

pass system. The response was calculated on the basis of the 

second pass in each case. The cutting speed (Vc), feed (fz) and 

depth of cut (ae) were taken as the input parameters while the 

maximum tool wear (Vbmax) was taken as the response 

parameter. Maximum tool wear was chosen instead of 

average tool wear as the wear recorded was highly non 

uniform. So, in order to avoid any misleading results, (Vbmax) 

was chosen instead of (Vbavg). 

A total of 13 experiments were performed under dry, 

flood and MQL condition. Table 1 shows the machining 

parameters. 

Table I. Machining parameters 

Speed (Vc) (m/min) 100 150 200 

Feed (fz) (mm/tooth) 0.10  0.15 

D.O.C (ae) (mm) 0.5  1.0 

Cooling cond. MQL Flood Dry 

Flow rate MQL 
(ml/hr) 30 

Air pressure (bars) 6 

Lubricant conc. (%) 5 

Tool PVD TiAlN coated carbide 

Material Inconel 718 

III. RESULTS AND DISCUSSIONS 

Figure 2(a) indicates the effects of cutting speed (Vc) on 
tool wear (Vbmax) under flood and MQL cooling conditions. For 
flood cooling experiments the tool wear increased in the pattern 
0.18, 0.32 and 0.85 mm at speeds 100, 150 and 200 m/min 
respectively, seeing a decrease of 78% in speed from 
200m/min to 100 m/min. For the MQL experiments the 
readings obtained were 0.10, 0.21 and 0.40 mm seeing a 
decrease of 75% in speed from 200 m/min to 100 m/min. Thus 
it can be concluded that for both the processes i.e. flood and 
MQL individually, the tool wear (Vbmax) increases by nearly 
same values and increases noticeably as the speed is increased. 
Moreover, on comparing flood and MQL readings at each 
level, it can be seen that MQL reduces the tool wear( Vbmax) by 
as much as 40% and it goes to as high as 53% reduction in tool 
wear (Vbmax) at 200 m/min. Thus, it can be concluded that 
cutting speed plays a vital role in effecting the tool wear on 
both individual a well as relative basis. MQL leads to much 
lower tool wear as compared to the flood cooling, and its effect 
becomes more and more dominant as the cutting speed(Vc) is 
increased. 

Figure 2(b) shows the effect of feed (fz) on the tool wear 
(Vbmax). At constant cutting speed (Vc) 150= m/min and depth 
of cut (ae)= 0.5mm, the results obtained show a similar pattern 
as seen in case of the cutting speed. At feed (fz)= 0.1 mm/tooth 
a 34% reduction in tool wear (Vbmax) can be seen when using 
MQL as compared to the flood method, while at feed (fz)= 0.15 
mm/tooth a 39% reduction can be seen. Thus, a 50% increase 
in the feed (fz) only leads to a 5% relative increase which is 
insignificant. Also, the increase in feed does not effect the 
results for the processes individually which can be clearly seen 
from the figure. Thus, it may be concluded that feed (fz) does 
not play an important role both individually as well as 
relatively when comparing flood and MQL cooling. On similar 
lines figure 2(c) shows the effect of depth of cut (ae) on the 
tool wear (Vbmax) as the other two cases. Taking constant 
cutting speed (vc) 150= m/min and feed (fz)= 0.15 mm/tooth, at 
depth of cut (ae)= 0.5 mm a 39% decrease in the tool wear 
(Vbmax) can be seen, whereas at feed (fz)= 1mm 41% increase 
can be noted. Thus by increasing the depth of cut (ae) by 100% 
only a 2% increase can be obtained. This accounts for its 
insignificance when comparing both the process on relative 
terms. On the other hand, when the effects of an increase in the 
depth of cut (ae) are evaluated on both the processes 
individually, 31% and 28% increase in tool wear can be seen 
for both flood and MQL respectively. Thus, it would be wise to 
conclude that depth of cut (ae) is a significant parameter when 
studying the processes on individual basis. On relative basis, it 
is not of much significance. From Fig 2(d) it is very clear that 
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MQL cooling is far more effective in reducing the tool wear 
(Vbmax) with its effect becoming more and more effective at 
higher speeds. 

                               

F100: Flood at 100 vc; M100: MQL at 100 vc 

F150: Flood at 150 vc; M150: MQL at 150 vc 

F200: Flood at 200 vc; M200: MQL at 200 vc 

At fz=0.1 and ae=0.5 

Fig. 2(a) Effect of vc on Vbmax 

 

Ff 0.1: Flood at feed(fz)=0.1;Mf 0.1:MQL at feed(fz)=0.1 

Ff0.15: Flood at feed(fz)=0.15;Mf 0.15:MQL at feed(fz)=0.15  

vc=   150 m/min and ae=0.5 mm 

Fig. 2(b) Effect of fz on Vbmax 

 

 

F ae0.5=Flood at 0.5 doc; M ae0.5= MQL at 0.5 doc 

F ae1= Flood at 1 doc; M ae1= MQL at 1 doc 

At vc=150 m/min and fz=0.15  mm/tooth 

Fig. 2(c) Effect of ae on Vbmax 

Fig. 2(d) Comparison of Flood, Air and MQL 

(a) Analysis and optimization 

Checking the model accuracy: ANOVA was brought into use 
for checking the model accuracy. Table 2 shows the ANOVA 
table. As per this technique, a P value lesser than 0.05 gives a 
signifiacnt model, whereas, a greater than 0.05 value signifies 
an insignificant model. In the present model, p-value for tool 
wear (Vbmax) came out to be lesser than 0.05. Hence, the model 
is considered to be adequate. Further the values of calculated 
R2 and adjusted R2 came out to be over 80% and 70% 
respectively, further justifying the adequacy and significance of 
the regression model. 

Table II. ANOVA analysis of tool wear 

Source sum of 
Square 

D
F 

Mean 
Square 

F Value Prob> F  

Model 0.64 5 0.13 11.66 0.0027 Sig. 

A 0.41 1 0.41 37.69 0.0005  

B 0.012 1 0.012 1.11 0.3276  

C 7.87E-003 1 7.87E-003 0.72 0.4235  

D 0.19 2 0.97 8.89 0.0120  

S.D 0.10 R-Squared 0.8936 

Mean 0.39  Adj R-Squared 0.8177 

C.V 26.88 Pred R-Squared 0.6804 

PRESS 0.23 Adeq Precision 11.772 

 

Developing the predictive mathematical model of the 
combined objective (C.O.) equations: The statistical technique 
of regression analysis was utilized to develop the predictive 
equations for tool wear with the help of design expert software. 
Separate equations were obtained for dry, flood and MQL 
conditions respectively. Table 3 shows the predictive equations 
obtained for the three cooling conditions. The figure 3 shows 
the perturbation analysis for the tool wear (Vbmax) at Vc=150 

m/min; fz= 0.13 mm/tooth and ae= 0.75 mm. It can be clearly seen that 
the tool wear values are minimum for MQL, when compared to 
the dry and flood techniques. It is also clear from the graphs 
that speed (Vc) plays the most vital role in effecting the tool 

0

0,2

0,4

0,6

0,8

1

 F100 M100 F150 M150 F200 M200

V
b

m
a

x

Cooling condition

205



wear (Vbmax). Feed (fz) and DOC (ae) are relatively 
insignificant. 

 

Table III. Equations for tool wear in actual factors 

Cooling 
condition 

Equation 

Dry Vbmax = -0.122 + 5.23E-003* VC -1.77*fZ + 0.16* ae 

 

Flood Vbmax = -0.239 + 5.23E-003* VC -1.77*fZ + 0.16* ae 

 

MQL Vbmax = -0.433 + 5.23E-003* VC -1.77*fZ + 0.16* ae 

 

    (a)  Dry 

    (b)  Flood 

     

  (c)  MQL 

 

 Fig. 3 Perturbation graphs for tool wear  

 

 

Optimization using PSO technique: The cutting speed (Vc), 
feed (fz) and depth of cut (ae) were taken as the particles in 
PSO. The algorithm followed for PSO was as follows: 

Step 1: The cutting speed, feed and depth of cut were 
randonly selected in between their minimum and maximum 
values. 

Step 2: The particle velocities generated were chosen 
randomly between the maximum and the minimum values of 
the prticles. 

Step 3: Then, the objective function values were calculated 
for the particles and the pbest and gbest values were assigned.  

Step 4: Equation 1 was used then, to calculate the new 
velocities. 

Step 5: Equation 2 was used next, to update the positions of 
all the particles. 

Step 6: The objective function values were again calculated 
for the new particle positions. The new and better pbest and 
gbest values were also obtained. 

Step 7: Repeated iterations were performed until the 
termination was made. 

The equations obtained in table 3 were then employed with 
PSO through MATLAB. The table 4 shows the parameters of 
PSO used for the optimization in this case. The cutting speed 
(Vc), feed (fz) and depth of cut (ae) were taken as the particles 
or the intelligent agents. The particle population was taken to 
be 50. Learning factors c1 and c2 were taken to be equal where 
c1max=c2max=1.7 and c1min=c2min=0.5. The inertia weight 
factor w=0.7. Al these factors collectively play a very effective 
role in getting the excellent convergence characterestics of 
PSO as shown in figure 4. The increase in the number of 
particles helps in a more efficient exploration of the search 
space. Table 5 shows the predicted results obtained for dry, 
flood and MQL techniques. The results clearly show that the 
MQL technique is much more efficient and time saving. A 
40% increase in the Vc, 25% in fz and 80% in ae only increases 
the tool wear by 17%, thus saving time and cost. The obtained 
results were confirmed experimentally and a very low 
percentage of error was recorded in the experimental results 
when compared to the predicted results. 
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Figure 4. Convergence characteristics 

Table IV. Parameters of PSO 

 

Table V. Predicted results (PSO) 

No. 
Speed 

(m/min.) 
Feed 
F(mm/rev.) 

Cooling 
Condition 

DOC 
(ae)(mm) 

Tool wear 

(Vbmax) 
PSO 

1 100 0.12 Dry 0.5 0.172 

2 120 0.13 Flood 0.7 0.189 

3 140 0.15 MQL 0.9 0.202 

 

Table VI. Confirmation tests 

 

No. 
Speed 

(m/min.) 
Feed 
F(mm/rev.) 

  DOC 
(ae)(mm) 

Pred. 
Vbmax 

Exp.  
Vbmax 

Error 

1 140 0.15 0.5 0.202 0.214 6% 

2 140 0.15 0.7 0.202 0.210 4% 

3 140 0.15 0.9 0.202 0.213 5.5% 

 

IV. CONCLUSIONS 

 The study leads to many vital points that may be very 

useful for the future research work in the field of cooling 

techniques. The main conclusions that can be drawn from the 

work are: 

1. MQL leads to better results when compared to the other two 

processes, with its effect becoming more and more commanding 

at higher cutting speed (vc) values 

2. Cutting Speed (vc) plays the most vital role in effecting the tool 

wear (Vbmax) both individually for each process as well as 

comparatively. 
3. The effect of cutting speed gets more and more dominant as the 

speed increases, reducing the tool wear by as high as 53% in case 

of MQL, when compared to flood cooling. 
4. Feed (fz) plays an insignificant role in effecting the tool wear 

both individually as well as comparatively. A 50% increase in 

feed only leads to a 5% relative increase in the tool wear when 

comparing flood and MQL cooling, which is insignificant. 

5. Depth of cut (ae) plays an important role when studying the 

processes individually leading to a 31% and 28% increase in the 

tool wear values for flood and MQL cooling, when doubled. But 

on comparing both the processes it plays a negligible role as a 

100% increase in the depth of cut(ae) only leads to a 2% relative 

increase in the tool wear(Vbmax). 

6. The input parameters were optimized using the PSO technique 

for optimization. Confirmation experiments were performed 

giving very low errors when compared to the experimental 

results. Thus, confirming the effectiveness of the technique. 
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