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Abstract—A great deal of progress has been made in the past 

several decades towards the understanding and development of 

time integration methods in structural dynamics. These methods 

involves a step by step algorithm for transient analysis of linear 

and non-linear dynamic problems. It is essential to provide a 

comprehensive survey of various methodologies used to solve 

second order differential equations in a single article. Broadly, 

the methods include direct integration, mode superposition and 

response spectrum methods among others. The first two methods 

uses an integration scheme while response spectrum method is 

based on extreme response analysis. Both direct integration and 

mode superposition method use an integration scheme but the 

selection of a particular method depends on the problem and 

frequency content of the loading. A detailed survey of various 

integration schemes is presented in this paper. The stability and 

accuracy of these integration schemes has been studied by 

researches in the past. However, the effect of damping on the 

stability and accuracy of these schemes need to be investigated. A 

single degree of freedom system is used to check the stability and 

accuracy criteria of various integration schemes. Also, the effect 

of damping on these parameters is studied and results are 

presented. 

Keywords: structural dynamics; integration schemes; damping; 

stability; accuracy 

I. INTRODUCTION  

In many engineering applications, it is essential to perform 
a dynamic analysis in addition to the static check [1]. This 
means inclusion of the inertial term in the equation of motion. 
The inertia term can be neglected only if the loads or 
displacements are applied very slowly [2]. Some examples 
where inertia effects are important include the impact loading 
of the structures where a high intensity load is applied for a 
short time or seismic action where structure is analyzed for 
prescribed ground acceleration. Offshore structures like 
derricks and flare booms are very critical for dynamic loading 
due to the dynamic effects of wind and drilling operations [3-
4]. Also, time history analysis is required for predicting the 
fatigue lives of structures precisely [5]. 

Dynamic problems can be broadly classified in two 
categories based on the effect of the excitation on the overall 
structural response: wave propagation problems and inertia 
problems [6]. In wave propagation problems, the behavior at 
the wave front is of engineering importance and intermediate to 
high frequency structural modes dominate the structural 
response in these problems [7]. Problems under this category 

include shock response from nuclear weapons such as 
explosives or impact loading. Also, problems in which wave 
effects such as reflections and diffractions are important falls 
under the first category. The inertia problems include all other 
dynamic problems except wave propagation. The structural 
response is governed by relatively small number of low 
frequency modes. Problem of this type are often called 
structural dynamics problems. The governing equation in these 
problems is a second order differential equation [8-9]. Only the 
structural dynamics problems will be discussed in this paper. 

As mentioned above, structural dynamics problems include 
solving a second order differential equation which is also the 
equation of motion. For a linear elastic system, equation of 
motion can be expressed as: 

  (1) 

where M is the discrete mass matrix, C is the viscous damping 
matrix, K is the linear stiffness matrix, R is the external load 
vector. In general, M, C and K are constant and symmetric. R= 
R(t) is a given continuous function of time t. Mathematically, 
(1) represents a coupled system of linear ordinary differential 
equation of second order. 

In the last several decades, significant advances have been 
made in the development and application of time integration 
methods for solving above set of coupled differential equations 
[10]. This was also primarily made possible due to the parallel 
development of high speed digital computers reducing the 
computational times and providing accurate results. This has 
resulted in the development of many commercially available 
software, viz. ANSYS, MARC, NONSAP and etc. [11]. All 
these software codes are based on various computational 
methods developed to solve any dynamic problem. 

The objective of this paper is to present a review of various 
solution methods for structural dynamic problems. Solution 
methods like direct integration and modal superposition are 
based on using an integration scheme. Various conventional as 
well as recently developed integration schemes are discussed in 
this paper. The use of an integration scheme for a given 
problem depends on both the stability as well as the accuracy 
of the scheme. These criteria are discussed in detail. The 
presence of damping in the system can have an effect on the 
stability of integration scheme being used and this has also 
been investigated. Stability and accuracy results of various 
integration schemes are presented for both damped and 
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undamped systems. The paper concludes with discussion of the 
results and highlighting the importance of selecting a suitable 
method for a given dynamics problem. 

II. SOLUTION METHODS FOR DYNAMIC PROBLEMS 

Mathematically, Eq. (1) represents a system of linear 
differential equations of second order and can be solved by 
standard procedures for the solution of differential equations. 
However, existing standard procedures for the solution of 
general systems of differential equations can be very expensive 
especially when the order of matrices involved is large. In 
practical finite element analysis, only the effective methods are 
incorporated. These effective methods can be broadly divided 
in three categories: (1) Direct integration methods, (2) Mode 
superposition method and (3) Response spectrum method. In 
the following sections, the first two methods are discussed in 
some detail. 

III. DIRECT INTEGRATION METHODS 

The direct integration methods are time marching schemes 
where the dynamic equilibrium equation is satisfied at discrete 
time intervals ∆t apart. Due to ease of application and their 
ready usability in nonlinear problems, these methods have 
become very popular [1]. The term ‘direct’ means prior to the 
numerical integration, no transformation of the equations into a 
different form is carried out. Any direct integration method is 
built on two basic ideas.  

1. Computing the solution of equations of motion at 
discrete time steps. To compute the numerical solution 
at specific time ti, most methods require the solution to 
be specified at previous time step, ti-1 [12].  

2. Assuming a variation of displacements, velocities and 
accelerations within each time step, where different 
forms of these assumed variations give rise to different 
integration methods.  

The available direct integration methods can be broadly 
subdivided into two categories: explicit methods and implicit 
methods [13]. Explicit methods use the equation of motion at 
the time(s) for which displacements are known, to obtain the 
solution at time t+∆t. On the other hand, implicit methods use 
the equations at a time for which the solution is unknown, to 
obtain the response at time t+∆t [14]. The explicit methods are 
more appropriate to wave propagation problems, while the 
implicit one is used to inertia problems [10].  

A. Explicit direct integration methods 

These methods in general employs finite difference 
methods and are particularly well suited for short duration 
dynamical problems or wave propagation problems. In these 
methods, the equilibrium conditions at time t, are used to solve 
for the solution at time t+∆t. Hence, such methods do not 
involve factorization of the stiffness matrix in the step by step 
solution. This also means that there is no necessity to store the 
stiffness matrix if a diagonal mass matrix is used. These 
methods are computationally cost effective compared to 
implicit methods and less storage is required. Also, for these 
methods, computer operations are relatively few and are 
independent of the finite element mesh band or front width.  

Explicit integration methods are therefore very efficient for 
short duration dynamic problems where stability as well as 
accuracy conditions are both ensured. In these problems, the 
contribution of intermediate to high frequency structural modes 
to the response is important. The stability criteria is generally 
governed by the highest frequency of the discrete system. 
These stability and accuracy criteria will be presented and 
compared for various methods in detail. Some of the most 
commonly used explicit integration methods are discussed in 
the next section. These are the second order central difference 
method and fourth order Runge-Kutte method. 

Second Order Central Difference Method: The second 
order central difference method is one of the widely used 
explicit techniques. This method is said to have the maximum 
stability and highest accuracy among the explicit methods [15]. 
However, this method is only conditionally stable; that is, the 
chosen time step must be smaller than a critical time step to 
attain a stable solution. Inability to handle non-diagonal 
damping matrix is another shortcoming of this method. 

 Advances have been made and procedures have been 
developed to compute the diagonal mass matrix from the 
standard consistent mass matrix so that central difference 
method can be used effectively [16-18]. Also, numerical 
integration techniques used to compute the mass matrix are 
modified further to generate better and accurate diagonal mass 
matrices [19]. The convergence of a diagonal mass 
approximation has also been proved [20]. However, some 
errors are introduced while computing the diagonal mass 
matrix from standard mass matrix and have been examined 
[21]. According to [22], errors introduced by the lumped 
masses and the central difference operator tend to be 
compensator. So the use of diagonal mass matrices in explicit 
integration methods is desirable both for accuracy and 
computational efficiency. 

Fourth Order Runge-Kutte Method: The fourth order 
Runge-Kutte method was proposed in the beginning of 19th 
century. The method has been extensively used in the past for 
solving ordinary differential equations. A detailed survey of 
this method along with others is given by [23].  

This one step algorithm has several desirable features like 
(i) the method is self-starting (ii) the time step can be easily 
changed (iii) explicit in nature and hence negates the need of 
iteration in nonlinear problems (iv) the model is a 4th order 
method and possesses a weak instability only. However, in use 
of this method, acceleration vector must be computed four 
times per time step. Due to this, the computational time 
required for the solution of a problem can be large compared to 
other numerical integration methods. Also, the method does not 
provide any estimate of the residual errors. 

This method was modified further and several modified 
methods were developed. Some of these methods include 
Runge-kutta-Fehlberg methods of order 1 to 3 [24], adaptive 
Runge-Kuta method [25], among others. These improved 
methods have better stability properties are equipped with 
automatic step control based on the local error estimates [26]. 

Recently Proposed Explicit Methods: Chang [27] recently 
proposed a new family of explicit methods whose numerical 
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properties for linear elastic systems are exactly the same as 
those of the Newmark family method. For this subfamily, the 
possibility of unconditional stability and second-order accuracy 
enables using a large time step and involves no iterative 
procedure. The method has proven very efficient for solving 
general structural dynamic problems where the responses are 
dominated by low frequency modes. The method is 
computationally more effective compared to other 
conditionally stable explicit methods where the step size is 
limited. This method was extended to nonlinear systems and a 
family of non-iterative schemes for nonlinear dynamic 
problems was proposed [28]. Reference [29] also proposed a 
family of unconditionally stable explicit direct integration 
algorithms with controlled numerical energy dissipation. These 
algorithms are unconditionally stable for linear elastic and 
stiffness softening –type nonlinear systems. 

B. Implicit direct integration methods 

The implicit methods find their strength in the areas where 
explicit methods are not so effective. These methods are most 
effective for structural dynamic problems in which structural 
response is controlled by a relatively small number of low 
frequency modes [30]. Also, problems with complex structural 
geometries can be solved using these algorithms. In these 
methods, the solution for the displacements at time t+∆t 
involves solving the stiffness matrix at each time step. This 
may lead to high computational effort and larger storage 
requirement compared to explicit methods. However, unlike 
explicit methods, these methods are unconditionally stable and 
permits large time steps. With the advancement of high speed 
computers, the unconditionally stability criteria provide a big 
advantage. Some of the commonly used effective implicit 
direct integration methods are presented in brief. 

The Newmark Family of Methods: These represent the most 
commonly used implicit methods for solving the equation of 
motion in a dynamic problem. The methods are based on the 
following equations. 

  (2) 

 

  (3) 

The parameters β and γ define the variation of acceleration 
over a time step and determine the stability and accuracy 
characteristics of the method. Typical selection of γ is 1/2, and 

 is satisfactory from all points of view, 

including the accuracy as shown in Table I. 

TABLE I.  PARAMETERS FOR NERMARK METHODS 

Method Type β γ Stability  

Average acceleration Implicit 1/4 1/2 unconditional 

Linear acceleration Implicit 1/6 1/2 conditional 

Central difference Explicit 0 1/2 conditional 

Wilson-θ method: This method is based on the assumption 
that the acceleration varies linearly during the time interval t to 
t+θ∆t. For θ = 1, this method reduces to the linear acceleration 
method of the Newmark family of methods. However, unlike 
the former, this method is only conditionally stable. It is noted 

that in linear problems, the method is unconditionally stable for 
. Hence, θ = 1.40 is usually used. 

IV. MODE SUPERPOSITION METHODS 

It is seen that the number of matrix operations required in a 
direct integration solution is directly proportional to the 
number of time steps used in the solution procedure. Use of a 
direct integration method can be effective for a relatively short 
duration involving fewer time steps. For large duration 
problems, it is desirable to carry out the integration process by 
first transforming the equilibrium equations in Eq. (1) into a 
form in which the step-by-step solution is more effective and 
less costly. Mode superposition methods are such methods of 
transforming equilibrium equations from global coordinates to 
modal coordinates and then use direct integration methods to 
solve these simplified equations. Mode-superposition analysis 
is an efficient tool for the evaluation of structural response with 
many degrees of freedom. 

The generalized equation of motion in modal coordinates 
for a damped system can be written as (4). 

  (4) 

where the columns in  are the mass normalized eigenvectors 
(free vibration modes) ϕ1, ϕ2, ϕ3…… ϕn and Ω2 is a diagonal 
matrix listing the eigenvalues ( frequencies squared). 

Equation (4) consists of n uncoupled equations which can 
be solved ‘exactly’ using the Duhamel integral. Alternatively, 
any direct integration numerical method can be used. Since the 
periods of vibration are known, a time step ∆t can be chosen in 
the step-by-step integration in order to obtain a required level 
of accuracy. 

The equilibrium equation reduces to n equations of the 
form: 

  (5) 

The above equation reduces to Eq. (1) and represents 
governing motion of the single degree of freedom system with 
no damping. For the solution, as explained earlier, the response 
can be obtained by summation of the response in each mode. 

Effectiveness of mode-superposition methods: The idea 
behind mode-superposition solution of a dynamic problem is 
that frequently only a small fraction of the total number of 
decoupled equations needs to be considered in order to obtain a 
good approximate solution of the equilibrium equation. Most 
frequently, only the first p equilibrium equations need to be 
solved i.e. only the first p modes out of n are governing where 
p << n. This means that only p equations out of n need to be 
solved and total response in the p modes can then be written as 
given by Eq. (6). 
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It is also seen that a typical finite element procedures 
approximates the lowest frequencies more precisely and little 
or no accuracy can be expected in approximating the higher 
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frequencies and mode shapes. Therefore, the use of lower 
important modes for a system is justifiable.  

The fact that only few modes may need to be considered to 
arrive at a good approximation solution makes mode 
superposition method superior to direct integration methods. 
By solving only p equations out of n, both computational effort 
as well as cost can be saved. In summary, assuming that the 
decoupled equations have been solved accurately, the errors in 
a mode superposition analysis using p < n are due to the fact 
that not enough modes have been used, whereas the errors in a 
direct integration analysis arise because of the use of a too 
large time step. 

V. ANALYSIS OF INTEGRATION SCHEMES 

The solution of dynamic equilibrium equations can be 
solved either by direct integration or mode superposition 
method each of which uses an integration scheme. The cost of 
using any integration method depends on the time step and 
number of steps required for solution. The chosen time step 
should be small enough to guarantee desirable accuracy but at 
the same time it should not be too small for cost reasons. 
Therefore, selection of time step is very important in any 
integration scheme. This selection is generally governed by 
two criteria which are namely the stability and accuracy 
criteria. 

In case of direct integration or mode superposition, the 
basic equation can be denoted by (7). 

 )()()(2)( 2 trtxtxtx iiiiiii     (7) 

It is therefore satisfactory to study the stability and 
accuracy criteria for above typical equation.  

A. Stability Analysis 

The aim in numerical integration of any dynamic problem 
is to find an approximate solution to the actual dynamic 
response of the structure. In order to predict the response 
accurately, the equilibrium equations (1) must be integrated to 
high precision. This means that all uncoupled n equations of 
the form of Eq. (7) need to be integrated accurately. 

For the stability analysis, matrix A and vector L are defined 
as the integration approximation and load operators. These 
quantities can be determined for any integration method and 
are documented well for each integration scheme. The spectral 

decomposition of matrix A is given by
1 PPJA n

 where P is 
the matrix of eigenvectors of A, and J is the Jordan canonical 
form of A with eigenvalues λi of A on its diagonal. The spectral 
radius of matrix A is defined as ρ (A) and is given as (8). 

 
i

i
A 

...2,1
max)(


  (8) 

The stability criteria is given as 

(a) If all eigenvalues are different, then 1)( A . 

(b) If A contains multiple eigenvalues, then all such 

eigenvalues should be smaller than 1. 

It is noted that the spectral radii and therefore the stability 
of the integration methods depend on the time ratio ∆t/T, the 
damping ratio ξ and the integration parameters used. Therefore, 
for a given ∆t/T and ξ, it is possible in the Wilson θ method 
and in the Newmark method to vary the parameters θ and α, δ 
respectively to obtain optimum stability and accuracy 
characteristics. Fig. 1 shows the stability characteristics for 
various integration schemes. It can be seen that the central 
difference method is only conditionally stable and the 
Newmark, Wilson θ and Houbolt methods are unconditionally 
stable. 

The stability characteristics of Wilson integration scheme 
with varying values of its parameter θ is shown in Fig. 2. It is 
noted that the scheme is only conditionally stable for θ values 
of 0.5 and 1.0 while it is unconditionally stable for values 1.40 
and more. It is therefore desirable to study the stability of the 
Wilson operator, as a function of θ for different values of ∆t/T 
for both damped and undamped cases. The results are shown in 
Fig. 3.  

It can be seen that for an undamped system, the method is 
unconditionally stable for any ∆t/T ratio provided 37.1 .  

However, presence of damping in the system allows choosing a 
lower θ value and method is unconditionally stable for 5.0 . 

The Wilson scheme works well with θ=1.40 as shown 
above. The method is found to retain its unconditional stability 
when damping is present as shown in Fig. 4. 

The central difference method is a conditionally stable 
method; that is, the chosen time step must be smaller than a 
critical time step to attain a stable solution. The stability 
condition and critical time step is given by (9). 

 


T
tt cr    (9) 

where T is the smallest natural period of the structure 
corresponding to the highest frequency mode. 

 

Fig. 1. Spectral radii of integration schemes, ξ = 0 
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Fig. 2. Spectral radii of Wilson-θ for varying θ, ξ = 0 

 

Fig. 3. Spectral radii of Wilson-θ scheme as a function of θ 

 

Fig. 4. Spectral radii of Wilson-θ for damped cases, θ = 1.40 

For undamped system, the method is stable for ∆t/T = 1/  

= 0.318 as shown in Fig. 5. It is also shown that the method 
remains stable when damping is present in the system. For the 
Newmark method, the two parameters γ and β can be varied to 
obtain optimum stability and accuracy. The integration scheme 
is unconditionally stable provided that 5.0 and 

2)5.0(25.0   . The method corresponding to γ = 0.5 and 

β = 0.25 has the most desirable accuracy characteristics. The 
stability characteristics of this methods with different sets of 
parameters is shown in Fig. 6. 

 

 

Fig. 5. Spectral radii of central difference method for damped cases 

 

Fig. 6. Spectral radii of Newmark method for various sets of parameters 

It is also desirable to observe the stability characteristic of 
this integration scheme when damping is present in the system. 
The effect of damping on numerical stability for some sets of 
parameters is shown in Fig. 7 to Fig. 9. The results are shown 
for three sets of the parameters. It is concluded that the 
Newmark integration scheme retain its unconditional stability 
under damping effects. It is therefore suitable to use this 
integration scheme for damped systems as well. 

The integration schemes discussed so far showed that the 
stability characteristics for an integration scheme are retained 
under the damping effects. The stability characteristics of 
Houbolt method is shown in Fig. 10. It can be observed that 
like other implicit integration schemes, this method is also 
unconditionally stable for undamped system.  

However, it is observed that the presence of damping 
introduces instability in the method for a smaller time step ∆t. 
The method remains stable for higher time step values. It is 
therefore recommended not to use this integration scheme in 
damped systems for solving short duration dynamic problems 
as it might give inaccurate results. 
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Fig. 7. Spectral radii of Newmark method: damped γ = 1/2 and β = 1/4 

 

Fig. 8. Spectral radii of Newmark method: damped γ = 1/2 and β = 1/2 

 

Fig. 9. Spectral radii of Newmark method: damped γ = 11/20, β = 3/10 

B. Accuracy Analysis 

Along with the stability, the accuracy of the solution is very 
important. The choice of an integration scheme is governed by 
the cost of the solution which in turn depends on the number of 
steps required in the integration. The direct integration of the 
equilibrium equations in Eq. (1) is equivalent to integrating 
simultaneously all n decoupled equations of the form of Eq. 
(7).  

 

Fig. 10. Spectral radii of Houbolt method for damped cases 

Therefore, accuracy of solution of (1) can be studied by 
assessing the accuracy obtained in the solution of (7) as a 
function of ∆t/T. The accuracy analysis is explained on a 
simple initial value problem defined by 

02  xx   

 0.10 x ; 0.00 x ; 20 x  (10) 

The exact solution for Eq. (10) is given as x = cos ωt. The 
Newmark and Wilson θ methods can be directly used with the 
initial conditions given in Eq. (10). The numerical solution 
obtained using these integration schemes is shown in Fig. 11 
and Fig. 12 respectively. The natural period of the system, T is 
fixed as 10 seconds and the time step used in the integration 
scheme is varied. The results obtained using Newmark scheme 
shows increase in the time period with increase in the step size 
(or ∆t/T). Also, a very slight decrease in the amplitude is also 
observed. However both the period elongation and amplitude 
decay are significant when Wilson integration scheme is used. 

From above two figures, it is demonstrated that the errors in 
any integration scheme can be measured in terms of two 
parameters namely the period elongation and amplitude decay. 
Fig. 13 and Fig. 14 shows the percentage period elongations 
and amplitude decays in the implicit integration schemes as a 
function of ∆t/T. 

It can be seen that the numerical integration using any of 
the methods is accurate when ∆t/T is smaller than about 0.01. 
However, when this ratio is higher, various integration schemes 
exhibit different characteristics. It can be seen that for a given 
ratio ∆t/T, the Wilson θ method with θ = 1.4 introduces less 
amplitude decay and period elongation than the Houbolt 
method and the Newmark constant average acceleration 
method introduces only period elongation and no amplitude 
decay. 

While using one of the unconditionally stable schemes, the 
time step ∆t can be much larger (compared to central difference 
method) and should only be small enough that the response in 
all modes that significantly contribute to the total structural 
response is calculated accurately. In this way, stability as well 
as accuracy criteria are both met. The other modal responses of 
higher frequency are not evaluated accurately, but the errors 
are unimportant because the response measured in those modes 
is negligible and does not grow artificially. 
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Fig. 11. Numerical solution obtained for Eq. (10) using Newmark scheme  

 
Fig. 12. Numerical solution obtained for (10) using Wilson scheme, θ=1.40 

 

Fig. 13. Percentage period elongation for various integration schemes 

VI. DIRECT INTEGRATION VERSUS MODE SUPERPOSITION 

A dynamic equation represented in Eq. (1) can be solved 

either using direct integration methods or mode superposition 

method. Both of these methods use an integration scheme in 

which the high frequency response is filtered out of the 

solution. The direct integration method is equivalent to a mode 

superposition analysis in which all eigenvalues and vectors 

have been calculated and uncoupled equations in Eq. (7) are 

integrated with a common time step ∆t.  

 

Fig. 14. Percentage amplitude decay for various integration schemes 

For this method, the integration is accurate for those modes 
for which ∆t/T is small, but the response in the modes for 
which ∆t/T is large is eliminated by the artificial damping. 
Therefore, the direct integration is quite equivalent to a mode 
superposition analysis in which only the lowest modes of the 
system are considered. The number of modes to be included in 
the analysis depends on the time step ∆t and the distribution of 
the periods. It is noted that the direct integration method is the 
most effective when all important periods of the system are 
clustered together, when time step that is based on the smallest 
natural period is chosen. For system with natural periods far 
apart, it is recommended to use mode superposition method. In 
this case, a separate suitable time step can be chosen for each 
of the n uncoupled equations. The number of modes to be 
considered in mode superposition method depends on the load 
distribution and frequency content of the loading.  

VII. DISCUSSION AND CONCLUSIONS 

A comprehensive survey of various methods used to solve a 
dynamic problem is presented in this article. The methods used 
to solve an inertial dynamic problem, namely, the direct 
integration methods, mode-superposition method and the 
response spectrum method are reviewed. The first two methods 
along with their advantages and disadvantages are discussed in 
this paper. Both methods use an integration scheme for solving 
differential equations. The stability and accuracy of some of 
these integration schemes is discussed.  

The direct integration methods are the most general 
solution methods for dynamic analysis and equilibrium 
equations are solved using a step-by-step procedure. Mode 
superposition method is another powerful tool to solve 
dynamic problems by reduced computational effort compared 
to direct integration methods. The reduction in the 
computational effort/ cost is due to the transformation of 
equilibrium equations from the global coordinate system to 
modal coordinate system. Using this transformation, uncoupled 
equations of equilibrium are obtained which can be easily 
solved similar to a single DOF system.  

The stability and accuracy of these integration schemes are 
also discussed. The most important step in any scheme is the 
selection of the time step. Too small time step can lead to huge 
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computation costs whereas a too large time step causes 
inaccuracies. It is therefore important to choose the correct 
time step in order to ensure stability, accuracy as well as 
economy of a solution. The effect of damping on the stability 
of an integration scheme is also studied in detail. It is 
concluded that most of the implicit integration schemes retain 
their unconditional stability criteria when damping is present.  
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