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Abstract—The optimization of complex systems is a very 

difficult problem in modern engineering technology. It is with 

multi-subsystems, multi-objectives and multi-constraints. In this 

paper, a novel solution to the complex systems optimization 

called HBBO/Complex. HBBO/Complex adapted from 

biogeography-based optimization (BBO) and combined the 

simulated annealing (SA). The inferior migrated islands will not 

be selected unless they pass the Metropolis criterion of SA. This 

method can prevent the local optimal solution. Compared with 

typical existing many-objective optimization algorithms, 

HBBO/complex has better convergence characteristics. The 

results confirm the HBBO/complex provides the best 

performance in the benchmark problems. 
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I.  INTRODUCTION  

Multi-objective evolutionary algorithms (MOEAs) are 
well-suited for solving numerous multi-objective problems 
with two or three objectives. However, as the number of 
conflicting objectives increases, the performance of most 
MOEAs is badly deteriorated [1]. In case of Pareto-based 
MOEAs, these difficulties are intrinsically related to the fact 
that as the number of objectives increase, the proportion of 
non-dominated elements in the population grows, being 
increasingly difficult to discriminate among solutions using 
only the dominant  relation [2]. 

     Many-objective optimization evolutionary algorithms 

(MaEAs) refer to optimization problems greater than 4 [3]. Due 

to minimize and maximization problem can be mutual 

transformation, therefore, without loss of generality, this article 

mainly describes minimize multi-objective problem and its 

related concepts MaEAs can be defined as follows: 

Minimize F(x) = (f1(x), (f2(x)... (fm(x))T 

Subject to x  

Where 
nR  is the feasible search region, x=(x1, x2... 

xn) T is the decision variable vector, fi : Rn->R, i-1,2...m are 
the m objective functions, and Rm is the objective space. 

Classical optimization methods may fail to do so 
especially when the objective functions are nondifferentiable 
and without closed forms. For this reason, people resort to 
heuristic optimization methods such as evolutionary (EAs). 
Multi-objective evolutionary algorithms (MOEAs) have been 
attracting considerable attention. The number of MOEAs can 
be classified as three categories: (1) the decomposition-based 
approaches [4], [5] and [6]; (2) the indicator-based approaches 

[7], [8] and [9]; and (3) the objective aggregation-based 
approaches [10], [11] and [12]. 

Biogeography/Complex based optimization(BBO/complex) 
algorithm is a kind of adaptive decomposition method. 
Detailed explanations of BBO/complex are introduced in 
Section II. However, the performance and convergence rate of 
BBO/complex is still to be further improved. With the 
migration flow of n SIV between rich and poor islands, we 
need a method to enhance its exploration and evaluate the 
badly modified whether to be accepted or not, it can prevent 
the past features always be overwritten by the newly 
emigrated features from other islands. On the other hand, since 
there are plenty of targets and constraints in the subsystem, 
when sharing information in the subsystem, we need a new 
method to reduce the computation time of the CPU. The 
simulated annealing (SA) algorithm was presented by 
Kirkpatrick et al. [13] and Valdo Cerny [14], SA algorithm is 
an intelligent algorithm that randomly search optimization 
based on probability. It is having the capacity of probabilistic 
jumping and it is able to accept non-inferior solutions and 
inferior solutions. Thus, effectively avoid falling into minimal 
local solutions. We are inspired here by Metropolis criterion 
of SA algorithm to solve the problem posed above. Details 
about SA will be introduced in next section. 

II. BBO FOR COMPLEX SYSTEMS AND SIMULATIED 

ANNEALING 

A. BBO for Complex Systems 

      BBO was invented less than a decade ago, but according to 

[15] to provide competitive optimization performance with 

ACO [16], differential evolution (DE) [17], particle swarm 

optimization (PSO) [18], and many other algorithms. Complex 

systems contain more than one subsystem, each of which is 

partially independent of the others. BBO/Complex is extending 

BBO to systems with multi-subsystems, where each subsystem 

contains multi-objectives and multi-constraints. The 

environment of BBO/Complex includes n archipelagos, where 

n is the number of subsystems. Every archipelago consists of 

islands. The islands represent possible solutions to the problem.  

The structure of BBO/Complex is conceptually different from 

other typical algorithm. It includes both the framework and the 

optimization algorithm, as showed in Figure 1. It provides an 

efficient way to communicate between subsystems and 

provides a unique migration strategy to share information both 

within and across subsystems.  
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Fig 1: BBO/Complex formulation 

B. Migration algorithm 

Migration in BBO/Complex needs to be modified due to 
the fact that the environment of BBO/Complex contains more 
than one subsystem. Each subsystem contains multi-objectives 
and multi-constraints. The BBO/Complex's migration stage 
contains two types: with-subsystem and cross-subsystem. The 
islands with better part distance will have a better chance to be 
selected as the emigrating island. The migration processes are 
described by Algorithm 1. 

migration  

1: Initialization λi and μi for each member. 

2: Perform with-subsystem migration: probabilistically choose the 

     Immigrating islands based on the islands ranks.  
     Use roulette wheel selection based on the emigration rates to select the 

     Emigrating island. 

3: Perform cross-subsystem migration: find suitable pairs of subsystems 
     Based on similarity levels. Calculate distances between each pair of 

     Islands from different subsystems. Use roulette wheel selection 

     Based on partial distances to select the emigration islands. 

C. Mutation algorithm 

     In BBO/Complex, there events are modeled as SIV 

mutation. The mutation rate mi can be determined by involving 

the species count probabilities Pi into the following equation: 

      
max (1 )

max
i

pi
m m

p
 

 
     Where the Pmax=max (pi) and mmax is a user-defined 

maximum mutation rate that mi can reach. The mutation is 

described by Algorithm 2. 

mutation  

1:for i←1 to k do  
     { where k=number of islands or individuals} 

2:   Calculate probability Pi based on λi and μi  

       {by iterative or eigenvector method} 
3:   Calculate mutation rate mi 

4: if rand<mi and i≥Rm then { Rm is a user defined mutation range} 

5:   Replace n SIV vector of ISIi with a randomly generated n SIV vector 
6:  end if 

7:end for 

D. Simulated annealing algorithm 

     Algorithm SA is a meta-heuristic technique based on a 

thermodynamic process of the annealing of materials [22], 

[23], and [24]. The SA algorithm is constructed based on the 

statistical mechanics, which was demonstrated by Metropolis et 

al. in 1953[25] through the concept of Boltzmann's probability 

distribution. It means if a system is maintained in a thermal 

equilibrium at temperature T, then the probability distribution p 

of its energy E can be achieved by [26]: 

( )
B

E
P E e

k T




       
Where KB is a Boltzmann's constant. The difference in energy 

E  means the difference in cost function between the past 

and current iterations, which can be determined as follows: 

( ) ( )n oE f x f x  
      

For minimization problems, E ≤0 means
( ) ( )n of x f x

, so 

the new design point is directly accepted. Otherwise, the 

Metropolis criterion will be enabled to decide whether to 

accept or reject Xo. For this case where E >0, the 

acceptance is treated probabilistically according with the 

relation
( /max( ))

1

1 E T
P

e 


 .  It can be viewed the influence 

of temperature in the acceptance process. For the highest 

magnitudes of T, The acceptance probability to choose a worse 

state is likewise higher. This process will avoid trapping into 

local optima. As the temperature decrease, the SA algorithm 

accepts only states which minimize the FO cost. Therefore, the 

way that temperature decreases during the iteration of the 

algorithm is an important parameter, this parameter is named 

cooling schedule [26].  

III. THE HYBRID BBO/COMPLEX ALGORITHM 

       The proposed hybrid BBO/complex (HBBO/complex) is 

described by Algorithm 3. When the migration stage is 

completed, the features (n SIV) of the islands will not be 

directly overwritten with the new values that come from the 

probabilistically selected source inlands. Instead, there n SIV 

of the islands is saved in two temporary matrices. Each row of 

their matrices represents one individual. The old independent 

variables are used again if and only if the modified individual 

shows lower solution quality and does not meet the Metropolis 

criterion. With this restriction on the migration stage, the 

overall performance of the HBBO/Complex algorithm can be 

enhanced. By this method, the exploration of the BBO/complex 

algorithm is greatly improved. 

                                                 HBBO/Complex  

                Initialization stage with all the parameters, 

               1: Decompose the complex systems based on the system requirements; 

               2: Compute the constraint violations of all islands;  

               3: Do migration. 

               4:While (T>Tini) 

               5:  Calculate E =V2(i)-V1(i) 

               6:   if E >0 then 
               7: Apply the Metropolis criterion  

               8:   if  P(E)> rand then 
               9:    Re-select the past  (I,1→n) vector of matrix as an updated population for ISIi 

               10:   end if 

               11:  end if 
               12: end for 

               13 Update the population with sorting and mapping. 

               14: Do mutation. 
               15: Do clear duplicated SIV. 

               16: Replace the worst ISI with the good ISI saved in the elitism stage 
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               17: Update the population with sorting and mapping 

               18:  end if 
               19:end for 

               20: Display the best population. 

                 

IV. SIMULATION RESULTS 

In this section, we compare the performance of 

HBBO/Complex in real-world benchmark problems with 

Original BBO/Complex and Collaborative optimization (CO) 

The benchmark problems are obtained from [22] and include 

the speed reducer problem. It is contains several subsystems 

and multi-constraints. The speed reducer problem is a gear box 

design problem. The objective is to minimize the gear box 

weight and the von Mises stresses for shafts 1 and 2. It contains 

3 objectives, 11 constraints, and 7 design variables. This 

problem is defined as follows: 

                Min F1=0.7854X1 X2
2(3.3333X3

2+14.9334 X3-43.0934)-

1.05079 X1(X6
2+ X7

2) +7.477(X6
3+ X7

3) +0.7845(X4 X6
2+ X5X7

2), 

                MinF2=
2

74

2 3

745
1.69 10

x

x x

 
  

 

, 

 

                MinF3=
2

85

2 3

745
1.575 10

x

x x

 
  

 

, 

Such that the following constraints hold: 

g1=,
2

1 2 3

27
1 0

x x x
   

g2=
2

1 2 3

397.5
1 0

x x x
  , 

g3=,

3

4

4

2 3 6

1.93
1 0

x

x x x
   

g4=

3

5

4

2 3 7

1.93
1 0

x

x x x
  , 

g5=
  7

4 2 3

3

6

745 / 1.69 10
1100 0

0.1

x x x

x

 
  , 

g6=
  8

5 2 3

3

6

745 / 1.575 10
850 0

0.1

x x x

x

 
  , 

       g7=
2 3 40 0x x    , 

g8=
1

2

12 0
x

x
  , 

g9=
1

2

4 0
x

x


  , 

g10= 6

4

1.5 1.9
1 0

x

x


  , 

g11= 7

5

1.1 1.9
1 0

x

x


  . 

 

Table 1 show the parameters used in the HBBO/Complex. 

Table 1: Simulation parameters of the HBBO/Complex algorithms 

 

 

parameter value 

         Population                       10 

             Pmutate                                                   0.05 

             Pmigration                                                0.5 

             T0                                                           1000 

             Tend                                                       0.01 

              q                                                             0.9 
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Fig 2: The original BBO/Complex algorithm feasibility and cost of each 
objective for the speed reducer problem 

 

 

 
Fig 3: The CO algorithm feasibility and cost of each objective for the speed 

reducer problem 
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Fig 4: The HBBO/Complex algorithm feasibility and cost of each objective 

for the speed reducer problem 

V.     CONCLUSIONS 

In this paper, we propose a novel complex system solution 

called HBBO/Complex. We compare the HBBO/Complex, CO 

and original BBO/Complex algorithm. The figures also show 

that the performance of HBBO/Complex is superior to other 

two algorithms. With this process, the old features will not 

always be overwritten by the newly emigrated features from 

other islands. Instead, the Metropolis criterion is used to 

evaluate the badly modified populations whether they can be 

accepted or not. It has more flexible decomposition 

optimization options compared to CO and original 

BBO/Complex algorithm. 

       The obtained results show the performance of 

HBBO/Complex is markedly affected by introduced the SA 

algorithm. In general, aiming at many subsystems, many-

objectives and many-constraints problems for complex systems 

this hybrid algorithm raises the algorithm's immunity level 

against trapping into local optima. 
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