

A Web3D-Based Method for Visualization of LED

Lighting Environment

Jiankang Du, Jianqing Zhang and Lilan Liu*

Shanghai Key Lab of Intelligent Manufacturing and Robotics

Shanghai University

Shanghai,China

854624303@qq.com, georgezhang@51jiecai.com, *lancy@shu.edu.cn

Abstract—This paper is on the inquiry of the Web3D

visualization methods for LED illumination environment. In

recent years, the three dimensional visualization technology has

been widely applied in many fields, such as city planning,

engineering, medicine, education and so on. However, technology

of LED visualization was mostly applied in LED lamps and

lanterns, seldom applied in visual effect of the LED environment.

This paper presents a sort of Web3D technology--WebGL, which

combines great advantages in the GPU acceleration, platform

crossing, inheriting from the simulation tool of last generation,

running smoothly in many major browsers without any plug-in.

Three.js is a perfect3D graphics engine standing out of numerous

WebGL framework, having a lot of built-in light source and

material. Meanwhile, it provides a lot of convenient function for

this study. In addition, this research can be applied to the

customization of LED lamps and lanterns, the design of the indoor

environment, etc.

Keywords—Visualization; LED lighting; Web3D; Three.js

I. INTRODUCTION

LED is widely used as a type of energy-saving illumination
source. Before an LED lamp is produced, the effects of the
lighting are unknown. Moreover, before an LED light is
decorated in the wall, no one knows if it is appropriate or not.
As for the importance of visualization of LED lighting
environment, it is direct advice provided as your reference when
people were about to choose or on the collocation of LED lamps
and lanterns [1]. Also empirically speaking, 3D visual interfaces
has been proven to be perfect and amazing. Meanwhile, it has
been regarded as an important element to increase value to some
applications such as entertainment, e-Learning, e-business, etc.
Moreover, it can benefit a great deal from the Web domains of
3D visual interfaces [2].

The Web3D technology can be traced back to the earliest
VRML (Virtual Reality Modeling Language) [3]. The
association of VRML was renamed the Web3D association in
1998, completed the conversion from VRML to Extensible 3D
language, and the first to use the word “Web3D”. Now, there are
dozens of realization of the Web3D technology solutions,
relevant software more than 30, new technologies constantly
innovated, which greatly improves the Web3D rendering speed,
image quality and modeling technology, interactive and data
compression and optimization. Many world-famous
manufacturers have launched their own Web3D technologies,
including the Cycore’s Cult3D, Sun Microsystems’ Java3D,

Adobe's Atmosphere, Microsoft’s Direct3D, Metastream’s
Viewpoint, etc. However, there are still many problems in 3D
Web, such as network bandwidth, CPU speed, hardware
acceleration (independent GPU for thinning quality, and
improving fluency of the images). All above factors will
influence actual operation quality and efficiency of the Web3D.
The disunity of the 3D model file formats and the 3D rendering
engines has been one of the obstacles in the development on
Web application for Web3D. Because each Web3D
technologies has its own characteristics and advantages, the
competition situation will exist for a long time before the unified
standard is available.

With the development of network technology and the
definition of new standard about network, the integration of
HTML5 and WebGL, makes full play to the advantages of the
web as a 3D visual interface, establishing a good foundation for
function extension of the Web3D applications. The browsers
supporting WebGL program (writen with HTML and JavaScript
similar languages) can not only render the 3D graphics faster,
but also be superior in memory management [4]. As for HTML5
and WebGL integration of development pattern, it is much faster
than traditional Web3D solution based plug-ins with VRML,
Flash, Java, X3D or others. As to the difficulty of the
development, it is enough for the designers and developers to
handle a single language (JavaScript) and a HTML document
object model (DOM).

Section II of this paper introduces the WebGL technology
and the Three.js framework. Section III presents the framework
of the project. Section IV illustrates the key factors influencing
the LED virtual environment. Section V demonstrates the
system with research data, and the verification of the experiment.

II. SYSTEM ARCHITECTURE

A. WebGL Technology

WebGL is a 3D drawing standard combined JavaScript and
OpenGL ES 2.0, provides hardware accelerated for HTML5
canvas rendering, it can display 3D scenes and models smoothly
through system Graphics Processing Unit, and can also create
complex navigation and data visualization. The relationship
between the WebGL internal elements is showed in Fig. 1.

WebGL perfectly solves the existing two problems of the
Web3D virtual simulation: first, it completes the Web3D scene
through HTML itself, without any support of browser plug-ins;
Second, it relies on the underlying graphics hardware

Supported by Shanghai Economic and Information Technolgy
Commission-funded project, No.15521103502.

International Workshop of Advanced Manufacturing and Automation (IWAMA 2016)

© 2016. The authors - Published by Atlantis Press 300

acceleration for graphics rendering, through a unified, standard,
platform crossing OpenGL interface implementation [5]. The
drawing progress of WebGL is showed in Fig. 2.

Fig. 1. The relationship between the WebGL internal elements

Data cache HTML5、JavaScript

WebGL JavaScript API

Vertex shader

Combination

Rasterizer

Fragment shader

Primary treatment

Drawing frame

cache

Fig. 2. Drawing progress of WebGL

B. Three.js Framework

Although WebGL allows us to show the complex and
sophisticated 3D scenes, it is difficult to use the original WebGL
API directly. Because we have to provide a vertex shader and
fragment shader language (a kind of OpenGL shading language
code, different from JavaScript). In particular, LED lighting
environment must provide more details. Therefore, there are
some utilities libraries which make WebGL more convenient,
such as X3DOM, Scene.js, Babylon.js, etc. Each of them have
advantages, but the most popular one is Three.js. We choose the
Three.js to build our program.

Create an HTML page framework

Render and display 3D objects

Add materials, lights and shadows

Fig. 3. The drawing progress of Three.js

Three.js in a simple, intuitive way to encapsulate 3D
graphics programming in commonly used objects. It uses a lot

of advanced techniques in the development of the graphics
engine, greatly improving performance [6]. Further, since the
common object and built a lot of easy-to-use tool, Three.js
features are also very powerful. Finally, three.js is completely
open source, thousands of developers on GitHub maintained in
this framework together . The drawing progress of Three.js is
showed in Fig.3.

III. PROGRAM FORMULATION

A. HTML Framework

To start this project, we need to create an HTML page
framework, this is the first step in the LED lighting environment
visualization. There are a lot of widely used HTML framework,
you can choose the suitable project according to your need. We
didn't introduce any one here, one simple HTML page
framework is as follows:

<!DOCTYPE html>

<html>

<head>

<title>Example</title>

<script type=”text/javascript” src=”../libs/three.js”>

</script>

<style>

body{

margin: 0;

overflow:hidden;

}

</style>

</head>

<body>

<div id=”WebGL”></div>

<script type=”text/javascript”></script>

</body>

</html>

B. Build a scene

First, we should find the page elements for WebGL
rendering, and stored in the variable of container. And initialize
Three.js renderer object (which is responsible for all the drawing
work of Three.js), then we can add it to the container as a DOM
element. Then, we created a scene, which is the highest in the
Three.js objects, used to hold all of the other graphic objects.
When a scene is built, we may add other objects: a camera and
a cube. The camera defines the position and the angle we are
observing in the scene. Finally, by calling the renderer method
“render()”, we render the whole scene.

var container = document.getElementById(“WebGL”);

var renderer = new THREE.WebGLRenderer();

301

container.appendChild(renderer.domElment);

var scene = new THREE.Scene();

var camera = new THREE.PerspectiveCamera(60,
window.innerWidth/window.innerHeight, 1, 10000);

camera.position.set(10, 10, 0);

scene.add(camera);

var geometry = new THREE.BoxGeometry(1, 1, 1);

var material = new
THREE.MeshMaterial({color:0xff0000});

var cube = new THREE.Mesh(geometry, material);

scene.add(cube);

renderer.render(scene, camera);

C. Add a model

Thee.js can read a variety of 3D file formats, such as JSON,
Collada, STL, import the combination and the grid of them. OBJ
is a simple 3D file format, created by the WaveFront technology
company, it supports straight Line, Polygon, Surface and Free
form Curve, has been the most widely used 3D file format.

 There are a lot of 3 software tools can be used to create OBJD
format files, such as Blender, Maya, and 3 Studio Max, etc.
Three.js provides the OBJ format file loader called OBJLoader.
we load a model from a URL through OBJLoader class in the
following code:

var loader = new THREE.OBJLoader();

loader.load(‘../models/model1.obj’, function(geometry){

var material = new THREE.MeshLambertMaterial({

color: 0x235A47

});

geometry.childern.forEach(function(child){

child.children.material = material;

});

scene.add(geometry);

});

IV. LED LIGHTING ENVIRONMENT

LED lighting environment visualization needs consideration
of the characteristics of the LED light source, as well as the
environmental performance of the object.

A. Light

There are two main types of light in the LED application
environment: Directional light, which is similar to the nature of
the sun; Point light, which is similar to the LED light. Moreover,
ambient light is used to simulate non-direct light in the real
world.

B. Materials

Materials determines the geometry appearance of objects.
Three.js has many built-in materials. For example,

MeshBasicMaterial does not consider the effect of light, which
is suitable for flat object; MeshDepthMaterial enables an effect
of gradual disappearance, which is determined by the distance
between the camera and the object; MeshNormalMaterial can
make colorful effect, because the color of this kind of material
refers to the outward normal vector calculated from the surface
of the object, giving each subtle surface a slightly different color.

C. Textures

The surface of an object is always not smooth in the lighting
environment. A material called THREE.ShaderMaterial is used
to present a realistic scene. This material allows developers to
customize a shader code for commonly visual effects directly.
Under normal circumstances, in order to realize the vivid
picture, including bump and specular highlights, we will use
three kinds of texture map: a color map (diffuse map) the map
provides the closest to the real color of the pixel; A normal map
(bump map), it is essentially an additional grid attribute coding
into RGB values stored in a bitmap file, normal determines the
brightness of the light to the grid surface, brighter or darker areas
depends on the normal value. Relative to defining additional
vertex attributes, the normal can show rough grid surface using
less resource consumption at a relatively high performance;
Finally, it is a specular highlights or specular reflection map
which refers to the reflection of the surface of the grid and
reflective. Similar to normal mapping, specular mapping is an
effective way of data storage. A bright RGB value indicates the
areas of high luminosity, darker RGB value indicates the
luminosity to low areas.

V. EVALUATION

The system constructed by the 3D models and the optical
models of the LED lighting environment, and was expressed in
the browser. In order to verify the rationality of the simulation,
we used the DIALux, an excellent optical software, which can
calculate optical data according to optical scene [7]. Models
built in the DIALux are as shown in the fig.s below. Fig. 4 is an
aerial view on the left side of the whole 3D scene.

Fig. 4. 3D Rendering

Fig. 5. Input protocol

302

Fig. 6. Luminaire parts list

Fig. 7. Luminaries (layout plan)

Fig. 8. Analysis report

DIALux can help designers to determine the lighting energy
consumption according to DIN V18599 criteria. Characteristics

and all other parameters, also the framework of the standard
specified value have been deposited in the DIALux, ready for
the user at any time [8]. In lighting design inputing information,
such as space shape, shape of glass Windows, skylights,
composite ceiling, lamps and lanterns, etc., will be directly
delivered into energy evaluation by DIALux, and then used for
automatical calculation.

For details, fig. 5 is about the size of the space, fig. 6 is the
information graph of the LED lamps and lanterns used in the
scene, fig. 7 is the location map of the LED lamps and lanterns.
fig. 8 is the illumination analysis of the working intensity of
general layout. According to the analysis report, the intensity of
illumination is in line with the total standard, and the design of
LED lighting environment is reasonable.

VI. CONCLUSION

This paper introduces a method of LED light environment
visualization, which can not only display the scene directly
through the browser without any plug-ins, but also accelerate
rendering engine using the GPU. WebGL is a new kind of
technology in recent years, received much attention and support,
and has great potential development. Combing WebGL
technology and visualization, has realized the cross-platform
and real-time performance, which is a real meaning
breakthrough in this field. In the development of the virtual light
environment, there are many methods in handling light sources,
materials and textures, it will take great effort to find the best
ones. However, the foundation of our research is still at the
primary stage, unable to deal with complex visual requirements
and high quality visual effect. In the deeper study, the LED light
environment visualization should be subdivided, details inside
will be modularized, which may greatly improve the usability
and stability of the system.

ACKNOWLEDGMENT

The authors would like to thank Shanghai Key Lab of
Intelligent Manufacturing and Robotics and Shanghai
University for their valuable support and computing resources.

REFERENCES

[1] Zheng, Jun, and J. Jian. "LED Lighting Simulation Control System
Design of Highway Tunnel." Transportation Science & Technology
(2015).

[2] Bochicchio, M. A., A. Longo, and L. Vaira. "Extending Web applications
with 3D features." (2011):93-96.

[3] Ziwar, F., and R. Elias. "VRML to WebGL Web-based converter
application." International Conference on Engineering and Technology
IEEE, 2014:1-6.

[4] Khronos Group. WebGL - OpenGL ES 2.0 for the Web.
http://www.khronos.org/webgl/ Restrieved 20 May 2016.

[5] Weigang, et al. "A WebGL-based method for visualization of intelligent
grid." Electric Utility Deregulation and Restructuring and Power
Technologies (DRPT), 2011 4th International Conference on IEEE,
2011:1546 - 1548.

[6] Dirksen J. Learning Three.js: The Javascript 3D Library for WebGL[J].
2013.

[7] Aman, M. M., et al. "Analysis of the performance of domestic lighting
lamps." Energy Policy 52.3(2013):482-500.

[8] Acosta, Ignacio, J. Navarro, and J. J. Sendra. "Towards an Analysis of
Daylighting Simulation Software." Energies 4.12(2011):1010-1024.

303

http://www.khronos.org/webgl/

