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Abstract. This paper gives a method of forecasting data evolution in a long term, its practical 
significance is predicting data evolution direction and targeting the data that need to be updated.With 
the assumption of no absolutly real data in the world, we could view the data updating process as a 
data evolution in order to  infinitely close to an objective entity. The EVO elements could be 
considered as the most close to real data in a specified period. In the long term, data evolution 
constitutes a Markov chain. According to Chapman-K Olmogorov Equation, we derive the Markov 
chains of data evolution in the long term. Furthermore ,we greatly simplifies the evolutionary 
computation by a properties of limiting distribution and the EVO elements. Experiments show that 
after a great times of updating ,  it still has a high prediction precision for the initial price. 

Introduction 
At present, many researches,  on discovery of data true value and data inconsistent,  assume that there 
is a only correct data. However, in reality, the real data is constantly changing, for example, with the 
improvement of measurement technology, we could measure the radius of the earth more 
accurately.This paper regard the data updating process as a data evolution which infinitely close to an 
objective entity.  

The EVO elements can be considered as the most close to real data within a specified period. In the 
long term, data evolution constitutes a markov chain. According to Chapman-Kolmogorov Equation, 
we derive the markov chains of data evolution in the long term, what is more ,we greatly simplifies 
the evolutionary computation by the properties of limiting distribution and EVO elements. 

Equivalent Group Set 
The section headings are in boldface capital and lowercase letters. Second level headings are typed as 
part of the succeeding paragraph (like the subsection heading of this paragraph). Assuming that under 
the relational schema R, an entity E is described by n data source, they generate a list of n records 

1 2{ , ... }nR e e e= , where the R  is called record list and the elements 1 2, ... ne e e  are records from n data 
source.  Obviously, the elements in R  are random sequence, however, we  more concernes that how 
many of these elements are the same, and put these elements as a group. 1 2{ , ... }tG g g g= , where the G  
is an equivalent group set if the elements , , ( , 1, 2,..., )i jg g i j t= meet the following 
properties:1. ,i jg g R⊂ , 2. i jg g =∅ , 3.

1 2
,i i ie e g∀ ∈  satisfy the conditions 

1 2i ie e=  4. t n≤  
Which means the quivalent group set is an set of that each elements is a sublist from R, and each 

sublist contains records are equal. In this way, we map the list R into the set G 
 
Counting Vector 
For an equivalent group set, we more interested in the number of equal records in ig  

1 2( ) [ ( ), ( ),..., ( )]nC G c g c g c g= .                                                                                                                                    (1) 
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Where the function ( )C ∗  is a counting function which maps an equivalent group set G into a 
counting vector and each element in vector refer to the number of equal records in ig .Counting 
vector only reflect the number of the same record, the dimensions of vector represent the number of 
unequal record groups of G .Therefore, Counting vector could map data with a variety of structure. It 
only concern about that if these record values are equal, and don't care what kind of structure these 
data have been. 

In fact, Counting vector reflects how many data sources adopted the data with the same value, the 
size of each element in counting vector refer to the number of data sources that adopt data with 
specific value. For example, the frequency of a certain type of CPU, many E-commerce sites may 
give different frequency for this type of CPU .We could use a Counting vector to record the number 
of occurrences of different frequency. 

Usually, when we examine the authenticity of a data, we not only examine how many data source 
showing these data, but also examine the weight of the data source itself. At the initial time, the 
weight of data source is given by the credit of data organization, as time goes on,the weight will 
change over time. 

Evolutionary Operation and Dynamic Evolution Factor 
Definition1: 

2
( ) max[ ( ) ( )] max[ ( ) ( )]R T C G W G C G W G= a a .                                                                                                                   (2) 

The Eq. 2 is an Evolutionary Operation, where G is equivalent group set. ( )W G  refers to the vector 
in which each element of it is a representative of the average weight . ( ) ( )C G W G  refers to the 
Hadamard product of ( )C G  and ( )W G . ( )R T  is called evolutionary degree. max[ ( ) ( )]C G W Ga  means 
choose the maximum elements in vector ( ) ( )C G W G . The maximum elements are called EVO 
elements. When there are more then one equivalent maximum elements in the vector, they should 
merge into one. 

2
 * means 2-norm operation, we take 2-norm to normalize counting vector and 

average weight vector . 
The EVO elements and it’s evolutionary degree can be get through Evolutionary Operation, 

however there are no absolutly real data in the world, we can view the data updating process as a data 
evolution approaching an infinitely close approximation to an objective entity. The EVO elements are 
maximum number of the integration of quantity and weight. it can be considered as the most close to 
real data within a specified period.  

The data in the reality is dynamic, we assume that the evolution of the data is caused by the 
following three factors 

1. The proportion of EVO elements in the vector [ ( ) ( )]C G W G . 
Definition 

( )T( ) max[ ( ) ( )] ( ) ( )R G C G W G C G W G= a  .                                                                                                                           (3) 

Where the ( )R G  refer to the proportion of EVO elements in the vector [ ( ) ( )]C G W G . 
2. The proportion of threatening elements in the vector [ ( ) ( )]C G W G . 
Definition 

 ( )T( ) max{ ( ) ( ) max[ ( ) ( )]} ( ) ( )RS G C G W G C G W G C G W G= −a a  .                                                                   (4) 

Where the ( )RS G  refer to the proportion of second largest elements in the vector [ ( ) ( )]C G W G , 
function max[ ]∗  means in addition to a maximum element in a vector, take other elements return to 
zero. 
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3. The span of equivalent data quantity change. 

The transition probability of evolution 
Definition 

( )

1

[ ( ), ( ), ] ,

1

ij i i
n

ij
j

P g R G RS G j i f i j i

P

α

=

 = − = −



=


∑
.                                                                                             (5) 

Where the ijP  is said to be a transition probability of evolution from i to j. [ ( ), ( ), ]i ig R G RS G j i α−  is a 
function that relate to the three factors above. i, j refer to the number of the same record from a certain 
data source in different times. 0α ≥  is a real number that to control the way of influence probability 
by span from i to j.Function [ ( ), ( ), ]i ig R G RS G j i α−  can be a variety of  specific analytic expression, let 
( )f ∗  is a certain expression. 
The whole evolution probabilities can be written as transition matrix form 

(1,0) (1,1) (1, 2) (1, 1)
(2, 1) (2,0) (2,1) (2, 2)
(3, 2) (3, 1) (3,0) (3, 3)

( ,1 ) ( , 2 ) ( ,3 ) ( ,0)

f f f f n
f f f f n

P f f f f n

f n n f n n f n n f n

− 
 − − 
 = − − −
 
 
 − − − 







    



.                                                                                                                   (6) 

Suppose the probability of the data sources number that evolves from i to j in one interval is only 
related to the state i at the beginning of this interval, those evolutionary process satisfy markov 
property.  

Setting a rules that it is a one step transition matrix, that is to say all the transition occur in a time 
interval. Let (0)φ  is an initial distribution vector in n-dimension space, than we can get the transfering 
probability distribution in any after any time intervals ( )xφ . according to Chapman-Kolmogorov 
equation 

( ) (0) 1x xPφ φ −= .                                                                                                                                                                (7) 

In practice, Evolution Factor will change over time, that cause the variation of analytic expression 

in function ( )f ∗ .We suppose that in m intervals, the change are small, than , the 
( )xφ  can be written 

as Eq. 8 

[ / ] 1
( ) (0) % (0) %

1 2 [ / ] 1 [ / ] [ / ]
1

x m
x m m m x m m x m

x m x m l x m
l

P P P P P Pφ φ φ
−

−
=

 
= =  

 
∏ .                                                                                         (8) 

The ( )xφ  is the probability distribution after in x times evolution, where the times of evolution x is 
greater than Stabilization intervals m. The lP is the constant stochastic evolutionary matrix in the lth 
timescale. The [ / ]x m  is the round off function of /x m , %x m  means taking the remainders of /x m . 

Proof: 

( ) ([ / ] 1) % ([ / ] 2) % (1) %
[ / ] [ / ] 1 [ / ] 2 [ / ] 1 [ / ]

(0) %
1 2 [ / ] 1 [ / ]

 =  = =

       =

x x m x m x m m x m m m x m
x m x m x m x m x m

m m m x m
x m x m

P P P P P P

P P P P

φ φ φ φ

φ

− −
− −

−




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we can see that if the analytic expression of transfer probability is defined, then the probability of 
any length of time and any transition span can be calculated, however, this kind of calculation is very 
difficult. We tried to simplify this operation, there are some commonality within each time interval. 

If the limit distribution of each interval can be found, it can use to instead the high power matrix 
within each interval. In fact, in a discrete Markov chain, if the probability of data sources numbers is 
ergodic, the stationary distribution of transition probability distribution is equal to its limit 
distribution, it means that we can get (0)lim m

i im
Pφ π

→∞
=  by m

i i iPπ π= . It can be found that the limit 

distribution do not dependent on the initial distribution. In this way can be simplify as following: 

1

2

[ / ] 1

( ) (0) % %
1 2 [ / ] 1 [ / ] [ / ] 1 [ / ]lim lim

x m

x m m m x m x m
x m x m x m x mm m

P P P P P
π

π

π

φ φ π

−

− −→∞ →∞
= =

%

%((

%((((((

.                                                                                          (9) 

Sometimes, data evolution does not have ergodicity, its transition matrix is reducible, but 
according to the Eq. 9，it is only need to make sure that the previous period has a stationary 
distribution, the current limit distribution is independent of earlier distribution. 

[ / ] 2

( ) (0) % %
1 2 [ / ] 1[ / ] [ / ] 1 [ / ]lim lim

x m

x m m m x m x m
x m x m x m x mm m

P P P P
φ

φ φ π
−

− −→∞ →∞
= =

%((

.                                                                                                   (10) 

In fact, When a EVO element was determined, the corresponding number i was decided. So, a 
nonzero row in transition probability of evolution Matrix is decided. At this point, the other rows in 
the matrix are 0, Therefore there is one, and only one nonzero row in the Evolutionary Matrix. 

* *

* * * * * * *

 

* *
*

0 0 0

[ ( ), ( ), 1] [ ( ), ( ), 2] [ ( ), ( ), ]

0 0 0

i
Evolutionary Oper tion

i
a                        P P

P g R i RS i i g R i RS i i g R i RS i i n

=
→

 
 
 
 = − − −
 
 
 
 



   



   

 .                                      (11) 

The whole collaborative forecasting process is as Fig.1. 
 
                                                                                                                         Table  1 SOURCES OF DATA SETS 
 

Equivalence 
Group Set

G

Counting 
Vector
C(G)

Dynamic 
Evolution 

Factor

Evolutionary 
Trend of Data Evolutionary 

Matrix

Record 
list R

 
 
              Fig. 1. Forecast flow chart 

Type JD YIXUN YHD AMAZON 

Mobile 13140 12757 10611 12791 

Digital 44324 69786 49108 59240 

Computer 14102 19683 9799 13725 

Appliance 96800 105379 66881 60497 

Houseware 22284 35436 40482 25152 

Jewelry 82452 68328 78481 62113 

Cosmetics 25215 21326 15205 21742 

Sports 5483 5567 2492 4532 

Food 4164 6060 6285 3894 

Dailyuse 17236 26409 11567 20686 
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Experiment 
The experimental idea is collecting the commodity price data of e-commerce sites. Forecast the 

probability distribution of price movements by Evolutionary Matrix and limit distribution. 
The experimental tool is R language in version 3.2.4. It running on Windows 7 64-bit operating 

system. The hardware configuration for AMD FX-8350 4.0GHz CPU ，DDR3 1600 8GB RAM. The 
data set is commodity price from January 2014 to August 2015 period, those from four B2C platform, 
the number of every commodity type are shown in Table 1. 
 

 
               Fig. 2. Forecast accuracy in 10 periods                          Fig. 3. Forecast accuracy in 100 periods 

 
Conclusions 
1.This paper gives a method of forecasting data evolution in a long term.  
2.We analysis the limit properties of  data evolution for the first time, and use the  of limit properties  

of evolution to predict the behavior of  data in long-term evolution. 
3.We view the data updating process as a data evolution approaching an infinitely close 

approximation to an objective entity,that is a completely different perspectives for the past research. 
4.Experiments show that after a great times of updates ,  it still has a high prediction precision for the   
   initial price. 
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