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Abstract—This paper deals with a method for pursuer to track a 
moving target in the three-dimensional space. The method is 
based on the use of the geometrical rules combined with the 
kinematics equations of the pursuer and the target. The 
maneuvers of the target are not a priori known to the pursuer. In 
this paper, the velocity pursuit is proposed to implement tracking 
the moving target. Simulations are conducted to demonstrate the 
effectiveness and reliability of the proposed control strategy. 
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I.  INTRODUCTION 

The problem of tracking has been an increasingly hot issue 
in the research field. Various methods and algorithms have 
been suggested and applied for the tracking problem. 

Tracking and interception of moving target using mobile 
robots is a vital field [1-7]. In [1], the control of a wheeled 
mobile robot to track a moving target with limited control 
inputs is studied. A tracking control method is proposed in [2] 
for differential-drive wheeled mobile robots with 
nonholonomic constraints by using a backstepping-like 
feedback linearization. In [3], the authors consider the tracking 
control problem for a group of nonholonomic wheeled mobile 
robots with limited information of a desired trajectory. In [4], a 
kinematics model for the tracking problem is derived and two 
strategies are suggested for robot navigation, namely the 
velocity pursuit guidance law and the deviated pursuit guidance 
law. The theoretical framework of controlling a convoy of 
wheeled mobile robots is considered in [5], where the control 
strategy is derived on guidance laws based on geometrical rules. 
Combining geometrical rules with the kinematics equations of 
the robot, a new approach is designed in [6] for robot 
navigation using the proportional navigation law. By using 
cubic navigation functions, a method is presented in [7] for 
robot tracking a target moving in a two-dimensional working 
space. 

In this paper, under the velocity pursuit, the aim is to 
implement the solution of tracking in three dimensions. 
Different from the study of [4] and [5], the three-dimensional 
scalar kinematic equations given in [8] are applied to design the 
control strategy of tracking. Based on the study in [7], a 
surveillance problem of intercepting and maintaining the target 
at constant distance from the moving pursuer will be further 
considered in the three-dimensional space. In the absence of 
interference, the pursuer tracks a moving target with constant 
distance. By altering the control method, the pursuer can track 

a moving target with catching it. In this paper, we focus the 
attention on the simulation results for tracking problem only. 

The remainder of this paper is organized as follows. Section 
II formulates the problem. The kinematics equations of the 
pursuer and the target are derived in Section III. In Section IV, 
the guidance law of the velocity pursuit is discussed. Section V 
proposes the control strategy of tracking under velocity pursuit. 
The simulation results are given in Section VI. Section VII is 
devoted to conclusion. 

II. PROBLEM FORMULATION 

The pursuer and the target are seen as the controllable 
particle movement in the three-dimensional space. Let  

( ) ( ( ), ( ), ( ))T T T TH t x t y t z t represents the path of the 

target at time 0 0t t  , and let 

( ) ( ( ), ( ), ( ))P P P PH t x t y t z t  represents the path of the 

pursuer at time 0 0t t  , 0t  is the initial time. ( )TH t  and 

( )PH t  are measured in the three-dimensional coordinate 

system. It is assumed that ( )TH t  is a smooth function. The 

target moves autonomously in the three-dimensional workspace 
with constant linear velocity and variable Euler angles. The 
maneuvers of target are not a priori known to the pursuer, 
which means that on-line strategies are necessary. It is assumed 
that the pursuer has a sensory system which can obtain pose 
information of the target. The mathematical formulation for the 
problem of tracking is on the basis of the geometrical rules 
combined with the kinematics equations of the pursuer and the 
target.  

III. PREPARE YOUR PAPER BEFORE STYLING 

In the three-dimensional space, the spatial representation of 
pursuer is shown in Figure I. The kinematics equations of 
motion for the pursuer are denoted by 
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FIGURE I.  (A) THREE-DIMENSIONAL REPRESENT OF PURSUER. (B) 

THREE-DIMENSIONAL REPRESENT OF TARGET 

where ( , , )P P Px y z  are the coordinates of the pursuer in the 

three-dimensional coordinate system, Pv  is the linear velocity, 

P  and P  are the flight path and heading angles. The line of 

sight between the pursuer and the origin is denoted by OP. P  

is the pitch angle of OP, and P  is the yaw angle of OP. 

In this paper, the polar representation is applied to derive 
the kinematics equations for the pursuer and the target. In polar 
coordinates, the kinematics equations of the pursuer are 
denoted by 
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cos cos sin( ).
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The spatial representation of target is also shown in Figure I, 

where ( , , )T T Tx y z  are the coordinates of the target in the 

three-dimensional coordinate system, Tv  is the linear velocity, 

T  and T  are the flight path and heading angles. The line of 

sight between the target and the origin is denoted by OT. T   

is the pitch angle of OT, and T  is the yaw angle of OT. In 

polar coordinates, the kinematics equations of the target are 
denoted by 

cos( ) cos( )

sin( ) cos( )

cos cos sin( ).
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The geometry of three-dimensional tracking problem is 
illustrated in Figure II. The line of sight between the pursuer 
and the target is denoted by PT.   is the pitch angle of PT, 

and   is the yaw angle of PT. The relative distance between 

the pursuer and the target is given by 

2 2 2( ) ( ) ( ) .T P T P T Pr x x y y z z          (4) 
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FIGURE II.  GEOMETRY OF THREE-DIMENSIONAL TRACKING 

PROBLEM 

The pitch angle of PT and the yaw angle of PT are given by 
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In this paper, the polar representation is applied to derive 
the kinematics equations between the pursuer and the target in 
the three-dimensional space. Based on [8], the differential 
equations for the range, the pitch angle of PT and the yaw 
angle of PT are 
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Equation (7) provides a kinematics model for the tracking 
problem, which represents the relative velocities of the target 
with respect to the pursuer. 

IV. VELOCITY PURSUIT GUIDANCE LAW 

In this paper, the velocity pursuit will be discussed in more 
details when elaborating the corresponding control law for the 
tracking problem in the three-dimensional space. 

In the velocity pursuit, the velocity vector of the pursuer 
lies in the line of sight joining the pursuer and the target. Thus, 
the flight path angle and the heading angle of the pursuer are 
given by 

151



 

.
P

P

 
 


 

  (8) 

Combining (7) with (8), the differential equations for the 
range, the pitch angle of PT and the yaw angle of PT are 
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V. CONTROL STRATEGY OF TRACKING 

In this section, the aim is to design control strategy to 
implement tracking in the three-dimensional space. Next an 
analysis of the control strategy being used is elaborated, and 
some important results concerning the tracking are proved. In 
this section, the negative influence of the interference is 
ignored. In the first case, the pursuer tracks a moving target 
without catching it, and the pursuer keeps a constant distance 
from the target. Thus, it is easy to obtain 

0.r  (10) 

The second one is that the pursuer tracks a moving target 
with catching it. 

In the velocity pursuit, the control strategy of tracking will 
be discussed under the proposed reasonable assumption. 

Assumption 1: Under the velocity pursuit, the following 

constraints are satisfied, that is , ( / 2, / 2).P T      

Firstly, the problem of tracking with constant distance will 
be discussed under the velocity pursuit. Inserting (10) into (9), 
the linear velocity of the pursuer can be obtained that 

cos( ) cos( ).P T P T P Tv v       (11) 

Equation (11) describes the control strategy for the linear 
velocity of the pursuer to keep constant distance from the 
target. 

With regard to tracking with constant distance, the aim of 
the pursuer is to imitate the target in the motion. This is 
formulated mathematically as follows. 

Theorem 1: Under the velocity pursuit and Assumption 1, 
the flight path angle and the heading angle of the pursuer track 
the flight path angle and the heading angle of the target, 

respectively. i.e., ( ) ( ), ( ) ( ).P T P Tt t t t      

Proof: Combining Assumption 1 with the equation (9), one 
can derive 
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This system has two equilibrium solutions, namely 
* *
1 1( , )P T P T      and * *

2 2( , )P T P T       . After 

partial deviation, it can be obtained that 
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Linearizing near each equilibrium solution, it yields that 
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From (14) and (15), the determinants of 1T  and 2T  are 

2
1det( ) ( ) 0,Tv

T
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2
2det( ) ( ) 0.Tv

T
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According to Hartman and Grobman theorem [9-10], there 
exists a topological equivalence between the nonlinear system 
and its linearized systems. Therefore, the following equivalent 
linearized systems can be obtained 
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The characteristic roots of 1T  are denoted by 11  and 12 , 

and the characteristic roots of 2T  are 21  and 22 . Based on 

(14) and (15), it is obvious to obtain 11 12 / 0Tv r      

and 21 22 / 0Tv r    . Thus, the first equilibrium 

solution is asymptotically stable and the second equilibrium 
solution is unstable. 

Combining the result of Theorem 1 with the equation (11), 
the pursuer tracks a moving target with a constant distance. 

In the sequel, the following theorem relates that the 
pursuer tracks a moving target with catching it. 

Theorem 2: Under the velocity pursuit, the pursuer reaches 

its moving target when P Tv v . 

Proof: Based on (9), it is easy to obtain 

cos( )cos( ) 0.T P T P T P T Pr v v v v          (20) 

Since 0r  , the range is decreasing and the pursuer 

reaches its target when P Tv v . 

VI. SIMULATION RESULTS 

The simulations are conducted in this section, where the 
method for tracking is implemented in the three-dimensional 
space. In the absence of interference, simulations are 
conducted to implement tracking of the moving target under 
the velocity pursuit. For simplicity, it is assumed that the 
velocities, the distances and the time are without units. 

Example 1: In the absence of interference, the pursuer 
tracks a moving target with keeping a constant distance. Under 
the velocity pursuit, simulation result is illustrated in Figure III. 

Example 2: In the absence of interference, the pursuer 
tracks a moving target with catching it. Under the velocity 
pursuit, simulation result is illustrated in Figure IV. 

 

FIGURE III.  TRACKING WITH CONSTANT DISTANCE UNDER THE 
VELOCITY PURSUIT 

 
FIGURE IV.  TRACKING UNDER THE VELOCITY PURSUIT 

VII. CONCLUSION 

In this paper, the method for tracking is implemented in the 
three-dimensional space. The control strategy is based on the 
guidance law of velocity pursuit. In the absence of interference, 
the pursuer tracks a moving target with keeping a constant 
distance, and pursuer tracks a moving target with catching it. 
Simulation results demonstrate the validity of the proposed 
control strategy. 
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