International Conference on Communications, Information Management and Network Security (CIMNS 2016)

Implementation of a Parallel Prefix Adder Based on
Kogge-Stone Tree

Yancang Chen”, Minlei Zhang?!, Pei Wei?, Sai Sui!, Yaxin Zhao! and Lunguo Xie?
'Luoyang Electronic Equipment Test Center, Luoyang, China
2National University of Defense Technology, Changsha, China
*Corresponding author

Abstract—Binary adder is an important module for
microprocessors. We present a novel structure of binary adder,
named Hyper-Parallel Prefix Adder (HPPA) in this paper. The
basic idea of HPPA is to divide the addition into two levels, both
of which are parallel prefix adder architecture. It can perfectly
reduce the delay of wire loads by reducing the wire length in the
critical paths; hence the performance of the adder can be
significantly improved. Moreover, we present an optimized carry
tree structure which is based on Kogge-stone tree named
Grouped-Kogge-Stone tree (GKS tree), which has small nodes
especially in the top level. Combining HPPA with GKS tree, we
designed and implemented a 64-bit full adder. At the top level, we
divide the two 64-bit addition operands into 8 groups, each of
which is 8-bit. At the bottom level, we divide each 8-bit group into
4 equal sub-groups. Both of the two levels are composed of
parallel prefix adders based on Grouped-Kogge-Stone tree. We
design the adder using Verilog HDL to verify the performance.
We have implemented the adder under 0.13um CMOS process.
Simulation results show that the maximal delay of the proposed
adder layout is 578ps with the average power of 18.3mW.

Keywords-parallel prefix adder; CMOS process; maximal delay;
average power; kogge-stone tree

l. INTRODUCTION

Binary adder is an important module of microprocessors. It
is not only be used to complete addition and subtract operation,
but also be used to achieve multiplication operation, division
operation and so on. To the best of our knowledge, the main
structures of adder include Carry-ripple, Carry-skip, Carry-
select, Carry-look-ahead, Parallel- prefix, and so on.

Carry-Ripple is the basic structure of adders. Its carry bit
must be spread from the least significant bit to the most
significant bit which forms the critical path of the adder[4].
The carry-skip adder divides operands into several groups and
can improve performance only in some cases. Because of the
use of forward-looking, the performance of carry-select adders
improved significantly. The critical path of carry-select adders
is the cascade of the carry bit of the first group and several
multiplexers. Each carry bit of carry-look-ahead adders has
nothing to do with the front carry bit. The increasing
complexity of each carry circuit makes the delay of adders
increasing linearly. The parallel prefix adder is an improved
architecture of carry-look-ahead adders.

Parallel prefix adder is particularly because it can be
attractively fast and compact when implemented in VVLSI [3].

© 2016. The authors - Published by Atlantis Press

234

The critical path of parallel prefix adder is the carry tree, so
lots of people make their greatest efforts to improve the speed
of carry tree and have presented lots of structures of carry tree,
such as Kogge-Stone tree[1], Brent-Kung tree[5], Sklansky
tree[6], Han-Carlson tree[7], Ladner-Fischer tree, Knowles
tree and so on. These structures have the same goal which is to
compute all the carry bits as soon as possible. The difference
of these structures is the links between the nodes of trees.
Among the architectures of carry tree, the Kogge-Stone tree is
the fast architecture in principle, but its area and power costs
are expensive.

In this paper, we present an optimized carry tree structure
which is based on Kogge-stone tree named Grouped-Kogge-
Stone tree (GKS tree). By using the GHC tree hierarchically,
we can design optimized hyper-parallel prefix adders.

The remainder of this paper is organized as follows:
Section 2 describes basic algorithmic of parallel prefix adder;
Section 3 presents the Grouped-Kogge-Stone tree; Section 4
presents the hyper-parallel prefix adder (HPPA) based on GKS
tree; Section 5 describes the design and implementation of a
64-bit HPPA based on 8-hit GKS tree, including the detailed
structure of the adder, RTL model and verification, circuit of
the logical, simulation results and comparison; Finally, we
give the conclusions and the future works.

There are many theories about parallel prefix adders. This
section we will describe the basic algorithmic of parallel prefix
adder. This is similar with [3][11][13][14][15], and we made
some reasoning changes.

BASIC ALGORITHMIC OF PARALLEL PREFIX ADDER

Parallel prefix adder is composed of bit-generate G; and
bit-propagate P; functions, and can be considered as three stage
circuits, preprocessing stage, parallel prefix calculation stage
and computing sum stage, respectively. Figure | shows the
details work flow and detail operations of each stage.

Let’s consider the addition of two n-bit binary numbers
which are denoted as A=An.1An2*-*Ag and B=B;.1Bn.2*** Bo.
The carry bits and the sum are denoted as C=C;.;Cy-2*+*Co and
S=Sn1Sn2 *** So. The following functions are hold. Note,
symbols +, ® and © denote logical AND, OR and exclusive-OR
operations, respectively.

Co=Ap® By

So=Ao® Bo

Ci=A1#B1+(A1®B1) e Co

S1=A1®B1®Co

Ci=AieB+(Ai®Bi)eCi;

Si=FAi®Bi@ Cis (V i, OSiSn-l) (1)

According to the well-known equations Gi=A; ® B; and
Pi=A; ® B, the functions (1) can be simply written as:

Ci= Gi+(Pi) ® Ci,
Si=Pi®@Ci.1 (Vi,0<i<n-1) 2
Unwinding the expression of C; according to the quations
(2) as follows
Ci=Gi+Pje Cj,
Ci =Gi+Pi® Gj.1+ Pie Pi1® Ci, 3

Ci=Gi+Pi® Gj.1+Pi® Pi.1® Gi; +Pi® Pi.1 ® --- ® Pj;; @ Gj+
PiePi1®:--eP; eCj, 4

Ci=G;jj+Pij® Cj1 (5)

where Gij=Gi+Pi® Gi.1+Pi® Pi.1® Gio+Pi® Pi.1® ... ® P;»1 ® G;
and Pij=P;® P, ® ... ®P; represent group bit-generate and
group Dbit-propagate, respectively[3][15]. [15] presented a
prefix operator © to transform carry computation to prefix
problem. The definition of prefix operator is shown as
following.

(G,P)o(G’,P)=(G+PeG’,PeP)
Therefore, (Gij, Pij)can be represented as follow.

(Gij, Pij) = (Gi, Pi) © (Gi-1,Pic1) © === 0 (Gjua, Pjs1) 0 (Gj, Pj) (6)

The equation (6) is the basis of prefix computation. The
basic algorithmic of prefix operation is described in Figure I.

B Au By A Carry computation
2 B , 1y A gt 6,1,P) G PG,
reprocessin;
prep e Output: C_,,C, ,,-+,C;,Cy,Cop
G=A*B PR=A®B,
process:
\ Gt Py oo Y Go: P° 1. Parallel Prefix calculation

(G Poo) =Gy, Ry)
(va Pm) =(G,,P)°(Gy,Ry)

Carry computation
(Parallel Prefix calculation)
C=G;;+R;*C;,

(GI.D,P‘.D) :(GJvPJ)°“'°(GovPo)
2. Carry Computation

‘ Computing Sum Co =G, +PRyeCyy
—pec. [T e
5=ReC, C;=G,+PeC,,
*SH Co =C,

FIGURE I. THE WORK FLOW OF PARALLEL PREFIX ADDER

235

I1l. GROUPED-KOGGE-STONE TREE

In 1973, P. Kogge and H. Stone presented the Kogge-
Stone tree [1] which is the fastest architecture in theory. Its
fan-out is a constant in all the nodes of the carry tree, and its
structure is regular and easy to be realized in VLSI. However,
when N is 64, the number of prefix nodes is up to 321[2]. So,
its area and power costs are expensive.

We presents Grouped-Kogge-Stone tree (GKS tree) based
on Kogge-Stone tree in the following section. The principle of
Parallel prefix adder based on GKS tree is similar with our
previous adder presented in paper [2] which combines the
advantages of parallel prefix adders and carry-select adders.

The tree presented by P. Kogge and H. Stone can be simply
seen as 1-bit Grouped-Kogge-Stone tree (GKS tree). The tree
needs to compute every carry bit, and the wires between
correlative nodes are so long that they will become the critical
path of the tree. In order to improve the speed of the tree, we
can decrease nodes through dividing the tree’s inputs into a
few groups. Every group maybe includes N-bits. In principle,
N can be any non-zero integers, but actually N has better to be
2’s power, such as 2, 4, 8, 16 and so on, because with these
values we can make every group has the same size and easy to
be realized in VVLSI. Figure Il shows the architecture of a 64-
bit adder’s carry tree based on 4-bit GKS tree.

We can obtain the 8-bit GKS tree by combining some
nodes of from 4-bit GKS tree. The reduce number of nodes is
32. Compared with the traditional Kogge-Stone tree, the 8-bit
GKS tree has many advantages. It needs only 12.5% nodes of
Kogge-Stone tree in the CM3, CM4 and CMD5, so the wire is
12.5% as long as the traditional Kogge-Stone tree and the wire
load delay is 1.56% (strictly is 1/64) of Kogge-Stone tree. The
largest fan-out of GKS tree is the same as Kogge-Stone tree.

NN
NN\
T AN XN

AN\N S\ aY
IN\NAAGN
DERNGANRN

)

L SO AN N
M N N
LN N N
N N N

\

1
1\

I NN AN N
T AN AN N

A_
i\
I

.,
O
T
7
I
.y
F
o
1

63:0 59:0 55:0 51:0 47:0 43:0 39:0 35:0 31:0 27:0 23:0 19:0 15:0 11:0 7:0 3:0 ‘

FIGURE Il. 4-BIT GROUPED-KOGGE-STONE TREE OF 64-BIT
ADDERS

IV. HYPER-PARALLEL PREFIX ADDER

We designed a Hyper-Parallel Prefix Adder (HPPA) by
using Grouped-Kogge-Stone tree to improve the performance
of the adder. In this adder, the two operands of addition are
divided into several groups. As shown in Figure 111, operand A
is divided into j groups which are Ao, A1, ..., A, ..., Aj2, Aj,
respectively. Accordingly, operand B should also be split into j
groups which can be expressed as Bo, By, ..., Bi, ..., Bj2, Bj1,.

Note that, Ai and Bi must have the same number of bits which
assumed to be Ni. In the operation of A plus B, Ai and Bi must
do addition operator with the carry bit which we do know yet.
In order to improve the speed of the operation, we use two
child parallel prefix adders to compute the sum, which is the
same as carry-select adders. The select control signal comes
from the GKS tree. All the groups shown in Figure Ill are
divided again.

/Cut line \

AJA Aj—z A A A

B, B B; B, B,

FIGURE Ill. DIVIDE OPERANDS A AND B

Actually, a hyper-parallel prefix adder has two levels, both
of which are parallel prefix adders, which is the reason for its
name. The top level combines all the lower level together.

The hyper-parallel prefix adder which has several child
parallel prefix adders is the improvement of parallel prefix
adder. It can fully develop parallelism insides adder, hence
may significantly improve the performance of adder. In order
to testify the performance of HPPA, we design a 64-bit HPPA
based on 8-bit GKS tree.

V. IMPLEMENTATION OF 64-BIT HPPA

In order to verify the performance of the adder we
presented, we design a 64-bit Hyper-Parallel Prefix Adder by
simply dividing the two operands of adder equally. The two
64-bit operands of addition are divided into eight equal groups,
so each group has 8-bit. Each of the 8-bit group is divided into
4 equal sub-groups.

Therefore, the 64-bit adder can be seen as two levels. At
the bottom level of the adder, there are several 8-bit parallel
prefix adders and at the top level, there is only one 64-bit
adder which accepts the output of the bottom adders, other
than the original operands. The remainder of this section, we
will introduce the structure of each level of the adder in detail.

A. The Bottom Level of the Adder: 8-bit PPA

In our design, we use two different 8-bit parallel prefix
adders, both of which are based on 2-bit GKS tree, one of
them is used for non-carry bit addition and the other is used
for carry addition, as shown in Figure IV. As we seen from the
figure, there is only little difference between the two kinds of
8-bit PPA.

We reuse the common nodes of the two PPA to reduce the
total area of the 64-bit adder. Except for the first 8-bit group of
operands, each of the other groups uses both of the two kinds
of 8-bit PPA once. The first group which is also called the
lowest group just uses non-carry 8-bit PPA once, because our
64-bit adder doesn’t has carry bit.

236

Both of the two 8-bit PPA have two common output
signals G/P, which will be used in the top level of the 64-bit
adder. The input signals of the multiplexers come from 2-bit
Carry-Ripple adders. The output signals of the multiplexers
are also used by the top level of the 64-bit adder.

[Pc76 5 4 32 10] [P 76 5 a 3 2 10

CMO| CMO

[cPs@6) S(G4) S@B2) SE0) | [crse S(5:4) S(3:2) S0,

FIGURE IV. THE CARRY 8-BIT PPA AND NON-CARRY 8-BIT PPA
BASED ON 2-BIT GKS TREE

B. The Top Level of the Adder

The architecture of the top level of the 64-bit adder is
shown in Figure V. All of the input signals of the top level
come from the bottom level.

‘CM263:5655:48 47:40 39:32 31:24 23:16 15:8 7.0 Cin‘

[“U63:56 55:48 47:40 39:32 31:24 23:16 15:8 7.0 |

FIGURE V. TOP LEVEL OF THE ADDER

Comparing the Figure 1l with the Figure V, you can see
that the input signals of the carry tree of the top level of the
adder come from the output signals G/P, and the input of
multiplexers come from the two kinds of 8-bit PPA. The first
group does not need multiplexer because of non-carry bit. Of
course, we can design adders support carry bit by change the
carry tree without decreasing the performance of the adder.
The critical path is lies in the carry tree, especially because of
the wire loads delay.

C. RTL Model Design and Verification

We designed RTL model of the presented adder using
Verilog HDL to verify its correctness. Then, we designed its
test module to generate random stimulus, created the abstract
model, compared outputs of the adder with the abstract model,
and outputted the results of the comparison to a file. The RTL
model of the adder has two modules, which are the bottom
module and the top module respectively.

D. Implementation Circuits

In COMS process, AND gate is implemented by two level
gate which are NAND and NOT, and OR gate is implemented
by NOR gate cascades NOT gate. Therefore, we made

exiguous changes to the previous circuits to minimize the
logical level of the adder. The changes are shown in Table I.

In our design, we use dynamic domino logical circuits to
implement the P and the G, and use pass-transistor logical
circuit to implement multiplexer. The other circuits are
designed using static logic. The sizes of transistors in the
circuits are elaborate set. In order to maximize the adder
performance, we adopt skew CMQOS circuits when we design
the size of transistors. The skew CMOS logical circuit [12] is
presented by Alexandre Solomatnikov to design noise-immune
high-performance low-power static circuits.

We designed the 64-bit adder based on the structure we
presented using 0.13um CMOS process. The layout of the
adder we designed is shown in Figure VI. Its length is 635um,
and height is 40um.

TABLE I. UNITS AND CORRESPONDING SYMBOLS
level P G
P&G P=A+B, G =A"B,
CM0,CM2,CM4 P=R+P G=G (R+G)
CM1,CM3,CM5 P=P-P G=G +P G

635um

40um

FIGURE VI. LAYOUT OF 64 BIT FULL ADDER.
1.50 T
oo } \ 543> {——
FIGURE VII. SIMULATION RESULT
100,
80|
O Delay (ns)
60
B Power (mW)
N O Pop(PJ)
20| I
0 O Area (mm)

(8] (3] [9] HPPA

FIGURE VIII. PERFORMANCE COMPARISON

After the layout has been designed successfully, we
simulate the layout under the worst case using 1.2V electrical

237

source. The simulation results show that the maximal delay of
the proposed adder is 679ps, as shown in Figure VII. Figure
VIII gives the vivid comparison of those adders. The figure
also gives the detailed information about other adders
designed in references [3], [8], [9], [10].

VI. CONCLUSIONS

In this paper, we present adder architecture: Hyper-Parallel
Prefix Adder (HPPA) based on the Grouped-Kogge-Stone tree.
It can fully develop parallelism inside adder and reduce the
delay of wire loads by reducing the wire length in the critical
path, hence can significantly improve the performance of
adders. In the future, we will consider to improving the
performance of the adder by reducing the carry tree level
through other structures of nodes of the carry tree.

ACKNOWLEDGMENT

This work was supported by Natural Science Foundation of
China (Grant No. 61303061) and State Key Laboratory of high
performance computing (Grant No.201513-01).

REFERENCES
[1] P. Kogge, H. Stone, IEEE Trans. Computers, 8, vol. C-22, no. 8, p. 786—
793(1973).
[2] Dong-Yu Zheng, Yan Sun, Shao-Qing Li and Liang Fang, J. Comput.

Sci. & Technol., 1, p.25-27(2007).

Yan Sun, Thesis of master’s degree of national university of defense
technology, (2005).

Jan M.Rabaey, Anantha Chandrakasan, Borivoje Nikolic, Digaital
integrated circuits, p412(2004).

R. Brent, H. Kung. IEEE Trans. Computers, vol. C-31, no. 3, pp. 260—
264(1982).

J. Sklansky, Conditional-sum addition logic, IRE Trans, Electronic
Computing, vol. EC-9, pp. 226-231(1960).

T. Han, D. Carlson. Proc. 8th Symp. Comp. Arith, pp. 49-56(1987).

Sun Xuguang, Mao Zhigang, Lai Fengchang, Design and
Implementation of a 64bit CMOS Parallel Adder with Modified
Architecture. chinese journal of semiconductors, vol 24,No.2, 2003.

A.Neve,H.Schettler, T.Ludwig,etal.Power-DelayProductMinimizationin
High-Performance 64-bit Carry-Select Adders. IEEE Transactionon
Very Large Scale Integration (VLSI)System,vol.12,n0.3,March2004.

Xiujiang Ren, Optimized Design of 64bit GHz Integer Arithmetic and
Logical Unit, Adder, Thesis of master’s degree of national university of
defense technology, (2007).

Xiaofei Fan, The Research and Design on 64-bit 1.47GHz High-
Performance Integer Adder, Thesis of master’s degree of national
university of defense technology, (2008).

Alexandre Solomatnikov and et al,Skewed CMOS:Noise-Immune High-
Performance Low-Power Static Circuit Family,in:Proceeding of the
IEEE International Conference on Computer Design,241-246,2000

Lakshmanan, Ali Meaamar and Masuri Othman, High-Speed Hybrid
Parallel-Prefix Carry-Select Adder Using Ling's Algorithm, ICSE2006
Proc, 2006.

Robert Jackson and Sunil Talwar, High Speed Binary Addition, 2004.
Giorgos Dimitrakopoulos, Dimitris Nikolos, High-Speed Parallel-Prefix
VLSI Ling Adders, IEEE TRANSACTIONS ON COMPUTERS, VOL.
54, NO. 2, FEBRUARY 2005.

31
[41
[5]
[6]
[71

(8]

[°]

[10]

[11]

[12]

[13]

[14]
[15]

