
 

 

On the Second Descent Points for the K-Error Linear 
Complexity of 2n-Periodic Binary Sequences 

Jianqin Zhou1,2,*, Xifeng Wang1 and Wanquan Liu2 
1School of Computer Science, Anhui Univ. of Technology, Ma’anshan, 243032 China  

2Department of Computing, Curtin University, Perth, WA 6102 Australia 
*Corresponding author

 
 
Abstract—In this paper, a constructive approach for determining 
CELCS (critical error linear complexity spectrum) for the k-
error linear complexity distribution of 2n-periodic binary 
sequences is developed via the sieve method and Games-Chan 
algorithm. Accordingly, the second descent point (critical point) 
distribution of the k-error linear complexity for 2n-periodic 
binary sequences is characterized. As a by product, it is proved 
that the maximum k-error linear complexity is 2n-(2l-1) over all 
2n-periodic binary sequences, where 2l-1<=k < 2l and l < n. With 
these results, some work by Niu et al. are proved to be incorrect.  
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I. INTRODUCTION 

The CELCS (critical error linear complexity spectrum) is 
studied in [11], [3]. In fact they are the points where a 
decrease occurs for the k-error linear complexity, and thus are 
called critical points. The third descent point distribution of 
the 5-error linear complexity for 2n-periodic binary sequences 
are characterized completely in [24].  

In this paper, we present a constructive approach for 
determining CELCS for 2n-periodic binary sequences based on 
the idea reported in [22], [24]. Accordingly, the second 
descent point (critical point) distribution of the k-error linear 
complexity for 2n-periodic binary sequences is characterized. 
As a consequence, we obtain the complete counting functions 
on the k-error linear complexity as the second descent point of 
2n-periodic binary sequences for k = 3; 4. We expect that with 
the constructive approach proposed here, one can further 
obtain other second and third descent point distribution of the 
k-error linear complexity for 2n-periodic binary sequences. 

In [22], we investigate all 2n-periodic binary sequences 
with the given 3-error linear complexity. In contrast, here we 
only investigate the 2n-periodic binary sequence with the given 
3-error linear complexity, where the second decrease occurs 
exactly at 3-error linear complexity. So the study here is more 
accurate. As a by product, it is proved that the maximum k-
error linear complexity is 2n- (2l -1) over all 2n-periodic binary 
sequences. With these results, some work by Niu et al. [15], 
[16] are proved to be incorrect. 

II. PRELIMINARIES 

We will consider sequences over GF(q), which is the finite 
field of order q. Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) 
be vectors over GF(q). Then we define 

x + y = (x1 + y1, x2 + y2, · · · , xn + yn). 
If q = 2, we denote x + y as x⊕y as well. When n = 2m, we 

define Left(x) = (x1, x2, · · · , xm) and Right(x) = (xm+1, xm+2, · · · , 
x2m). 

The Hamming weight of an N-periodic sequence s is 
defined as the number of nonzero elements per period of s, 
denoted by WH(s). Let sN be one period of s. If N = 2n, sN is 
also denoted as s(n). The distance of two elements is defined 
as the difference of their indexes. Specifically, for an N-
periodic sequence s = {s0, s1, s2, s3, · · · , }, the distance of si,, sj 
is j − i, where 0 ≤ i ≤ j ≤ N. 

The linear complexity of a 2n-periodic binary sequence s 
can be recursively computed by the Games-Chan algorithm [3] 
as follows. 

Algorithm 2.1 

Input:  

A 2n-periodic binary sequence s = [Left(s);Right(s)], c = 0. 

Output: L(s) = c. 

Step 1. If Left(s) = Right(s), then deal with Left(s) 
recursively. Namely, L(s) = L(Left(s)). 

Step 2. If Left(s)≠Right(s), then c = c + 2n−1 and deal with 
Left(s)⊕Right(s) recursively. Namely, L(s) = 2n−1 
+L(Left(s)⊕Right(s)). 

Step 3. If s = (a), then if a = 1 then c = c + 1. 

The following lemmas are well known results on 2n-
periodic binary sequences and are required in this paper. 
Please refer to [14], [8], [22], [25] for details. 

Lemma 2.1 Suppose that s is a binary sequence with 
period N = 2n, then L(s) = N if and only if the Hamming 
weight of a period of the sequence is odd. 

If an element 1 is changed to 0 in a sequence whose 
Hamming weight is odd, the Hamming weight of the sequence 
will be changed to even, so the main concern hereinafter is 
about sequences whose Hamming weights are even. 

International Conference on Communications, Information Management and Network Security (CIMNS 2016) 

© 2016. The authors - Published by Atlantis Press 311



 

 

Lemma 2.2 Let s1 and s2 be binary sequences with period 
N = 2n. If L(s1) ≠ L(s2), then L(s1+s2) = max{L(s1);L(s2)}; 
otherwise if L(s1) = L(s2), then L(s1 + s2) < L(s1). 

Suppose that the linear complexity of s can decrease when 
at most k elements of s are changed. By Lemma 2.2, the linear 
complexity of the binary sequence, in which only elements at 
exactly those k positions are nonzero, must be L(s). Therefore, 
for the computation of k-error linear complexity, we only need 
to find the binary sequence whose Hamming weight is 
minimum and its linear complexity is L(s). 

III. COUNTING FUNCTIONS FOR 2N-PERIODIC BINARY 

SEQUENCES WITH GIVEN 3-ERROR LINEAR COMPLEXITY 

Suppose that s(n) is a 2n-periodic binary sequence. We first 
investigate the relationship between the first descent point of 
the k-error linear complexity and the second descent point of 
the k-error linear complexity. Second, based on the first 
descent point and the second descent point, we obtain the 
complete counting functions of 2n-periodic binary sequences 
with given first descent point k1-error linear complexity and 
second descent point k2-error linear complexity.  

Theorem 3.1 Let s(n) be a 2n-periodic binary sequence with 
linear complexity 2n. Then L3(s

(n)) < L1(s
(n)) if and only if 

L1(s
(n)) = 2n - (2i + 2j), 0≤ i < j < n. 

Proof: ==> 

By result from Kurosawa et al. [10] we know that the 
minimum number k for which the k-error linear complexity of 
2n-periodic binary sequence with linear complexity 2n -(2i + 2j) 
is strictly less than 2n - (2i + 2j) is 22 = 4. Note that from the 
sequence with linear complexity L1(s

(n)) to the sequence with 
linear complexity L3(s

(n)), at most 4 elements have been 
changed. Thus, if L3(s

(n)) < L1(s
(n)), then s(n) is obtained by 

changing one element of a 2n-periodic binary sequence with 
linear complexity 2n - (2i + 2j). So L1(s

(n)) = 2n - (2i + 2j). 

<== 

Suppose that L1(s
(n)) =2n - (2i + 2j). Similarly by result 

from Kurosawa et al. [10] we know that it is possible to 
change 3 elements of s(n), so that the new sequence with linear 
complexity less then 2n - (2i + 2j). That is L3(s

(n)) < L1(s
(n)). ▄ 

Next we investigate the distribution of L3(s
(n)). 

Theorem 3.2 Let s(n) be a 2n-periodic binary sequence with 
linear complexity 2n. If L1(s

(n)) = 2n -(2i + 2j), 0≤ i < j < n, then 
L3(s

(n)) = 2n - (2i1 + 2i2 + … + 2im) < 2n -(2i + 2j), where 0≤ i1 < 
i2 < …  < im < n, m > 2, or L3(s

(n)) = 2n - (2i1 + 2i2) < 2n -(2i + 
2j), where i1 ≠ i, j and i2 ≠ j. 

Proof: The following proof is based on the framework: S + 
E = {t + e| t in S, e in E}. We only give the following example 
to illustrate the proof. 

Let s(4) be a 24-periodic binary sequence with linear 
complexity 24.  If L1(s

(4)) = 24 - (20 + 2), then L3(s
(4)) ≠ 24 - (2 

+ 23). 

We will prove it by a contradiction. Suppose that L3(s
(4)) = 

24 - (2 + 23). Let S ={t| L(t) =24 - (2 + 23) }, E = {e|WH(e) = 3}, 
S + E = {t + e| t in S; e in E}, where t is a sequence with linear 

complexity 24 - (2 + 23) and e is sequence with WH(e) = 3. 
With the sieve method, we aim to sieve sequences t + e with 
L3(t + e) = 24 - (2 + 23) from S + E. 

We now investigate the case that t + u in S + E, but L3(t + 
u) < 24 - (2 + 23). This is equivalent to checking if there exists 
a sequence v in E such that L(u + v) = 24 - (2 + 23). 

For any u in E such that L1(t + u) = 24 - (1 + 2). Such as u 
= {1110  0000  0000  0000}. There exists a sequence v in E 
such that L(u + v) = 24 - (2 + 23). So L3(t + u) < 24 - (2 + 23). 
Here 

v ={0100  0000  1010  0000}. 

This completes the proof.              ▄ 

We next derive the counting formula of binary sequences 
with both the given 1-error linear complexity and the given 3-
error linear complexity. 

Theorem 3.3 Let s(n) be a 2n-periodic binary sequence with 
linear complexity 2n. 

1) If L1(s
(n)) = 2n -(2i+2j), 0≤ i < j < n, and L3(s

(n)) = 2n -
(2i1+2i2+…�+2im) < 2n -(2i+2j), where 0 ≤ i1 < i2 < … < im < n, 
m > 2 or L3(s

(n)) = 2n -(2i1 +2i2) < 2n -(2i+2j), where i1≠ i, j and 
i2 ≠ j. Then the number of 2n-periodic binary sequences s(n) can 
be given by 

23n-j-i-3 × 2L-1/(2ε+j- i0 × 8n-im-1) 

where i0 ≤ j is the minimum number for which 2n - (2i0 + 2j) 
< 2n - (2i1 + 2i2 + … + 2im) with a default choice i0 = j. Further, 
if j = im or 2n - (2j + 2im) > L3(s

(n)) then ε = 0; if j < im and only 
2n - (2j + 2im) < L3(s

(n)) then ε = 1;  if 2n - (2i + 2im) < L3(s
(n)) 

then ε = 2, where im = i2 for L = 2n - (2i1 + 2i2). 

2) If L3(s
(n)) = 0, then the number of 2n-periodic binary 

sequences s(n) can be given by 23n-j-i-3. 

Proof: Due to the page limit, the detailed proof is omitted. 

IV. COUNTING FUNCTIONS FOR 2N-PERIODIC BINARY 

SEQUENCES WITH GIVEN 4-ERROR LINEAR COMPLEXITY 

Next we will use Cube Theory, which is introduced in [23]. 
Cube theory and some related results are presented next for 
completeness. 

First we review some definitions. 

Definition 4.1 Suppose that the difference of positions of 
two non-zero elements of sequence s is (2x + 1)2y, both x and y 
are non-negative integers. Then the distance between the two 
elements is defined as 2y. 

Definition 4.2 Suppose that s is a binary sequence with 
period 2n, and there are 2m non-zero elements in s, and 0 ≤ i1 < 
i2 < · · · < im < n. If m = 1, then there are 2 non-zero elements 

in s and the distance between the two elements is 12i  , so it is 
called as a 1-cube. If m = 2, then s has 4 non-zero elements 

which form a rectangle, the lengths of 4 sides are 12i  and 22i  
respectively, so it is called as a 2-cube. In general, s has 2m−1 
pairs of non-zero elements, in which there are 2m−1 non-zero 
elements which form a (m−1)-cube, the other 2m−1 non-zero 
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elements also form a (m−1)-cube, and the distance between 

each pair of elements are all mi2 , then the sequence s is called 
as an m-cube, and the linear complexity of s is called as the 
linear complexity of the cube as well. 

Definition 4.3 A non-zero element of sequence s is called 
a vertex. Two vertexes can form an edge. If the distance 
between the two elements (vertices) is 2y, then the length of 
the edge is defined as 2y. 

In [23], we have considered the linear complexity of a 
sequence with only one cube. 

Theorem 4.1 Suppose that s is a binary sequence with 
period 2n, and non-zero elements of s form an m-cube, if 

lengths of edges are 12i , 22i , · · · , mi2  (0 ≤ i1 < i2 < · · · < im 

< n) respectively, then L(s) = 2n − ( 12i  + 22i  + · · · + mi2 ). 

Based on Algorithm 2.1, we may have a standard cube 
decomposition for any binary sequence with period 2n. 

Algorithm 4.1 

Input: s(n) is a binary sequence with period 2n. 

Output: A cube decomposition of sequence s(n). 

Step 1. Let s(n) = [Left(s(n));Right(s(n))]. 

Step 2. If Left(s(n)) = Right(s(n)), then we only consider 
Left(s(n)). 

Step 3. If Left(s(n)) ≠ Right(s(n)), then we consider 
Left(s(n))⊕Right(s(n)). In this case, some nonzero elements of s 
may be removed. 

Step 4. After above operation, we can have one nonzero 
element. Now by only restoring the nonzero elements in 
Right(s(n)) removed in Step 2, so that Left(s(n)) = Right(s(n)). In 
this case, we obtain a cube c1 with linear complexity L(s(n)). 

Step 5. With s(n)⊕c1, run Step 1 to Step 4. We obtain a 
cube c2 with linear complexity less than L(s(n)). 

Step 6. With these nonzero elements left in s(n), run Step 1 
to Step 5 recursively we will obtain a series of cubes in the 
descending order of linear complexity. 

Obviously, this is a cube decomposition of sequence s(n). 
We define it as the standard cube decomposition of sequence 
s(n). 

By Theorem 4.1, we can obtain the following results on k-
error linear complexity. 

Corollary 4.1 Suppose that s is a binary sequence with 
period 2n and its Hamming weight is even, then the maximum 
2k-1,… , (2k-2) or (2k-1)-error linear complexity of sequence s 
are all 2n-(2k-1)(k > 0). 

Niu et al. in [15], [16] gave the following result. 

Conjecture 4.1 Let Lm(s) the m-error linear complexity of 
binary sequence with period 2n. Then Lm(s) ≤ 2n - 2m + 1. 

Corollary 4.1 completely answers Conjecture 4.1. If m = 2l-

1, then there exists a 2n-periodic binary sequence s such that 
Lm(s) = 2n -2l +1 = 2n -2m+1. Otherwise, if m = 2l-1 +v, where 

v > 0, then Lm(s) = 2n -2l +1 = 2n -2m+2v +1 > 2n -2m+1. In 
other words, Conjecture 4.1 is correct only when m = 2l-1, in 
other cases it is not correct. 

It is known by result from Kurosawa et al. [10] that for a 
2n-periodic binary sequence with linear complexity 2n - (2i + 
2j), 0≤  i < j < n, 4-error linear complexity is the first descent 
point. However, with cube theory we will characterize 2n-
periodic binary sequences with 4-error linear complexity as 
the second descent point. 

Theorem 4.2 Let s(n) be a 2n-periodic binary sequence with 
linear complexity less than 2n. Then 

i). Suppose that c1 and c2 are in the standard cube 
decomposition of sequence s(n) and L(s(n)) = L(c1). If L4(s

(n)) < 
L2(s

(n)) < L(s(n)), then c1 and c2 are two 1-cubes or c1 is a 1-
cube and c2 is a 2-cube; 

ii). L4(s
(n)) < L2(s

(n)) < L(s(n)) if and only if L2(s
(n)) = 2n - (2i 

+ 2j),  0≤  i < j < n, but L2(s
(n)) ≠ 2n -(1 + 2); 

iii). If L(s(n)) = 2n - 2i0 , then i0 < i or i < i0 < j. 

Proof: Due to the page limit, the detailed proof is omitted. 

Next we investigate the distribution of L4(s
(n)). 

Theorem 4.3 Let s(n) be a 2n-periodic binary sequence with 
linear complexity L(s(n)) = 2n - 2i0 . If L4(s

(n)) < L2(s
(n)) < L(s(n)) 

and L2(s
(n)) = 2n -(2i+2j), 0≤ i < j < n, then L4(s

(n)) = 2n - 
(2i1+2i2+… +2im) < 2n-(2i+2j), where 0≤ i1 < i2 < … < im < n, 
m > 3, or L4(s

(n)) = 2n -(2i1 +2i2 +2i3), where {i1, i2, i3}≠ {i, j, i0}, 
{i1, i2, i3}≠ {0, 1, 2}, or L4(s

(n)) = 2n - (2i1 +2i2) < 2n -(2i+2j), 
where i2 ≠ j, i1 ≠ i, j, i0. 

Proof: Due to the page limit, the detailed proof is omitted. 

V. CONCLUSIONS 

By studying the linear complexity of binary sequences 
with period 2n, especially the decrease issue of linear 
complexity associated with the superposition of two sequences 
having the same linear complexity, a new approach to 
determining CELCS for the k-error linear complexity 
distribution of 2n-periodic binary sequences was developed via 
the sieve method and Games-Chan algorithm. The second 
descent point distribution of the k-error linear complexity for 
2n-periodic binary sequences was characterized completely for 
k = 3; 4. 

We expect that with the techniques proposed in this paper, 
one can obtain other second and third descent point 
distribution of the k-error linear complexity for 2n-periodic 
binary sequences. The expected value of the k-error linear 
complexity of 2n-periodic binary sequences could also be 
investigated based on our results. We will continue this work 
in future due to its importance. 
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