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Abstract. One kind of recurrent neural networks - Zhang neural networks (ZNN) is studied for solving 
a set of linear matrix inequalities - Lyapunov matrix inequalities. 

Introduction 
Linear matrix inequality (LMI) problems are widely encountered in numerous science and engineering 
applications [1]. For example, in multi-agent team cooperation in game theory, to avoid a lower cost 
for each agent at the expense of requiring full information set, additional constraints are added to the 
structure of the controller by using the linear matrix inequality (LMI) formulation of the minimization 
problem [2], where the following Lyapunov matrix inequality is involved, 

,T BXAXA ≤+                                                             (1.1) 
mostly in the time-varying form, 

),()()()()(T tBtAtXtXtA ≤+                                                  (1.2) 
where nnRtA ×∈)(  and nnRtB ×∈)( are smoothly time-varying coefficient matrices, assumed to be 
known numerically or could be estimated accurately, and nnRtX ×∈)(  is the time-varying unknown 
matrix to be solved. 

In this paper, a recurrent neural network - Zhang neural networks (ZNN) model is studied for 
solving time-varying Lyapunov matrix inequality (1.2). And numerical simulations are presented to 
show the excellent performance of the ZNN approach for Lyapunov matrix inequality (1.1). 

Lyapunov matrix inequality 
In this section, solving Lyapunov matrix inequality is converted to solving a Lyapunov matrix equation 
by introducing a time-varying matrix whose elements are non-negative. 

The time-varying LMI (1.2) can be reformulated as 
.0)()()()()()),(( T nnRtBtAtXtXtAttXf ×∈≤−+=                             (2.1) 

By introducing a time-varying matrix nnRt ×∈Λ )(2.  whose elements are non-negative, the following 
time-varying matrix equation can be obtained, 

,0)()()()()()( 2.T =Λ+−+ ttBtAtXtXtA                                       (2.2) 
where superscript 2.  denotes the square of the each element of a matrix. To solve (2.2), the following 
related definitions and lemmas are required. 

DEFINITION 2.1 [3]. Given matrices nm
ij RfF ×∈= )(  and qp

ij RgG ×∈= )( , their Kronecker product 
(also termed, direct or tensor product) is denoted by GF ⊗  and is defined as the following block 
matrix, 
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In general, FGGF ⊗≠⊗ , and FFFF ⊗≠⊗ TT  except TFF = . 

DEFINITION 2.2 [3]. A matrix, qp
ij RcC ×∈= )( , can be vectorized as the following by stacking all its 

column vectors, 
.),,,,,,,,,,,,()(vec 1T

212221212111
×∈= pq

pqqqpp RcccccccccC LLLL  

LEMMA 2.1 [3]. If for any 0≥t  there exists 0>α  such that 
,)))()(()()()()())()(((min TTTT ασ ≥⊗+⊗+⊗+⊗ ItAtAtAtAtAtAtAtAI  

where I is appropriate identity matrices and )(⋅σ  denotes the eigenvalues set of a matrix, then the 
time-varying Lyapunov equation (2.2) has a unique solution. 

A time-varying solution )(tX  and a time-varying )(tΛ can be obtained by solving the time-varying 
Lyapunov matrix equation (2.2), then 

,0)()()()()()( 2.T ≤Λ−=−+ ttBtAtXtXtA  
which indicates that the LMI (1.2) can be solved via online solution of (2.2). 

Neural networks model 
In this section, the ZNN model is presented, developed and investigated for solving the time-varying 
Lyapunov matrix inequality (1.2). 

The error function can be set as 
).()()()()()()( 2.T ttBtAtXtXtAtE Λ+−+=                                      (3.1) 

Therefore, the ZNN model can be established as follows [1], 
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tEtE ΓΦ−==&                                                    (3.2) 

where Γ  could be simply Iγ  with constant scalar 0>γ , and nmnm RR ×× →⋅Φ :)( denotes an 
activation function array of neural networks. In this paper, the function )(⋅φ , element of )(⋅Φ , is chosen 
as the power-sigmoid (p-s) activation function (with p = 3 and ξ = 4), 
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From (3.1) and (3.2), with the time-derivative of E(t), 1T
21
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2 ))(,),(),(())((vec ×∈=Λ n
n Rtttt λλλ L , 

the Kronecker product and vectorization techniques, the following dynamic equation can be obtained, 
))),((vec)()(()())((vec)()()()()( tBtytQtMtBtMtytPtMty −Φ−+= +++ γ&&              (3.3) 

where 
22)( nRty ∈ denotes the state of the neural network, and )(tM +  denotes the pseudoinverse of 

)(tM , and the augmented matrices are denoted as follows, 
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nnnnnn RtDtMtQRtMtPRtDtMtM ××× ∈=∈=∈=  
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2222 TT
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TT

1
nnnn RItAtAItMRItAtAItM ×× ∈⊗+⊗−=∈⊗+⊗= &&  

)).(,),(),((diag)( 221 ttttD nλλλ L=  

Starting from a random initial state 
22)0( nRy ∈  and given an appropriate design parameter 0>γ  

as large as the hardware allows, the ZNN model (3.3) converges to a solution of time-varying 
Lyapunov LMI (1.2). The theoretical result is presented as follows. 

THEOREM 3.1. Given smoothly nnRtA ×∈)(  and nnRtB ×∈)(  of time-varying Lyapunov matrix 
inequality (1.2), if a monotonically-increasing odd function array )(⋅Φ  is used, then the neural state 

)(ty  of ZNN model (3.3), starting from any initial state 
22)0( nRy ∈ , converges to a theoretical 

time-varying solution of (1.2). 
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Numerical example 
In this section, simulations are provided to illustrate the ZNN model by using different values of for 
solving time-varying Lyapunov matrix inequality (1.2). 
EXAMPLE. Consider the problem of the time-varying Lyapunov matrix inequality (1.2) with constant 
coefficient matrices A(t), B(t) as follows, 
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2. ))(),(),(),(),(),(),(),(),(())((vec Rtttttttttt ∈=Λ λλλλλλλλλ , 
such a Lyapunov matrix inequality can be converted to a matrix equation (2.2). The proposed ZNN 
model (3.3), with the state vector 18TTT )))((vec,))((vec()( RttXty ∈Λ= , is used to solve the above 
Lyapunov matrix inequality as well as its converted matrix equation. The corresponding simulation 
results are shown in Figs. 1 and 2. 

 
Fig. 1. State trajectories of 32)( ×∈ RtX  computed by the ZNN model (3.3) with 1=γ  

 and using the power-sigmoid activation function array. 

Fig. 1 illustrates the state trajectories synthesized by the proposed ZNN model (3.3) with 1=γ  and 
using the power-sigmoid activation function array. 

Fig. 2 shows that the residual errors of (3.3) (corresponding to Fig. 1) converge to zero within 
around 4s. 
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Fig. 2. Residual error

2
))((vec)()( tBtytQ − of the proposed ZNN model for 

the converted time-varying matrix equation. 

These simulation results demonstrate the efficiency of the proposed ZNN model for online 
Lyapunov matrix inequality. 

Conclusions 
In this paper, by introducing a time-varying matrix with non-negative elements, the time-varying 
Lyapunov matrix inequality (1.2) is converted to a time-varying matrix equation (2.2). With the 
matrix-valued indefinite error function, the ZNN model (3.3) is established for the time-varying 
Lyapunov matrix inequality (1.2). Computer simulation results further demonstrate the efficiency and 
superiority of the proposed ZNN model (3.3) for solving Lyapunov matrix inequality (1.1). 
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