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Abstract. The model of robust principal component analysis(RPCA) is built for dynamic magnetic 
resonance image(DMRI) reconstruction in order to better extract the dynamic part of the cine cardiac 
tissue. This model decomposes the cardiac magnetic resonance image into sparse part and low-rank 
part by solving a convex optimization problem mathematically. Fast iterative soft thresholding(FIST) 
technique is used for faster image reconstruction and simulation results show that clear edge 
structures with higher spatial and temporal resolution can be guaranteed. 

Introduction 
Magnetic resonance imaging (MRI) is an inherently slow imaging modality since it is designed to 
acquire 2-D (or 3-D) k-space data through 1-D free induction decay or echo signals[1,2]. It is the main 
shortage in many applications especially in the aspect of magnetic resonance imaging. 
At the same time, slow acquisition process would introduce aliasing artifacts which is also a technical 
challenge in dynamic magnetic resonance imaging. 

In order to increase imaging speed without loss of information, many researchers have applied 
compressed sensing (CS) approaches which exploit the fact that an image is sparse in some 
appropriate basis. In k-t SPARSE[3], M. Lustig employ two types of transforms for time-varying 
cardiac images—a wavelet transform along the spatial dimensions and a Fourier transform along the 
temporal dimension. In k-t FOCUSS[4], a sparsity constraint is imposed in the temporal transform 
domain which obtains preferable results in reconstruction of dynamic MRI. In[5], Lingala  proposed a 
k-t SLR method which utilize the sparsity and low-rank of images itself. In[6],Huisu Yoon  proposed 
a motion adaptive spatio-temporal patch-based low rank penalty to capture geometric similarity along 
motion trajectory as well as within an image frame, this algorithm utilize redundancy of cardiac cine 
MRI along temporal dimension and is able to effectively reduce noise and aliasing artifacts during 
reconstruction. Despite all endeavors mentioned above trying to enhance spatial and temporal 
resolution, they have the similar problems of either large computation or slow convergence which 
seriously restrict their application on dynamic image reconstruction. Simultaneously, these methods 
treat the dynamic images as a whole and do not effectively take advantage of different features 
corresponding to the dynamic part and stationary part for a MRI image.  

In this paper, we use the idea of RPCA to build a model of low rank plus sparse, which decomposes 
the DMRI sequences into dynamic part and static background. We assume the dynamic part 
constitutes a sparse matrix S, the static background is a low-rank matrix L and regard the 
reconstruction image X as a superposition of S and L, This model,  taking advantage of the sparsity of 
the motion part and low-rank of stationary part, can effectively extract the dynamic part of the tissue 
and clearly display the details of a dynamic image, the method of FIST is employed for the 
reconstruction of cine cardiac magnetic resonance images for better imaging speed and reasonable 
reconstruction resolution. 
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Modeling of RPCA 
RPCA is widely used in a variety of applications such as image denoising, matrix completion and so 
on. The idea of RPCA is to decompose the original matrix X into a low-rank part and a sparse part by 
solving the following optimization problem: 

   min rank(L)+λ||S||0       s.t. X=L+S                                           (1) 
 

Where ||·||0 denotes L0 norm, and λ is regularization parameter 
   The minimization of rank and L0 norm is non-convex in the mathematically sense, it is a 
Non-Deterministic Polynomial(NP) hard problem and need a large amount of  calculation. Generally, 
we make a convex relaxation of Eq. 1, so we obtain Eq. 2, the convex expression: 

min ||L||*+λ||S||1         s.t. X=L+S                                           (2) 
 
Where  ||·||1  denotes L1 norm and ||·||* denotes nuclear norm which is also known as the sum of 
singular values. 

A DMRI normally contains motion part and stationary or approximately stationary background, the 
dynamic component can be assumed to be sparse or transform-sparse because substantial differences 
between consecutive frames are usually limited to comparatively small numbers of voxels. Since the 
background in each frame is approximately stationary, they present highly geometric similarity. If we 
form a matrix L using these stationary backgrounds, L can be highly correlative. 

In summary, RPCA is appropriate for image reconstruction of DMRI. Since the DMRI data are 
acquired in the spatial frequency domain (k-space) rather than in the image domain, it is necessary to 
make some revision on Eq. 2. The revised model is as follow:  

minλL||L||*+λS||TS||1        s.t. d=E(L+S)                                    (3) 
 

where L denotes low-rank matrix, T is sparse operator, and S is sparse matrix. Sparse transform 
makes S more sparser, which enable higher computational acceleration since fewer coefficients need 
to be recovered. E denotes spatial encoding operator and d is the undersampled data in k-t space. 
Regularization parameters λL and λS are used to keep balance of data consistency and computational 
complexity between nuclear norm and L1 norm. High values of λL means removing an essentially 
static background, whereas very low values of λL implies more substantial dynamic information in the 
L component. The selection of λS is similar to λL. 

FIST Reconstruction Algorithm 
IST is a common method to solve the optimal problem of RPCA. As an extension of the classical 
gradient algorithm, it is attractive due to its simplicity and is adequate for solving large-scale 
problems. although some desired reconstruction images was obtained by IST[7,8], IST is still 
time-consuming due to its slow convergence. To overcome the shortage, we employ a Fast IST 
method, which introduces a secondary update content into IST model and greatly reduces 
reconstruction time. The finite algorithm flow is listed in Table 1. 

In this algorithm, (tk-1-1)/t is the step size. The main difference between FIST and IST is that the 
iterative shrinkage operator is employed on the previous point Xk in IST, whereas FIST uses the usual 
projection-like step evaluated at an auxiliary point Xk

* very specially constructed in terms of the two 
previous points Xk and Xk-1 and an explicit dynamically updated step size (tk-1-1)/t. The updating of 
Xk

* speeds up convergence rate and decreases the number of iterations. The main computational effort 
in FIST remains the iterative shrinkage operator, and the additional computation in the steps 5 and 6 is 
marginal. In [9], FIST is proven to converge in function values as O(1/k), whereas IST to converge in 
function values as O(1/k2), where k is the iteration counter. 
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Simulation and analysis 
The FIST algorithm was validated by MRI image reconstruction experiments on dynamic cardiac data 
sets with different downsampled rates. The real cardiac cine data set comes from [4] and it was 
acquired using a 1.5T Philips scanner at Yonsei University Medical Center, Korea. The FOV (field of 
view) of the data set were 345*270 mm2 and matrix size is 256*256, the sampling trajectory was 
Cartesian. We compare our proposed algorithm with k-t FOCUSS and IST. All these algorithms are 
implemented on same MATLAB platform on an Intel i3-4150 processor running at 3.50 GHz with 4 
GB RAM. ,Parameters λL and λS are set to 0.01 and 0.0025 respectively as in reference [7]. 

Table 1. Algorithm flowchart of Fast IST for DMRI reconstruction 

FIST for reconstruction of DMRI 
1. Initialize:X0=E*d, S0=0, t0=1 
      while not converged do 
2. Lk= SVTλL (Mk-1-Sk-1)                  % L: singular-value soft thresholding 
3. Sk =T-1(ΛλS (T(Mk-1-Sk-1)))           % S: soft thresholding in the T domain 
4. Xk= Lk + Sk –E*(E(Lk + Sk)-d      % Data consistency: subtract residual) 

5. tk= 2/)411(
2

1−++ kt             
6. Xk

*=Xk+(tk-1-1)/tk(Xk-Xk-1)          %  update 
      end while 
7. output: L,S 
Performance of  these several methods were compared visually and quantitatively and Peak 

Signal-to-Noise Ratio(PSNR) and Mean Squared Error(MSE) were adopted as numerical evaluation 
indices. PSNR and MSE are calculated by Eq. 4 and Eq. 5 respectively. In Eq. 4, xi’ denote 
reconstruction images, xi are original images and N is the number of pixels in the images. 

MSE=(1/N)Σ(xi’-xi)2                                                            (4) 

PSNR=10*log(255/MSE)                                                        (5) 
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Figure 1. Reconstruction images(downsampling rate:8) 

(a)original images;(b)k-t FOCUSS;(c)IST;(d)FIST 

(e)low-rank parts of FIST;(f)sparse parts of  FIST 

 Fig. 1 shows the reconstructed images with downsampling rate of 8 , in which (a) denote original 
images, (b), (c) and (d) are images reconstructed by k-t FOCUSS, IST and FIST respectively and (e), 
(f) are low-rank parts and sparse parts of (d). We only display some image samples of the 3rd, 9th, 
15th, and 21th frame of each kind from left to right. Fig. 2 is the temporal slice profile images, in 
which (a), (b), (c) and (d) represent the 120th temporal slice profiles of ground-truth, reconstruction 
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results using k-t FOCUSS, IST and FIST, (e), (f) are the low-rank parts and the sparse parts of (d) 
respectively. Fig. 2 shows the detailed cardiac part extracted from the whole images. We can see that 
FIST and IST can produce clearer edge structures whereas k-t FOCUSS can’t eliminate the  blurring 
artifacts near edges region. Also, there still remains temporal blurring as shown in Fig. 2(b) while 
FIST and IST can recover detailed temporal edges. The dynamic part of the images are effectively 
extracted as shown in Fig. 2(f). 

(  a  ) (  b  ) (  c  ) ( d  ) (  e  ) (  f  )  

Figure 2. Temporal slice profile images (downsampled rate:8) 

(a)original images;(b)k-t FOCUSS;(c)IST;(d)FIST 

(e)low-rank parts of FIST;(f)sparse parts of  FIST 

Our analysis is corroborated by numerical evaluation indices as shown in Table 2 and Fig. 3.Table 
2 lists the performance of each algorithm while Fig. 3 shows PSNR values of different algorithms. 
IST and FIST have higher PSNR values and lower MSE values compared with k-t FOCUSS. 
Furthermore, Table 2 demonstrates that FIST can greatly reduce the reconstruction time compared 
with IST due to the decreasing of computation burden. 
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Figure 3. PSNR of different algorithms(downsampled rate:8) 

Table 2. Reconstruction performances (downsampled rate:8) 

Method 
Performance 

Average 
PSNR[dB] 

Average  
MSE[10-4] 

Time 
[s] 

k-t 
FOCUSS 34.30 14.65 26.19 

IST 34.81 12.74 110.43 
FIST 35.46 10.07 71.02 

To confirm that the proposed FIST algorithm provides better reconstruction performance than IST 
and k-t FOCUSS regardless of downsampled rate, Fig. 5 shows reconstruction results with different 
downsampled rate of 4, in which (a), (b) and (c) denote images reconstructed by k-t FOCUSS, IST 
and FIST respectively. Table 3 and Fig. 6 show performance of these algorithms. 

In Fig. 4, Fig. 5 and Table 3,we can observe the reconstruction results similar to the case of 
downsampled rate of 8. FIST are able to recover the details in dynamic images especially the edge 
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structures and has higher PSNR values and spatial and temporal resolution. At the same time, FIST 
can reduce reconstruction time dramatically compared to IST. 

Conclusion 
We apply the model of RPCA in reconstruction of magnetic resonance image to better extract the 
dynamic part of the tissue. Original image is decomposed into the low-rank part and sparse part and 
FIST algorithm is adopted to solve the convex optimization problem. This method updates the 
iteration results on the basis of IST and increases convergence rate. Simulation results demonstrate 
that the proposed algorithm provides clearer edge structures and can effectively extract the dynamic 
part of the images, higher spatial and temporal resolution can thus be guaranteed. 
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Figure 4. Reconstruction images(downsampled rate:4) (a) k-t FOCUSS;(b) IST;(c) FIST; 

Table 3. Reconstruction performances (downsampled rate:4) 

Method 
Performance 

Average 
PSNR[dB] 

Average  
MSE[10-4] 

Time 
[s] 

k-t 
FOCUSS 36.44 5.33 25.83 

IST 36.87 4.50 90.70 
FIST 37.57 3.24 63.73 
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          Figure 5. PSNR of different algorithms (downsampled rate:4) 
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