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Abstract. It is derived an approximate analytical solution of one-dimensional Richards' equation (RE) 
with Brooks-Corey model in this paper. The approach is based on the introduction of Boltzmann 
transformation and construction of an intermediate variable for approximation. In the end, one 
illustration is given to confirm the accuracy of present solution. 

Introduction 
Richards' equation (RE) is a non-linear partial differential equation (PDE) of saturation and can be 
expressed as [1] 
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(1) 
where S is the saturation of unsaturated porous media [-], x and t are the space and the time 
coordinates, D(S) are the diffusivity function [L2/T] of saturation. It is considered the infiltration of 
water in a semi-infinite domain [ )0,x ∈ +∞  and the boundary conditions are [2] 

0x LS S= = , 0xS S→+∞ = .                                                                                                                      
  (2) 

The initial condition is 
0 0tS S= = ,                                                                                                                                          

(3) 
where [ ]0 0,1S ∈  is an arbitrary constant. 
In these years, much research such as Adomian decomposition method (ADM) [2], traveling wave 
method (TWM) [3], differential transform method (DTM) [4], homotopy perturbation method (HPM) 
[4], extend Heaslet & Alksne technique and so on [5], has been done to derive the exact solution, 
which has a wide theoretical and practical applicability.  These techniques are very powerful in solving 
complex non-linear problems. Influenced and motivated by research before, it is solved 
one-dimensional RE with arbitrary diffusivity and initial constant S0 by Boltzmann transformation, 
which changes RE into a no-linear ordinary differential equation (ODE). Then an intermediate variable 
is introduced and term wise derivative is applied in obtaining an approximate solution of the ODE. At 
last, an example of Brooks-Corey model is used to test the accuracy of present solution. 

Model definition 
There are lots of models [5, 7] have been suggested for determining the diffusivity D(S) in RE because 
the varied applications. The Brooks-Corey model is the more commonly used model among them [4]. 
In this section, we define the problem to be solved by introducing the Brooks-Corey model.  
The diffusivity function of Brooks-Corey model is expressed by a power law as [5] 
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( ) 0= nD S D S ,                                                                                                                                      
(4) 

where D0 and n are the empirically-fitted constants. 
 

Solving the RE 
Introducing a new saturation S1 (= S-S0), the initial condition Eq. 3 is simplified as 

1 0 0tS = = ,                                                                                                                                            
(5) 

and RE in Eq. 1 can be written as 
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6) 
The boundary conditions Eq. 2 are changed into 
 1 0 0x LS S S= = − ,  1 0xS →+∞ = .                                                                                                          (

7) 
According to Parlange [1], the Boltzmann variable x tφ =  is introduced, and Eq. 6 is transformed 

as[1] 
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) 
Then the initial condition Eq. 5 and boundary conditions Eq. 7 are [5] 

1 0Sφ = → +∞ ,  
1 0

0
LS S Sφ = − = .                                                                                                         (9) 

At this time, RE 1 with the boundary conditions Eq. 2 and the initial condition Eq. 3 are changed into 
ODE Eq. 8 with the boundary conditions Eq. 9. 

Integrating on Eq. 8, we obtain [5] 
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0) 
the boundary conditions remain to be Eq. 9. Here, we construct an intermediate variable [8] 
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1) 
and n1 (=1, 2, 3,…) order approximate solution of φ in Eq. 10 yields [8] 
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which is satisfies the boundary conditions Eq. 9. In Eq. 12, n1 and Ui are parameters. Applying the term 
wise derivative approach, Eq. 10 can be written as 
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where k=0, 1, 2, 3,…, n1-1. Ui can be calculated by substituting Eq. 12 into Eq. 13 and solving a series 
of non-linear algebraic equations. 

Numerical simulation 
In this section, an example of Brooks-Corey model is given to confirm the accuracy of present method. 
It is taken parameters as D0=247.1 and n=4 [5] in Eq. 4, and the parameters S0 and SL in Eqs. 2-3 are 
taken as S0=0 and SL=1 respectively [5]. Applying the approach in Eqs. 12-13, 1-5 order approximate 
solutions are shown as 
1 order approximate solution 

( )412.4273 1x S
t

≈ − .                                                                                                                      (

14) 
2 order approximate solution 

( ) ( )24 413.1811 1 1.6476 1x S S
t

≈ − − − .                                                                                         (15

) 
3 order approximate solution 

( ) ( ) ( )2 34 4 413.0259 1 1.62824 1 0.3383 1x S S S
t

≈ − − − + − .                                                           (16

) 
4 order approximate solution 

( ) ( ) ( ) ( )2 3 44 4 4 413.0601 1 1.63251 1 0.34312 1 0.08465 1x S S S S
t

≈ − − − + − − − .                              (17

) 
5 order approximate solution 
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Compared finite element method (FEM) varying from 0 to 20mm in the space coordinate x, which is 
divided into 480 units and calculated for results with saturation S in t=1min as the exact solution, the 
results of S obtained from Eq. 18 vs. FEM are shown in Table 1. The present method shows the results 
of 1-5 orders approximations of Eqs. 14-18 in Fig. 1. 
Table 1: Results of S obtained from FEM and present method (t=1min) 

x (mm) 5 order approximate solution FEM  Relative error (%)
11.69881732 0.1 0.101 -0.9901% 
11.68293136 0.2 0.195067 2.5289% 
11.61404598 0.3 0.297302 0.9075% 
11.42820963 0.4 0.398995 0.2519% 
11.03453688 0.5 0.49962 0.0761% 
10.31214123 0.6 0.59989 0.0183% 
9.103210514 0.7 0.69998 0.0029% 
7.198555699 0.8 0.800021 -0.0026% 
4.308249764 0.9 0.90011 -0.0122% 

0 1 1 0.0000% 
In Table 1, the results of the 5 orders approximation solution are very close to the results of FEM. 

The maximum relative error value of present method is only -0.9901% in S = 0.1 for the 5 order 
approximation solution. 
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Fig. 1 Results of saturation S obtained from FEM and present method in t=1min 

Noting Fig. 1, it can be seen that the saturation S decreases from 1 to 0 as the space coordinate x 
increases. Due to the effect of hydraulic diffusivity D(S), the saturation S decreases very fast from 0.4 
to 0 when x increases from 11 to 11.7mm. The solutions of the present method are closer to the exact 
solutions as the order k increases from 1 to 5 in Fig. 1. 

Conclusion 

In this paper, one-dimensional approximation solution of RE is derived by applying Boltzmann 
transformation and term by term differentiation in Eq. 13. The hydraulic conductivity in RE owns 
Brooks-Corey model, and the initial condition parameter S0 could be an arbitrary constant. The 
presented example demonstrates the accuracy of the present solution by comparing the present results 
with the results obtained from the FEM. 
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