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ABSTRACT: Numerical manifold method (NMM) is very suitable for modeling the transition
from continuum to discontinuum by virtue of its advanced finite cover technique. Compared with
the 0-order NMM, higher-order displacement functions are more suitable for modelling the crack
problems as the result that the latter usually shows higher precision than the former under the same
mesh density. However, the higher-order NMM may be suffering with the linear dependence
problems, such as the 1-order NMM which adopts 1-order polynomials as its cover functions. Xu et
al. (2015) has proposed a new higher-order NMM which has no linear dependence problems and
has been applied to solve simple crack problems. In the paper, it is applied to solve the complex
problems such as the multiple branched and intersecting cracks in order to show its advantageous
features. The excellent results show that the proposed method is also excellent in even treating the
complex problems.

introduction

In recent years, the modeling of transition from continuum to discontinuum has been a hot topics. In
real world, the shapes of crack are usually very complex. The modeling of complex crack problems
must be more important for the researchers and engineers to predict the life span of cracked
structures under service conditions (Daux et al. 2000, Ma et al. 2009). Several numerical methods
have been applied to solve the complex problems.

Finite element method (FEM) introduces the interference element or contact element to model
the crack problems (Trädegård et al. 1998, Bouchard et al. 2003). One major shortage of the FEM is
that the mesh must be accordance with the crack. The meshless (or element-free) method
(Belytschko et al. 1996) is no longer suffering with the accordance problems as in FEM, because
the problem domain is covered by some nodes and no element is generated. However, it usually has
some difficulties in the numerical integration and applying the essential boundary conditions
(Strouboulis et al. 2000). The extended finite element method (XFEM) (Dolbow & Belytschko
1999) and generalized finite element method (GFEM) (Strouboulis et al. 2000) can be viewed as the
advanced FEM and they are all within the framework of partition of unity method (PUM) (Melenk
& Babuška 1996). The introduced generalized Heaviside functions and enriched functions make
XFEM more suitable for modeling complex problems than FEM and there is no need to make crack
and mesh be accordance with each other. GFEM is the same to NMM in essence because the order
of local displacement functions can be selected freely.

NMM (Shi 1991) proposed by Shi has realized to solve the continuous and discontinuous
problems in a unified way based on its advanced finite cover technique. NMM has been tried to
solve the crack problems (Zhang & Zhang 2012). As known, the 1-order NMM is suffering with the
linear dependence problems. In order to overcome this shortage, Xu et al. (2015) has proposed a
new higher-order NMM, which is denoted as NMM-P in this paper because the local displacement
functions are derived from the triangular plate element of FEM (Zhu 1998). The NMM-P has shown
good features in solving the simple crack problems. In the paper, it is further applied to solve the
complex problems such as the multiple branched and intersecting cracks in order to exhibit its
advantageous features.
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THE FOUNDATIONS OF NMM-P

NMM is based on the mathematical cover (MC), physical cover (PC) and contact loop. We take
triangular mesh as the mathematical cover in the paper. So the union of the 3 triangles sharing the
same node is defined as a mathematical patch (MP). Furthermore, the union of all mathematical
patches is defined as the MC, which should cover the whole problem domain. Physical patches (PP)
are generated by intersecting all the components of problem domain with mathematical patches. All
the physical patches form the physical cover. The common region of as more as possible physical
patches is defined as the manifold element (ME). The contact loop is used to model the contact
behaviors between different loops. More details about NMM can be found in the references (Xu et
al. 2015).

The physical patch where the crack tip locates is defined as the singular physical patch, while the
others are defined as non-singular physical patches. Based on the classification, the manifold
elements are therefore can be classified into three types: 1) normal manifold element (covered by
only non-singular physical patches), mixed manifold element (covered not only by non-singular
physical patches but also singular physical patches) and the singular manifold element (covered by
only singular physical patches).

For the sake of completeness, the local functions of NMM-P are restated in the paper. At first,
we assume that the interest manifold element is covered by 3 physical patches denoted as PP-i, PP-j
and PP-m. For the non-singular physical patch PP-i, its local displacement functions ),( yxiw are
defined as follows

i
i

i yxyx dTw ),(),( = (1)
iT are the base functions, id are the degrees of freedom (DOFs). Their expressions are as follows
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j i mc x x= − ， m j ic x x= − (8)
where iL , jL and mL are the weight functions corresponding to PP-i, PP-j and PP-m. ( )i ix y， ，

( )j jx y， and ( )m mx y， are the coordinates of interpolation points of the 3 physical patches. iu and
iv are the rigid body displacements, i

xε , i
vε and i

xyγ are the strain components, iω is the rigid
body rotation angle.

The local displacement functions on PP-j and PP-m can be obtained in the same way as that of
PP-i.

PP-i must be singular if there is a crack tip in the interior of it, so an enriched functions s
iw used

for modeling the stress singularity around the crack tip should be added, which can be expressed as
s i

i=iw Φ s (9)
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where ( )r θ， is the polar coordinate system as shown in Figure 1 and is is the degrees of
freedom corresponding to the singular base functions iΦ .

Here, the NMM which adopts 1-order polynomials as the displacement functions on the physical
patch is denoted as NMM-1.

θ 
r 

Figure 1. Polar coordinate system

NUMERICAL EXAMPLES

A crucifix crack in a finite square plate
As shown in Figure 2, there is a crucifix crack in a finite square plate suffering with bi-axial

tension, which is obviously a mode I intersecting crack problem. The corresponding parameters are
as follows: 0.1=σ , 5.0=W , 35.0...,15.0,1.0=a . The mathematical cover adopted when the crack
length is 0.35 is shown in Figure 3 and the corresponding physical patches, manifold elements and
degrees of freedom for all the cases are shown Table 1. Number of the mathematical patches is
fixed as 2916. It is easy to see that with the increase of the crack length, the crack will intersect with
more mathematical patches, so the numbers of corresponding physical patches and manifold
elements will increase. The degrees of freedom include two parts: 1) the degrees of freedom
corresponding to the non-singular base functions; 2) the degrees of freedom corresponding to the
singular base functions. The maximum value of PPs, MEs and DOFs are 3062, 5778 and 18468
respectively.
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Figure 2. A finite square plate with a crucifix crack under bi-axial tension.
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Figure 3. The mathematical cover adopted for the crucifix crack when crack length is 0.35.
Table 1 Number of physical patches, manifold elements and degrees of freedom for different crack lengths

a 0.1 0.15 0.2 0.25 0.3 0.35
PPs 2954 2974 2998 3018 3038 3062
MEs 5670 5690 5714 5734 5754 5778
DOFs 17820 17940 18084 18204 18324 18468

Table 2 Comparison of normalized SIFs AFI at crack tip A with different crack length a
a 0.1 0.15 0.2 0.25 0.3 0.35
NMM-P 0.8841 0.9098 0.9519 1.0203 1.1330 1.3277
NMM-1 0.8827 0.9079 0.9504 1.0189 1.1316 1.3264
* 0.8840 0.9131 0.9575 1.0281 1.1331 1.2863
** 0.8800 0.9092 0.9537 1.0223 1.1300 1.2866
*** 0.8844 0.9147 0.9572 1.0253 1.1348 1.3170

*Zhang & Zhang (2012), ** Cheung et al. (1992), ***Daux et al. (2000)
The normalized stress intensity factors (SIFs) at crack tips A is defined as follows

)(II aπσKF AA = (12)
As shown in Table 2, the normalized SIFs by NMM-P and NMM-1 are nearly the same for all the

cases. Meanwhile, they are also very close the three reference results and the maximum relative
error is nearly within 1% when the crack length is less than 0.3. While the relative errors between
the results by NMM-P and the three reference results are 3.22%, 3.19% and 0.81% respectively
when the crack length is equal to 0.35, which means that the results by NMM-P are more close to
that by XFEM (Daux et al. 2000).

A star-shaped crack in a finite square plate
A star-shaped crack in a finite square plate subjected to bi-axial tension is examined as shown in

Figure 4. The length of square plate is 42 =W and the crack length is denoted as a. The
mathematical cover adopted for the star-shaped crack when a/W =0.5 is shown in Figure 5. The
normalized SIFs at crack tips with different ratios a/W are discussed.
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Figure 4. A star-shaped crack in a finite square plate under bi-axial tension.

Figure 5. The mathematical cover adopted for the star-shaped crack when a/W =0.5.
The normalized SIFs at crack tips B are defined as follows

)(II aπσKF BB = (13)
)(IIII aπσKF BB = (14)

Table 3 Number of physical patches, manifold elements and degrees of freedom for different a/W
a/W 0.2 0.3 0.4 0.5 0.6 0.7 0.8
PPs 2358 2392 2420 2452 2482 2510 2538
MEs 4474 4508 4536 4568 4598 4626 4654

DOFs 14292 14496 14664 14856 15036 15204 15372
In this case, the number of mathematical patches is fixed as 2304, while the numbers of physical

patches, manifold elements and the corresponding DOFs are variant with different crack lengths, as
shown in Table 3. Obviously, the number of both PPs and MEs will decrease sharply if an adaptive
mathematical mesh is selected (Ma et al. 2009).

The normalized SIFs AFI at crack tip A, BFI and BFII at crack tip B are shown in Table 4, 5
and 6 respectively. Similarly, the results by NMM-P and NMM-1 are nearly the same with each
other. The results of NMM-P are comparable to the three reference results.
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Table 4 Comparison of normalized SIFs AFI at crack tip A for a star-shaped crack in a finite plate for various ratios
a/W

a/W NMM-P NMM-1 * ** ***
0.2 0.7686 0.7597 0.7670 0.7691 0.7570
0.3 0.7831 0.7808 0.7931 0.7970 0.7846
0.4 0.8132 0.8113 0.8287 0.8352 0.8255
0.5 0.8579 0.8556 0.8864 0.8921 0.8852
0.6 0.9285 0.9266 0.9673 0.9749 0.9758
0.7 1.0601 1.0577 1.0971 1.1022 1.1142
0.8 1.3515 1.3492 1.3423 1.3454 ―

*Daux et al. (2000),**Muravin & Turkel (2006),***Cheung et al. (1992), ‘―’ means no corresponding value
Table 5 Comparison of normalized SIFs BFI at crack tip B for a star-shaped crack in a finite plate for various ratios
a/W

a/W NMM-P NMM-1 * ** ***
0.2 0.7752 0.7696 0.7683 0.7690 0.7578
0.3 0.8060 0.8043 0.7983 0.7994 0.7884
0.4 0.8620 0.8602 0.8466 0.8527 0.8365
0.5 0.9463 0.9453 0.9255 0.9232 0.9088
0.6 1.0751 1.0741 1.0445 1.0405 1.0182
0.7 1.2729 1.2722 1.2367 1.2384 1.1936
0.8 1.5786 1.5798 1.5624 1.5577 ―

Table 6 Comparison of normalized SIFs BFII at crack tip B for a star-shaped crack in a finite plate for various ratios
a/W

a/W NMM-P NMM-1 * ** ***
0.2 0 0 0.0005 0.0007 0.00045
0.3 0.0020 0.0011 0.0021 0.0020 0.00224
0.4 0.0058 0.0054 0.0080 0.0077 0.0070
0.5 0.0166 0.0145 0.0184 0.0201 0.0168
0.6 0.0321 0.0305 0.0364 0.0451 0.0338
0.7 0.0561 0.0551 0.0593 0.0622 0.0529
0.8 0.0869 0.0882 0.0864 0.0804 ―

CONCLUSIONS
The proposed NMM-P is applied to solve the complex crack problems. NMM-P has nearly the same
precision with the NMM-1 in even treating the complex cracks such as the crucifix crack and the
star-shaped crack. But NMM-P is linearly independent. The results by NMM-P and the reference
results are also comparable. Obviously, NMM-P has shown great excellence in even modeling the
complex crack problems, which further expands the range of application of NMM-P.
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