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ABSTRACT: The analytic characteristics of invariant manifolds for quasi-homogeneous
autonomous system are obtained Yu [1]. On the basis of this，this paper give the unify thoughts of
several classical special solutions can be achieved by using the proposal method in the conventional
heavy rigid system. In addition, a 3-dimensional invariant manifold and the accuracy solution of the
heavy rigid system are obtained with the certain limiting condition in the center of mass of rigid
body. The oscillation of this 3-dimensional solution manifold of the heavy rigid system is depicted
in this paper.

INTRODUCTION
Paper [1] gave definitions for quasi-homogeneous according to the character of the Lie group
generator admitted by some autonomous systems. Some classical mechanical systems, such as the
heavy rigid system, n-body problem etc. are belong to quasi-homogeneous system. Based on the Lie
group of quasi-homogeneous system, the analytical character of invariant manifolds for those
systems is revealed in paper [1]. These features provide a more flexible and practical method to find
the invariant manifolds of the system.

In this paper, we will realize the united solving thought of the partially known special solution
for the motion problem of a heavy rigid body around fixed point by using the proposal method and
the analytical character of received invariant manifolds. A 3-dimensional invariant manifold and the
accurate solution for motion of the heavy rigid body will be obtained in the restrict condition (xG=0)
of the center of mass of rigid body. The oscillation of this 3-dimensional solution manifold of the
heavy rigid system will also be depicted in this paper.

QUASI HOMOGENEOUS ANALYSIS OF THE HEAVY RIGID SYSTEM
The classical heavy rigid system Eq.(1) possesses the distinct quasi-homogeneous character.
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Where variables t, p, q, r, γ, γ′, γ′′ be regarded as the quasi-homogenous variables corresponding
degrees separate are -1,1,1,1,2,2,2. Accordingly to the analytical character theorem for quasi-
homogeneous polynomial invariant manifold, to determine the analytical invariant manifold about
variables p, q, r, γ, γ′, γ′′ for the heavy rigid system, we can interchange of problem to determine the
quasi-homogeneous polynomial invariant manifold about these variables. If function F is a k-
dimensional quasi-homogeneous polynomial about variables t, p, q, r, γ, γ′, γ′′ , then after the
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operation of the corresponding differential operator for the heavy rigid system (1), XF is a k+1-
dimensioanl quasi-homogeneous polynomial in general. If we assume that quasi-homogeneous
polynomial invariant manifolds Fi with the degree of: ki , (i=1,2,…,n-m) .By the definition of
invariant manifolds: XFi(x)=∑ªj=1μij(x)Fj(x), Then, corresponding quasi-homogeneous polynomial
uncertain factor is μij(x) with degree ki+1-kj (where i=1,2,…,n-m ; j=1,2,…,n-m). In such way, in
the case of restricted the generalized degree for function Fi, we can determine the quasi-
homogenous polynomial invariant manifold for system by using the method of comparing
parameters.

UNIFICATION OF SEVERAL KNOWN SPECIAL SOLUTIONS
(I) With the restrictions on all quasi-homogeneous functions degree is 1 and the rigid body mass
distribution in the case of yG=0, AxG2(B-C)=CxG2(A-B), then we can achieve a five-dimensional
invariant manifolds that:

rCzpAxF GG += (2)
Let invariant manifold is F=0, then we can achieve the classical case of Hess special solution

(1890) [3, 4].
(II) With the restrictions on all quasi-homogeneous functions degree is 3 and the rigid body mass

distribution in the case of A=B=4C, yG= zG=0, we can achieve a four-dimensional invariant
manifolds that:
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Let invariant manifold functions is F1=F2=0, then we can achieve the classical case of

Гοрячев-Чаплыгин special solution (1900) [3, 4].
(III) With the restrictions on the quasi-homogeneous functions F1, F2, F3 degree separate is 1, 1,

2 and the rigid body mass distribution in the case of B=2A, xG=zG=0, we can achieve a three-
dimensional invariant manifolds that:
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Let invariant manifold functions is F1=F2=F3=0, then we can achieve the classical case of

Бοбылев-Смеклов special solution (1896) [3, 4].
We realize the unification of three classical cases, i.e. Hess cases, Гοрячев-Чаплыгин case and

Бοбылев-Смеклов case by using the analytical character of invariant manifolds for quasi-
homogeneous autonomous system. Besides that, we also achieves a new special solution, which is
different from the known 9 special solutions [3, 4] in the condition of restricted the center of mass of
rigid body.

A NEW SPECIAL INTEGRAL CASE
While restrict that functions F1, F2, F3 degree separate is 1, 1, 2 and the center of mass distribution
condition for rigid body is simple limited in the xG= 0, a new three-dimensional invariant manifold
exist as:
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Let F1=F2=F3=0 then the new integral case satisfy q=r=γ=0, with the special restricted

distribution condition xG=0 for the center of mass of rigid body.
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We will discuss the motion of system with the corresponding integral case below in detail and
give the numerical simulation accordingly.

THE MOTION OF SYSTEM WITH CORRESPONDING INTEGRAL CASE
To describe the motion of a rigid body, we usually use two systems of co-ordinates: a fixed spatial
system, which is denoted as X, Y, Z in Figure 1, and another is rigidly fixed in the top body and to
participate in its motion, which is called inertial principle axes system of a rigid body and denoted
as x, y, z in Figure 1.

We know that the area integral Apγ+Bqγ′+Crγ′′ of the heavy rigid system describe the component
along vertical axis Z of the moving angular momentum for system without (imposed) any restriction
conditions. The area integral equal to zero with the system variable q=r=γ=0 for the integral case
(5), the geometrical interpretation is that the rigid body no longer rotate about vertical axis Z. Here,
we take the plane of determined by arbitrary two principal axes of inertial as the plane of inertia,
and then the area integral is zero, which indicate that plane of inertia yz lie in the same plane with
vertical axis Z. Moreover, the restriction condition xG=0 for the distribution of the center of mass
farther assured that the center of mass of rigid body lie in the plane of inertia yz. Whence, the
motion of the system only can be defined in the plane of inertia yz.

Consider that the heavy rigid system of defined by Euler-Poisson equations is Non-Hamilton
system, in order to further describe the motion state of system in the plane of inertia yz, we chose
the Euler-angle as follow: the moving xy-plane of inertia intersects the X,Y-plane in some line ON,
take the angle θ between vertical axis Z and the principle axis of inertia z; the angle φ between the
principle axis of inertia X and ON ,and the angle between the principle axis of inertia x and ON
(Figure 1. Caption.).

Figure 1. The position of co-ordinates and Euler-angle.

Let us now re-express system by using above given Euler-angle. With the restriction condition
xG=0 for the distribution of the center of mass in the integral case Eq.(5) and the variable q=r=γ=0,
we have the Eulerian angles of φ, ψ all is zero. Whence, corresponding Euler-Poisson equations can
be transformed expression by using Euler-angle θ in the integral case of Eq.(5):

)cossin( θθθ GG yzMgA −=&&
(6)

Eq.(6) is the typical Hamilton system and formally denote the single oscillation equation
Accordingly, integral case Eq.(5) expresses a motion of single oscillation in plane of inertia yz for
the heavy rigid system.
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NUMERICALLY SIMULATION FOR THE MOTION OF SYSTEM IN THE INTEGRAL
CASE
In order to validate and intuitionistic describe the motion of system in corresponding integral case,
we will give the numerically simulation cases below. The movement of the center of mass can
concentrate reect the complex motion of system, so it is very necessary to simulate the changing of
the center of mass for system in spatial coordinates.
Simulation the motion of system in corresponding integral case
Assume that the rigid body total weight is Mg=1, the component of the principle momentum of
inertial separate is A=1, B=2, C=3. Choosing the centre of mass of system lie in the plane of inertia
yz: xG=0, yG=1, zG=5 and defining the initial Eulerian angles and angular velocity satisfies the
integral case of Eq.(5): ψ0=0, θ0=0.3π, φ0=0, ψ′0=0, θ′0=0, φ′0=0. Mathematica is used to simulate
the motion of the center of mass for system in corresponding condition. Figure 2 shows the moving
trend for system.

(a) Slight swing (b) Middle swing (c) Large swing

Figure 2. Free swing on invariant manifolds.

The simulation result of Figure 2 indicate that system certainly do the single oscillation
movement over the plane of inertia yz in corresponding integral case. More simulation results
indicates that the amplitude of the single oscillation is related to the initial angle θ and the larger
initial angle φ is chosen, the lower loci for the center of mass of system is located and then the
amplitude of oscillations is smaller.

The restricted condition xG=0 for the center of mass is important assuring condition to make that
system certainly do single oscillation over the plane of inertia yz in the integral case of Eq.(5).
Theoretically, if the center of mass without located over the plane of inertia yz (i.e. xG≠0), then the
angle certainly exist between the plane of formed by the center of mass and the vertical axis Z and
plane of inertia yz, consequently induce the different moment of inertia for the right and left hand of
rigid body to lead the rotation of system. Then, the case of single oscillation shall not occur
accordingly.

Though a series of numerical experimentation, we will certificate the significance of restricted
condition xG=0 of the center of mass to maintain the single oscillation of system; and then we will
discuss the influence of the disturbance of initial values to stability of motion for single oscillation
system as below.
Discussion of the motion of system at xG≠0
Keep the invariable mass and principle momentum of inertia of the rigid body and choose the same
initial Eulerian angles and angular velocity to i.e. ψ0=0, θ0=0.3π, φ0=0, ψ′0=0, θ′0=0, φ′0=0.The
simulation result of the motion of the center of mass for system is shown in Figure 3.
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(a) Slight swing (b) Middle swing (c) Large swing

Figure 3. When the center of gravity has a small disturbance, free swing on invariant manifolds.

Figure 3 indicate that the motion loci of the center of mass for system is no longer kept as single
oscillation, here the motion loci of system present irregular grid distribution in the nether region of
sphere for chosen the lower center of mass of body.

The simulation result indicate that system impossible keep single oscillation in the plane of
inertia yz anymore once the center of mass departure the plane of inertia yz (xG≠0). We will find
that the distortion degree of the motion is more distinct along with the higher loci of the center of
mass of rigid body in the subsequent simulation. Even little departure of the center of mass to the
plane of inertia yz, it will cause motion break of the system.
Inuence of initial value disturbance on motion stability
With restricted the center of mass in the plane of inertia yz, we discuss the inuence of initial value
departure the plane of inertia yz on the stability of single oscillation for system in succession.

We choose system with farther distance between the center of mass to fixed point O: xG=0, yG=1,
zG=17. Let the initial loci little departure the plane of inertia yz, make ψ0=0.01, θ0=0.7π, φ0=0,
ψ′0=0, θ′0=0, φ′0=0 .We simulate motion of system in the condition of above initial values and
the results are shown in the Figure 4.

(a) Slight swing (b) Middle swing (c) Large swing

Figure 4. When there is small angle between the inertia surface yz and the Z axis, free swing on invariant manifolds.

Comparing the results of Figure 4 indicate that the initial value departure from the plane of
inertia yz to destroy the single oscillation of system; being effected by the initial value
disturbance, the system with more near distance of the center of mass possess better stability of
motion than the system with farther distance of the center of mass.

Though above motion discussions for system in the integral case of (5), we conclude as below:
the restriction condition xG=0 for the distribution of the center of the mass of rigid body ensure that
system do the single oscillation in the plane of inertia yz. The single oscillation will be destroyed
once the center of mass departure the plane of inertia yz (xG≠0). Being effected by the disturbance
of the initial values, more near of the center of mass is, more better of stability of motion for system
possesses. We will develop more rigorous theoretical analysis and mathematical certification about
the stability of motion in further subsequently studies afterwards.
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CONCLUSION
Appropriately utilize the analytical character of system could benefit to determine the invariant
manifolds for quasi-homogeneous system by above discussion. Especially, application of the
analytical character realized the unification of some classical known special solutions for the heavy
rigid system. It achieved more conveniently and more realistically way to solving the special
solutions for system. Additionally, a new special solution in the restricted distribution condition of
the centre of mass of rigid body is given in this paper.
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