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ABSTRACT: Under-deck cable-stayed bridges have recently emerged as one of promising bridge 
forms due to their remarkable advantages such as high structural efficiency, easy construction, econ-
omy and elegant appearance. The stayed cables provide supports on the prestressed concrete deck. 
The cables are located under the deck and deviated through struts, which introduces cable deviation 
forces on th
e deck. In the design of this type of bridges, both the ultimate load and ductility should be examined, 
which requires the estimation of full-range behaviour. An analytical beam model and its correspond-
ing beam finite element model for geometric and material nonlinear analysis are developed for this 
type of bridges. The model accounts for the interaction between the axial and flexural deformations 
of the deck, and uses the actual stress-strain curves of materials considering their stress path-
dependence. In the structural system, the deck interacts with the stayed cables. With a nonlinear ki-
nematical theory, complete description of the nonlinear interaction between the stay cables and the 
deck is obtained. 

INTRODUCTION 
Under-deck cable-stayed bridges are a special and innovative type of cable-stayed bridges in which 
the stay cables are located under the slender prestressed concrete deck and deviated through strut(s) 
as shown in Figure 1. The cable deviation forces, applied on the deck, cause the reduction of bending 
moment and shear force in the deck. The stay cables are self-anchored in the deck in the support sec-
tions over the abutments and piers (if present). Some bridges of this type have been built in the last 
forty years. Leonhardt (1982), Virlogeux et al. (1994), Holgate (1997), Schlaichand & Werwigk 
(2001), Forno & Cremer (2001), etc. illustrated design of some bridges of this structural type. Here 
after in this paper, this type of bridges is assumed unless otherwise stated. 
 

 

Figure 1. An under-deck cable-stayed bridge 
 

Ruiz-Teran & Aparicio (2007) have identified the parameters governing the structural response of 
this type of bridges. Later Ruiz-Teran & Aparicio (2008a, b) studied its structural behaviour and 
proposed design criteria for bridges of this type. Some advantages, e.g. high structural efficiency, 
low self-weight, easy construction, economy and elegant appearance, have been identified by com-
parison with conventional bridges without stay cables. 

Provided that there is sufficient clearance beneath the stay-cables, this bridge type has been shown 
to be very appropriate for use in highway overpasses (Ruiz-Teran & Aparicio 2008a). In 1987, 
Schlaich proposed an under-deck cable-stayed bridge for the Kirchheim overpass (Holgate 1997). 
However, this proposal was not adopted as the state authority concerned the possibility of the bridge 
collapsing due to the sudden breakage of cables in the case that a lorry with an extremely high load 
collides the under-deck cables. Ruiz-Teran & Aparicio (2009) investigated the response of under-
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deck cable-stayed bridges to the accidental breakage of stay cables, and found that this type of 
bridges can resist the accidental action with a higher degree of safety than that required by codes. In 
addition, a set of design criteria closely related with this issue were established. 

However, little work has been done on the nonlinear behaviour of this type of bridges. In this 
study, a numerical model is proposed to predict the full-range behaviour of the bridges taking into 
account geometric and material nonlinearities, and the interactions between deck and under-deck 
cables. 

THEORETICAL FORMULATION  
Some assumptions are made for the theoretical formulation: (a) The shear deformation of the deck is 
negligible; (b) The stress-strain curves of concrete, non-prestressed and prestressing steel are as giv-
en by the constitutive material models; (c) The shear lag effect is disregarded in the present study; (d) 
Deflections may be large but rotations are small to moderate (Reddy 2004); (e) The relative interface 
slip between cables and struts are allowed; and (f) The failure of deck and cables occurs before fail-
ure of struts. 
Deck model 
Referring to the deck segment as shown in Figure 2, the displacement uf in the x-direction is given by 

fu u zv′= −  (1) 
where u is the longitudinal displacement of the axis of deck; and v is the total deflection of deck. By 
introducing geometric nonlinearity, the strain of a generic fiber of the deck in the deformed configu-
ration can be obtained by 
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0 1 / 2u vε ′ ′= +  is the strain of deck axis, and the term ( )( )21 / 2 v′  is due to geometric 

nonlinearity.
 

Figure 2. Deformation of a deck segment 
 
 

The virtual strain energy δUb in the deck is given by 
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where σf is the normal stress of the deck; A is area of the deck; and the axial force N, the bending 
moment M of the deck are given respectively by 

dfA
N Aσ= ∫ , dfA

M z Aσ= ∫  (4a-b) 
 
Modelling of cables  
The cables interact with the deck through anchorages and struts, as the cable elongation depends on 
the global deformation of the whole structural system. In this study, only the case of free slip be-
tween cables and struts is considered. Dall’Asta et al. (2007) developed a model for the cables with a 
nonlinear kinematical theory and provided a complete description of the nonlinear interaction be-
tween external prestressing tendons and girder. This model is adopted for this type of bridges. 

The profile of cable is defined by the locations of end anchorages and struts. Each location point, 
0, jLoc , can be expressed as 

0, j j jx e= +Loc i k   (5) 
where i and k are unit vectors parallel to x- and z-axis respectively; and xj and ej are the x-value and 
eccentricity, respectively, of the j-th location point with a strut or anchorage (j=0, 1, 2…n). The ini-
tial total length of cable Lt0 can be given by 
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After deformation, the location point 0, jLoc  moves to a new position jLoc  of 

j j j j j j jx u e v e v′   = + − + +   Loc i k  
  (7) 

where uj and vj are the displacements at xj. The total length of cable after deformation Lt is given by 
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The additional elongation ΔLt of the cable is then obtained as 0t t tL L L∆ = − . 
Assuming that the strain εp of the cable remains small if the inclination of the cable profile is mod-

erate, the cable deformation measured in its deformed configuration can be simplified as 
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where Δj• =•j - •j-1; and ( ) ( )2 2

,p j j jl x e= ∆ + ∆ . 
The assumption made here is acceptable if the cable profile meets the condition that the ratio of 

maximum vertical length of strut to bridge span is less than or equal to 1/10. Ruiz-Teranand & Apa-
ricio (2007) recommended the ratio to be 1/10 to obtain layout that is both satisfactory from an aes-
thetic point of view and efficient from a structural point of view. Consequently, the virtual strain of 
the cable is given by 
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The virtual strain energy δUp associated with the cable can be obtained by 
0p t p p pU L Aδ σ δε=  (11) 

For simplification, only one resultant cable is considered hereafter. For the cases with more 
cables, straightforward generalization can be achieved by superposition. 
Global structural system  
There are interactions between the deck and cables in the structural system. The global behaviour of 
the whole structural system can be obtained by the principle of virtual work as 
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b p EU U Wδ δ δ+ =  (12) 
where δWE is the virtual work associated with the external load vector f as given by 

0
d

L T
EW xδ δ= ∫ d f  (13) 

Material laws 
The material laws are adopted to consider the material nonlinearity. Figure 3(a) shows the model for 
concrete comprising the stress-strain curve in compression proposed by Attard & Setunge (1996) 
and that in tension proposed by Carreira & Chu (1986), and Guo & Zhang (1987). The stress-strain 
curve recommended by Mander et al. (1984) is used for steel bars as shown in Figure 3(b). The 
stress-strain curve for prestressing steel proposed by Menegotto & Pinto (1973) is shown in Figure 
3(c) and is adopted for the under-deck cables. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 3. Stress-strain curves of materials: (a) concrete; (b) steel bars; and (c) prestressing steel (for 
cables) 

 
 

FINITE ELEMENT FORMULATION 
A finite element model is formulated based on the theory proposed. 
Finite element formulation of deck 
A C1 two-node beam element is formulated as shown in Figure 4. 
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Figure 4. A C1 two-node beam element: (a) degrees of freedom; and (b) internal nodal forces 
 
 
In the beam element, the displacement vector d comprising the longitudinal displacement u of the 

beam axis and deflection v, which are interpolated by linear and Hermite cubic polynomials respec-
tively, namely 
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where the nodal displacement vector is { }Te
a a a b b bu v v u v v′ ′=d  with the element nodes num-

bered locally as a and b; the shape function matrix N contains sub-matrices Nu and Nv; and the super-
script e refers to the beam element. 

From Equation (2), the strain vector can be obtained as 
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where the linear and nonlinear strain-displacement matrices Bl and Bnl are given respectively as 
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(16a-b)
   

The variation form of Equation (15) is 
[ ] e

l nlδ δ= +ε B B d   (17) 
Atypical cross section of bridge deck is shown in Figure 5. The cross section is divided into a 

number of layers for analysis. The concrete strain in each layer is assumed to be uniformly distributed 
and equal to the strain at the centre of layer (Lou & Xiang 2006). 
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Figure 5. Typical cross sections and simplified arrangement of steels of a bridge deck 

 
 
According to section equilibrium conditions, the stress resultants N and M can be expressed as 

follows 
( ) ( )ci ci sj csj sj bpk cbpk bpk

i j k
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(18a) 
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where σ, A and z correspond to stress, area and vertical coordinate respectively; subscripts ci, sj and 
bpk correspond to the ith concrete layer, jth ordinary reinforcing steel and kth bonded prestressing 
steel (if present) respectively; and subscripts csj and cbpk correspond to concrete at the level of jth 
ordinary reinforcing steel and concrete at the level of kth bonded prestressing steel (if present) re-
spectively. 

The differentials of Equations (18a) to (18b) are 
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where ET is the tangent modulus of material. 
Substituting Equation (2) into Equation (19a-b) yields the section tangent stiffness matrix DT in 

terms of the internal force vector FI as 
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Introducing Equations (17) and (21) to the virtual strain energy of the deck in Equation (3) yields 
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where eL  is the element length; and the equivalent element nodal load vector e
bf  is given by 
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The differential d e
bf of Equation (23) is 
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Substituting Equations (20)-(21) and (16b) into Equation (24) yields the element tangent stiffness 
matrix as 
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is the element tangent stiffness of deck. 
Finite element formulation of cables 
The deformation of cable given by Equation (10) depends on the displacements of anchorages and 
struts. It is assumed that the positions of the (n+1) struts or anchorages coincide with some of the m 
nodal points of the mesh. Consequently, the virtual strain  p of the cable is given by 
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where D is the global nodal displacement vector of the deck; and the kinematic compatibility vector 
of the cable for expanding to cope with the global displacement vector is 
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In the kinematic compatibility vector χ, the 

sub-vector χi corresponds to the i-th nodal point with abscissa xi. Hence, the virtual work Up done 
by the cable can be written as

 

0p t p p p p p pU L A Aδ σ δε σ δ δ= = =χ D F D  (27) 

where Ap is the cross sectional area of cable, p is the cable stress, and the equivalent load vector Fp 
comprises the forces that the cable transmits to the deck. The tangent stiffness matrix Kp contributed 
by the cable is 
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Global finite element modelling 
In accordance with the conventional finite element formulation, the global stiffness equation is ob-
tained as 

δ δ=K D F   (29) 
where the global stiffness K comprises the global deck stiffness matrix Kb, and the global stiffness 
matrix due to cable Kp; and F is the global nodal force vector of the deck. 
Solution algorithm 
Since the structural system is nonlinear, an iterative method must be employed for the solution. The 
constant arc-length technique is employed in this study. 

NUMERICAL EXAMPLE 

Bridge properties 
The nonlinear behaviour of an under-deck cable-stayed bridge as shown in Figure 6 is analyzed. The 
under-deck cable-staying system, made up of 130 strands, each with a cross section of 140 mm2. The 
strands are self-anchored to the deck and deflected by struts. The prestressing ratio of cables is 65%. 
The reinforcement ratio of deck is assumed to be 3.5%. The concrete strength is assumed to be 60 
MPa. The moduli of elasticity of steel bars and steel cables are assumed to be 200 GPa. The yield 
strength of steel bars is 400 MPa. The ultimate strength of prestressing steel for cables is 1860MPa. 
The material laws of concrete, steel bars, and prestressing steel for cables are as given in Section 2.4. 
The effect of arrangement of under-deck cables is addressed. The ratio of strut length to span, H/L, 
varies from 0.0375 to 0.1. 

 

 
(a) 

 

 
(b) 

Figure 6. An under-deck cable-stayed bridges analyzed: (a) elevation; and (b) cross section of deck 

Results 
The load-deflection curves of bridge analyzed are shown in Figure 7. The ultimate loads of bridge 
with ratios H/ L of 0.0375, 0.05, 0.075 and 0.1 are 56656 kN, 66772 kN, 91099 kN, and 99086 kN 
respectively. The larger the ratio H/ L is, the higher the ultimate load is, while the earlier the bridge 
enters the plastic stage. The bridge with higher ratio H/ L has higher stiffness. 
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Figure 7. Load-deflection curves of bridge analyzed 

 
The values of cable stress of bridge are shown in Figure 8. The ultimate cable stresses of bridge 

with ratios H/ L of 0.0375, 0.05, 0.075 and 0.1 are 1517 MPa, 1478 MPa, 1430 MPa, and 1355 
MPa respectively. The larger the ratio H/ L is, the lower the ultimate cable stress is. 

 

 
Figure 8. Variation of cable stress of bridge analyzed 

 
 

The effect of other parameters such as strut number and load type are also needed to be further 
studied. 

CONCLUSIONS 
The present study proposed a numerical model to predict the nonlinear behaviour of under-deck ca-
ble-stayed bridges taking into account the interaction between deck and under-deck cables. The 
model considers the geometric nonlinearity and the actual stress-strain curves as well as strain rever-
sals. A nonlinear finite element method is developed accordingly. A numerical example is given for il-
lustration. 
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