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ABSTRACT: A fully dispersive fifth order nonlinear wave propagation model for mild current, wa-
ter level and depth was established theoretically considering energy and topography factors. It satis-
fied both the frequency dispersion and nonlinearity. By omitting the 5th order terms, the lower order 
model was in consistency with the former 3rd order model. This model could be simplified to mild-
slope type equations for deep water, to Boussinesq type equations for shallow water and to Airy 
wave for very shallow water.  

INTRODUCTION 
Wave is an important ocean dynamic factor. It has great influence on maritime structures safety, har-
bor ship berthing, sediment transport and pollutant dispersion. In the last two decades, wave propa-
gation model developed in two main direction: 1) fully dispersive mild slope equation and its exten-
sion 2) weakly dispersive nonlinear Boussinesq-type equation and its extension. The Boussinesq-type 
equations are weakly dispersive nonlinear equations, suitable for shallow water and has limitations in 
calculating wave propagation in deep water. Though some extensions of B-Type equations improved 
the limitation to water depth, the situations for water depth equivalent to or larger than wave length, 
the results of extension models were still not satisfied. The mild slope equation is suitable for model-
ing linear single frequency and has limitations in shallow water wave propagation in near shore areas. 
Though the time-related mild-slope equation can solved the frequency problem, the band-width of 
spectrum was still limited. To breakthrough this limitations, the researchers proposed the mathemati-
cal models which satisfied fully dispersion and nonlinearity simultaneously. The calculation model 
and the applicability are yet to be discussed. Nadaoka (1994) et al adopted vertical dependent func-
tion to express wave velocity, and by applying Galerkin method, these vertical dependent functions 
were idealized combined. Those functions could be used to express any wave velocity field and final-
ly a called fully dispersive nonlinear mathematical model was achieved. Isobe (1994) approximated 
the frequency related coefficient as rational function, and extend the original mild slope equations in-
to a “time-related mild slope equation” for random waves. It can depict time evolution process of 
near shore short waves; Li B. (2008) adopted vertical characteristic horizontal velocity to deduce 
control functions. The most improvement of the new control function was that it could satisfy the 
dispersion relation in the range of full water, and the linear shallow gradient factor is in good agree-
ment with Stokes theoretical solution. The authors concluded that this model can simulate wave 
propagating from shallow water to deep water (kh=0~4), and can be simplified to Nwogu equations 
by ignoring the high order terms (higher than (kh)4). Hong et al (2009) deduced a nonlinear mathe-
matic model based on gravity surface wave and long wave nonlinear interaction. This model is based 
on non-viscosity, non-rotational fluid dynamic equations. It is a new fully dispersion and nonlinear 
full water equation for mild slope, water elevation and current. These governing equations contain 
energy coefficient reflecting energy input, friction and wave breaking loss and topography coefficient 
reflecting the local depth variation. This model suits wave propagating from deep water to very shal-
low water, with long wave field and water depth varied. Zhang et al (2010a) extended it into third 
order and third order modified model (2010b). This paper aims to deduce a fifth order theoretical 
model. 
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THEORETICAL MODEL DERIVATION 
Assuming the flow is irrotational, the continuity equation can be expressed in linear Laplace equa-
tion: 
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where ∇≡(∂/∂x,∂/∂y) is horizontal gradient operator; x, y are horizontal directions; z directs vertical-
ly; ηT(x,y,t) is free surface elevation; z=0 is still water level; z=-h(x,y) is bottom boundary. 

On free surface elevation z=ηT it satisfy kinematic equation, and can be expressed as: 
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Unsteady Bernoulli equations can be used to depict the dynamic boundary conditions on free sur-
face.  
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where g is gravitational acceleration; W* is composed energy factor, representing energy dissipation 
coefficient.  

Substituting Eq.(3) into (2)，a new kinematic-dynamic boundary condition can be deduced: 
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 (4) 
Since Eq.(1) is linear, ϕT can be divided into wave velocity potential ϕ and long wave velocity po-

tential ϕc： 
),,,(),,,( tzyxtzyx cT ϕϕϕ +=  (5) 

Here are two assumptions: 1) the vertical acceleration was omitted, i.e. ∂2ϕc/∂z2=0; 2) the vertic-
al wave velocity was also omitted, i.e. ∂ϕc/∂z=0. Adopting the above two assumptions into the equa-
tions, only the horizontal velocity Uc=∇ϕc exist. 

The wave elevation ηT can be divided into the following form: 

cT ηηη +=    (6) 
To convert the 3 dimensional control Eq.s(1)-(5) into horizontal 2 dimensions, the 3d velocity po-

tential function ϕ(x,y,z,t) can be divided into local part F(x,y,z,t) and removal part Ф(x,y,t). The local 
part depicts the water local change and the removal part depicts the overall change of horizontal wa-
ter area. Assuming the wave velocity potential as: 
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Using the second order Green Function: 
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Wave can be divided from current in Eq.s (1)  
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Substituting Eq. (9) into Eq. (8), we can get  
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Substituting ϕFzz=Fϕzz into Eq. (10), we can get 
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The Eq. (11) is an integration of 3 dimension continuity equation from bottom to free surface. F is 
weight factor. 

Adopting the following form  
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Eq. (10) can be expressed as: 
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Adopting the kinematic boundary condition at z=ηT and z=-h, we can get： 
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Substituting into (10), the following form can be obtained: 
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where 
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By adopting the free surface dynamic boundary condition z=ηT and substituting the Eq. (7) into 
(3), the free surface boundary condition can be changed to:  
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By adopting φ=FΦ, another 2D control Equation can be achieved: 
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or can be expressed as 
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Eq.s(15),(19) are governing equation of shallow water wave propagation model on long waves. 
Φ,η are nonlinear wave velocity potential and wave surface; Φc,ηc and U are given wave velocity 
potential, wave surface and horizontal velocity component; h is depth under still water level, g is 
gravitational acceleration. To get explicit expression, the following expression was adopted 
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Dispersion coefficient k can be determined by Eq. (21) 
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where σ stands for natural frequency 
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Adopting (20), Eq.s (15), (19) can be expressed as follows: 

Tc ZAUAA
Dt
DA η

η
==Φ+∇+Φ∇⋅∇+ ,0)( 4231

r
 (28) 

TztCBB

BBW
Dt
D

Dt
DBg

η

η

==Φ+Φ∇⋅Φ∇+

ΦΦ∇⋅+++
Φ

+

),(])([
2
1

])[(

2
32

41
*

1
 (29) 

where the coefficients are:  

1 1

2 3 4 5

2 2 2
2 2 3 4 4 5

1

| cosh ( ) / cosh

1 1 1 11 ( ) ( ) ( ) ( ) ( )
2 6 24 120
1 1 1 11 ( ) ( )
2 6 24 120

TA F B kd kd

k k k k k

k k k k
g g g

B

η η

γ η η γ η η γ η

σ σ σ
η η η η η

= = = +

≅ + + + + +

= + + + + +

=

% % %
 (30) 

874



5442
2

322
2

5443322

2

120
1~

24
1

6
1~

2
1

120
1

24
1

6
1

2
1

cosh
sinh

ηη
σ

ηη
σ

η

ηηγηηγη

γββ
η

β

kk
g

k
g

kkkk

/k,
kdk

)k(dFdzA
Tη

h

++++=

++++≅

=−
+

=−= ∫−

 (31) 

522
2

242
2

32
2

22
2

542433222

22
3

))~((
15
1~

3
1

])~([
3
1~~~

)1(
15
1

3
1)1(

3
1~~

)cosh4/()](2sinh)(2[

η
σ

η
σ

η
σ

η
σ

η

ηγηγηγηγη

ηη
η

k
g

kk
g

g
k

gg
cc

kkkk
g
cc

kdkddkdzFA

g

g

h

T

+++

++++=

+++++++≅

+++== ∫−

 (32) 

gJAAA /42414 ++=  (33) 

3
2

41 AkdzFFA T

h zz == ∫−

η
 (34) 

}])~([
15
2)(~

3
2])~(

[
3
2)(~2])~([~{

})1(
15
2

3
2

)1(
3
22)1({

)cosh2/()(2sinh|

542
2

24
2

322
2

22
2

2
2

2
2

56245

3422322

2
42

η
σ

η
σ

η
σ

η
σ

η
σσ

ηγηγ

ηγηγηγγ

ηη

k
g

kk
g

k
g

kk
gg

k
g

kk

kkkk

kddkkFFA T
z

++++

++++−=

+++

+++++−≅

+−=−=

 (35) 

hzhh
FFZFFFdzFgJ TT

−−
−

+∇⋅∇+∇⋅∇= ∫ ||/ ηη
 (36) 

54
2

422
2

2

32
2

22
2

2
2

542

322

22
2

~
15
2])~([

3
1

~
3
4])~([~21

)(
15
4))(1(

3
1

)(
3
4))(1(21

cos2/)](2cosh1[|

η
σ

η
σ

η
σ

η
σ

η
σ

ηγηγ

ηγηγηγ

ηη

k
g

k
g

k

k
gg

k
g

kk

kkk

kddkFB T

+++

++++=

+++

++++≅

++==

 (37) 

3 31 32B B B= +  (38)  

875



56
2

42
2

2

34
2

22
2

22
2

2
2

574623524232

222
31

~
15
4）（])~([

3
1

~
3
4)]()~([~2)~(

15
4)1(

3
1

3
4)1(2)(

cos2/]1)(2[cosh|

η
σ

η
σ

η
σ

η
σ

η
σσ

ηγηγηγηγηγγ

ηη

k
g

k
g

k

k
g

k
g

kk
gg

kkkkkk

kddkkFB T
z

+++

++++=

+++++++≅

−+==

(39) 

]})()[(2sinh2)](1)(2[cosh

)]()(][1)(2{[cosh
cosh2

1
|

22

2

32

kddkdkkdkddk

dkdkdk
kd

FFB T

∇⋅+∇+−∇⋅∇−++

+∇⋅+∇−+=

∇⋅∇=

ηηγηγ

ηηη

η

2
2 2 2 3 4

5 2 2 3

4 2 2 2 2

2 2 2 2 2

(1 )4{ 2 (1 )( ) ( ) ( )
3 3

4 2 1( ) }( ) 2(1 ) { ( ) ( )
15 3 3
2 1( ) }( ) (1 ) ( ) {1 ( ) }( )
15 3

[(1 ) ( ) ( ) 2 (1 ) ( ) (

k k k k

k k k k k k k

k k kd k k kd kd

k kd kd k kd kd k

γ
γ γ η γ η γ η η

γ η η η γ η γ η γ η η

γ η η γ η η

γ η γ γ η γ η

+
≅ + + + + +

+ ∇ ⋅ ∇ + − + + +

+ ∇ ⋅ ∇ + − + ∇ ⋅ ∇

= − ∇ ⋅ ∇ + − ∇ ⋅ ∇ + ∇ ⋅ ∇
2 2

2 2 4 2 3

2 2 2 4

3

)]
[2(1 )( ) ( ) 2 ( )]
1 4[ (1 ) ( ) ( ) (1 )( ) ( )
3 3

2(1 )( ) ( )] [ (1 )( ) ( )
3

4 ( ) ( )]
3

k
k k kd k k k

k kd kd k k kd

k k kd k k kd

k k k

η

γ η η γ η η η

γ η γ γ η η

γ η η γ η η

γ η η η

+ − ∇ ⋅ ∇ + ∇ ⋅ ∇

+ − ∇ ⋅ ∇ + − ∇ ⋅ ∇

+ + ∇ ⋅ ∇ + − ∇ ⋅ ∇

+ ∇ ⋅ ∇

 (40) 

kdk

kkkkkk

kkkk

kddkdkdk
kd

FFB T

∇+

+++−+∇++

++++++≅

∇++−+∇+=

∇=

})(
15
2

)(
3

)(
3
21{)1(}))(1(

15
2

)(
3
2))(1(

3
2)(2)1({

}]1)(2[cosh)()(2{sinh
cosh2

1
|

4

32252

43222

2

4

η

η
γ

ηηγηγηηγ

ηγηγηγηγγ

ηγηη

η

(41) 

 

])1(
5
1[)(

3
2])1(2

)1([)(
3
1])1(

3
1[)(2

])1()1([])1[(

242

2322

222

ηγηγηηγ

ηγγηηγηγη

ηγηγγηηγηγ

kkdkkk

kdkkkkdkk

kkdkkkkdk

∇+∇−+∇++

∇−+∇+∇−+

∇++∇−+∇+∇−=

(42) 

The exactness of the mathematical model is determined by the order of the coefficients. Choosing 
higher order of coefficients yields more accurate model results and it demands high calculation abili-
ty. Keep the third order coefficients, we can get former the third order solutions. 

SPECIAL CASE ANALYSIS 
This model can be transformed into equivalent nonlinear mild slope equations for slowing varied cur-
rent, water level and depth and Boussinesq-type shallow water nonlinear wave model for a relative 
shallow water depth and Airy shallow water Equations.  
Nonlinear deep water waves (mild-slope type) 
when kh≫1, σ2/g= k, cg=c/2, ccg=g/2k,J=0, the governing equations can be simplified to the mild-
slope type equations： 
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Shallow water nonlinear long wave equations（Boussinesq-type） 
When kh<1,σ2/g=k2h[1-(kh)2/3],ccg=gh[1-2(kd)2/3], k2ccg-σ2=-gk4h3/3, σ4/g=gk4h2[1-2(kh)2/3] on 
slowly varied current, water level and water depth, approximately take ∇·∇Φ=-k2Φ,the governing 
equations could be transformed to Boussinesq-type nonlinear shallow water long wave equations: 
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and 
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Nonlinear long wave equations for very shallow water（Airy wave） 
when kh<<1, σ2/g=k2h, cg=c=(gh)1/2, k2ccg=g2kh,the governing equations could be simplified to the 
Airy wave equations: 
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Omitted the high order terms containing J and kh of the above two equations,we can obtain the 
nonlinear long wave equations for very shallow water(i.e. Airy shallow water long wave equations) 
as follows: 
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CONCLUSIONS 
1) A fully dispersive fifth order nonlinear wave propagation model for mild current, water level and 

depth was established theoretically considering energy and topography factors. 
2) By omitting the 5th order terms; the lower order model was in consistency with the former 3rd or-

der model.  
3) This model could be simplified to mild-slope type equations for deep water, to Boussinesq type 

equations for shallow water and to Airy wave for very shallow water.  
4) The efficiency and accuracy of the mathematical model were yet to be validated. 
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