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ABSTRACT: River runoff is highly nonlinear as affected by the combination of climate, underly-
ing surface condition, etc. Prediction of runoff may guide engineering design, construction and op-
eration. Statistical Learning Theory (SLT) studies the rules of machine learning with finite samples. 
Support Vector Machine (SVM) is a new machine learning method based on Statistical Learning 
Theory. It is a solution for the highly nonlinear classification and regression in sample space. Map 
the one-dimensional runoff series input space of one hydrologic station of the Yellow River onto 
high-dimensional input space. Then calculate the embedding dimension of runoff time series and 
reconstruct runoff series into three-dimensional phase space. Using radial base kernel function to 
learn from 83 training samples through grid search method and optimize model parameters to estab-
lish the Least Square Support Vector Machine (LSSVM) prediction model of river runoff. Fitting 
mean-square error of the model is 0.0148. Prediction mean-square error of the model on 20 samples 
is 0.0120, a correlation coefficient of 0.975 between predicted and measured values. The result 
shows that the generalization ability of LSSVM model is high and the prediction result is satisfacto-
ry.. 

INTRODUCTION 
As affected by the combination of climate and underlying surface, such as landform, soil, vegetation 
and human activities, river runoff alternates between high-water period and low-water period. River 
runoff is mostly affected by climate. Underlying surface controls the transformation from 
precipitation to runoff by influencing evapotranspiration, infiltration and converging, thus governing 
the redistribution process of precipitation. Underlying surface factors such as vegetation and soil are 
closely related to climate as well. Therefore, variation in river runoff is bound up to global climate 
change. Global warming and sunspot activity in recent years have greatly impacted the pattern of 
river runoff. As economies are growing, human activities (e.g. large reservoir storage, trans-basin 
diversion, water-soil conservation and other development, utilization, treatment and configuration 
initiatives), various social & economic and environmental elements also have a growing influence 
on river runoff. River runoff shows quasi-periodicity and nonlinearity. With respect to nonlinearity, 
Neural Network, Chaos Theory, etc. are widely used. However, since Neural Network algorithm 
uses Empirical Risk Minimization Principle and it is prone to local optimum, the field application 
of Neural Network is limited. Conventional Time Series Prediction and Neural Network are both 
based on statistics. Conventional statistics studies the Asymptotic Theory when the number samples 
tends to infinity. Since in reality the number of samples is limited, some learning and prediction 
methods excellent in theory are not ideal in field application. 
Statistical Learning Theory (SLT) is a theory that studies the rules of machine learning with finite 
samples. Vapnik (Vapnik 1995)and other scholars started the study in 1960s to 1970s. The theory 
has developed and matured through mid-1990s. On the other hand, other learning methods, such as 
Neural Network, are lack of substantial progress. Therefore, SLT has become an increasingly appre-
ciated theory (Nello & John 2000,Shevade et al. 2000). 
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LEAST SQUARE SUPPORT VECTOR MACHINE 
Support Vector Machine (SVM) is a new machine learning method proposed by V. Vapnik and his 
team of AT&T's Bell Labs based on SLT. SLT is a theory that studies the rules of machine learning 
with finite samples. SLT not only considers requirements on generalization ability, but also pursues 
the optimal result with limited information. It is a new theory in the field of machine learning and is 
currently the best theory for small sample statistical estimation and prediction learning. SLT studies 
the prerequisites of Empirical Risk Minimization Principle, the relationship between empirical risk 
and expected risk of limited sample, and how to use these theories to find out new learning prin-
ciples and methods in a systematic way(Deng & TIAN 2004). SLT solves the issues of model se-
lection and overfitting, nonlinearity and curse of dimensionality, local minimum, etc. to a great ex-
tent, establishing a favorable theoretical framework for small sample machine learning issues. 
Currently SVM has been successfully used in a number of research applications. 
SVM prediction, i.e. Support Vector Regression (SVR), is based on the concept of mapping data 
onto high-dimensional feature space through nonlinear mapping and proceeding with linear regres-
sion in this space. 

Least Square Support Vector Machine (LSSVM) is an algorithm developed from Standard SVM (S-
SVM). Loss function is defined as error square sum, which is obtained by converting inequality 
constraints to equality constraints in S-SVM algorithm. LSSVM reduces computational complexity 
and improves convergence rate by solving a group of linear equations instead of the quadratic 
programming in S-SVM. LSSVM only needs to determine the shape parameter and penalty 
parameter without selecting the value of insensitive loss function. Therefore, LSSVM is easier to 
use than S-SVM(GUO et al.2006, LIN &CHENG 2006,LI et al.2007).  

The fundamental of SVR is mapping input space onto high-dimensional feature space through non-
linear mapping and proceeding with linear regression in the high-dimensional space. 
For nonlinear regression, establish training sample as liRRyxyx n

nnii ,...,2,1,),(,),,( =×∈L , and 
the nonlinear regression function is: 
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S-SVM uses ε  insensitive loss function and LSSVM defines loss function as quadratic item with 
an error of ie . 
According to Structural Risk Minimization Principle, LSSVM risk function is: 
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Then the original optimization issue can be written as: 
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Constraint being: 
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Where nhn RR →⋅ :)(ϕ  is the nonlinear function that maps data from original space to high-
dimensional Hilbert feature space; ω  is weight vector; 0≥ie  as error variable, equivalent to the 
slack variable under S-SVM; 0>γ  as adjustment parameter factor. γ  is a constant to control the 
penalty on out-of-error samples. It creates a medium solution between error and complexity, giving 
better generalization ability to the result function. The greater the value of γ , the smaller the re-
gression error of the model. 
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To solve the abovementioned optimization issue, Lagrange function can be introduced to transfer 
constrained optimization to non-constrained optimization. 
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where iα  is the multiplier of Lagrange. Optimal iα  and b  can be obtained through condition 
KKT (Karush-Kuhn-Tucker): 
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From equation (3), the optimization becomes solving a linear equation as shown below: 
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Where: ),( ji xxK  is the kernel function. 
Solve equation (7) to obtain α  and b, and the solution of the nonlinear regression function is: 
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SELECTION OF OPTIMAL PARAMETERS FOR LSSVM MODELING 
When modeling, first select the kernel function. Use linear, polynomial, radial base and Sigmoid 
kernel functions respectively to create the model. Comparison shows that the radial base kernel 
function (RBF) is suitable for the research topic of this article. If RBF is used, two parameters, γ  
and σ , need to be determined when solving the model. These two parameters are determined by 
Cross-Validation (CV)( GUO et al.2006). 
Cross-Validation 
CV includes k-fold Cross-Validation (k-CV) and Leave-one-out Cross-Validation (Loo-CV). k-CV 
is used in this article. k-CV procedures are listed below: 
(1) Set cycles t=1; 
(2) Randomly rearrange original input/output matrix; 
(3) Divide training samples niyx ii ,,2,1),,( L=  into k parts, approximately equal in numbers and 
do not intersect with each other, i.e. k-fold S1, S2, …, Sk. 
Train and test the data for k times, i.e. iteration for k times. For the ith iteration, select Si as test set 
and the union of the rest S1, …Si-1, Si+1, …Sk as training set. Use the training set for model training 

887



to obtain regression model. Then use the regression model to test the test set Si. Error between the 
actual value and predicted value of Si is represented by mean-square error: 

ijji Sjyxfmset ∈−= ),)((cos         (9) 

(4) After calculation of k times, there will be k errors of kttt cos,,cos,cos 21 L . The average error of 
these k errors shall be: 
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(5) Repeat step 2 through 4 for T times to obtain )(,),2(),1( Terrorerrorerror L . The average error 
of T cycles shall be: 
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Equation (11) is the estimation of modeling error, i.e. k-fold CV error. 
 Grid Search Method 
For parameters to be optimized, apply grid in the available given interval and calculate objective 
function value on the grid. Select the corresponding parameter of objective function that satisfies 
optimal property of modeling function as optimal parameter. For the LS-SVM model in this article, 
give the initial value for γ  and σ . Then divide the range corresponding to these two parameters 
into 10 equal parts, i.e. a 10×10 grid. Calculate the value of error on each grid node with CV me-
thod. Use the value of error as the objective function of the corresponding node. Draw a contour 
line for each error value of the 10×10 grid and solve γ  and σ  of the satisfactory contour line as 
optimal parameters. 

LSSVM RUNOFF TIME SERIES PREDICTION 

Model Input/Output 
Prediction of time series assumes that the future time series can be predicted based on past time se-
ries. Runoff time series prediction model is to find out the nonlinear function between past time se-
ries and future time series. Use the monthly runoff data of one hydrologic station of the Yellow Riv-
er main stream and reconstruction theory to reconstruct chaotic time series into a low order 
nonlinear dynamics system. Determine the embedding dimension of chaotic time series to recon-
struct phase space. The reconstruction theory of state-space expands the vector of input space onto 
high-dimensional space, so as to extract the information and rule residing within the system. Calcu-
lated embedding dimension is 3 and there are 103 samples in the reconstructed state-space, as 
shown below: 
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Reconstruct the multi-dimensional state-space of runoff chaotic series to for learning sample series. 
Then utilize SLT’s LSSVM to construct prediction model for the forecast of runoff. Use monthly 
runoff of the first three months, 21 ,, ++ iii xxx , to forecast the runoff of the fourth month iy , where 

103,,...,2,1 == lli , i.e. SVM prediction model has three input variables and one output variable. 
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Select the first 83 samples for SVM model training and the last 20 samples as test samples to fore-
cast the monthly runoff of these 20 samples. Before running the model, normalize the input and 
output of samples to contain the data within the range of [0, 1]. 
Runoff Time Series Prediction 
With T=10 and k=10, middle calculating process is shown in Figure 1(Suykens et al.2002). 
Through 10-fold VC of 10 cycles, the optimal parameters of LSSVM model are γ =951.8036 and 

2σ =0.0101. Learning of 83 samples shows that the fitting result is favorable, with a mean-square 
error of 0.0148. See Fig. 2 for fitting result. As shown in the figure, fitting value coincides with ac-
tual value well. 
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Figure 1. The result of grid search 
 

Mean-square error of prediction samples is 0.0120. Minimum relative error is 0.57% and maximum 
relative error is 19.06%, average value being 8.97%. In mathematics, inner product can be used to 
indicate the similarity between two vectors and kernel function is used to describe the similarity be-
tween two vectors in feature space. Therefore, SVR can be seen as an algorithm for similarity is-
sues. The correlation coefficient between the predicted and measure values of the 20 prediction 
samples is 0.975, indicating strong relevance. 
Therefore, LSSVM model has good performance in river runoff predication, and its generalization 
ability is high. Computing speed of LSSVM model is fast and it shows favorable results in both fit-
ting and predicting. LSSVM is a feasible prediction method. 
Forecast the 20 prediction samples with trained LSSVM model. Forecast results are shown in Table 
1. The results show that prediction value coincides with actual value well. 

SUMMARY 
To forecast runoff, a 3-input & 1-output SVM predication model is established. SVM algorithm 
realizes structural risk minimization. It seeks for a medium solution between model complexity and 
learning ability based on limited samples, ensuring better generalization ability. The method 
features high predication accuracy and generalization ability with small training samples. The 
predication result shows that the runoff time series prediction model of LSSVM has high 
predication accuracy, providing a new method for runoff forecast. 
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Table 1. The predicting error of SVM model 

Sample 
Actual ru-

noff 
Predicting 

runoff 
Relative er-

ror 
m3/s m3/s % 

1 144 164 14.00 
2 211 216 2.30 
3 412 334 18.91 
4 560 520 7.21 
5 498 491 1.36 
6 236 270 14.29 
7 171 141 17.43 
8 185 171 7.38 
9 224 259 15.79 
10 365 360 1.40 
11 597 594 0.57 
12 864 984 13.87 
13 772 625 19.06 
14 681 690 1.38 
15 597 577 3.29 
16 179 201 12.41 
17 134 139 3.78 
18 136 142 4.38 
19 212 235 10.87 
20 311 341 9.61 
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