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ABSTRACT: Based on spatial elasticity theory, the fundamental beam assumptions are introduced 
into the 20-node spatial isoparametric finite element that constructing the degenerated solid beam 
element in order to overcome the simulation limitations of the beam element on its cross-section 
scale. According to the numerical examples about the natural vibration analysis of cables, the results 
show the degenerated solid beam element has the effectiveness and stability precision. Moreover, 
the element can also be used to analyze the vibration of the varied cross section cable and some ca-
ble in the complex three-dimensional boundary. 

INTRODUCTION 
Tension cables are critical structural components in modern civil engineering, and have been widely 
used. It plays different roles in the structure, for example, stay cables in cable-stayed bridges, main 
cables and sling in cable-suspension bridge, suspender in arch bridges and external prestressing ca-
ble in strengthened bridge. In addition, cables as an important component part of buildings, bear 
loads in large-span roof and tensegrity structure. Owing to their large flexibility, relatively small 
mass and extremely low damping, stay cables presents a significant differences with beam or struts 
components in the mechanical performance.  
In general, monitoring cable tensions during the construction of cable-supported bridges is neces-
sary to align cables properly and to ensure no cable is overloaded. After the completion of the 
bridge, cables serving as the primary vertical load carrying elements of the bridge, there is a need to 
ensure the structural integrity of the cables well. Furthermore, small variations in cable tension may 
cause a dramatic effect on the global response of other parts of the bridge including the deck and py-
lon. The exact estimation of the cable tension force has been the main objective of bridge mainten-
ance. For this purpose, some methods have been developed for measuring the tension in a bridge 
cable. The simple estimation formulas used in the vibration method for the bridge cable can be de-
rived from the transverse vibrations of a taut string with the assumption of no sag. However, this 
current method has some limitations, because bridge cables always don’t behave as taut strings be-
cause of their flexural rigidities. In particular, to estimate the tension of shorter cables that are great-
ly influenced by flexural rigidity. 
Therefore, some new methods are proposed that are based on the finite element model of the cable. 
The nonlinear characteristic and the complicated engineering conditions can be considered in the 
model. However，the current elements as one dimensional link，pipe and beam based on the as-
sumption that the section is plane，cannot be satisfied to simulate the distribution of rigid stiffness 
and mass distribution of the real bridge cable. In this paper，a new approach is developed to model 
the cable dynamic characteristic with the degenerated beam element，which is modified by the 20-
node spatial isoparametric finite element based on the basic assumptions of beams. 

BASIC THEORIES AND METHODS 

Bridge cables are composed with steel strands，protective cover and filler. Therefore, the real per-
formance of the cable is different with the computing model. Degenerated solid elements as a new 
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spatial analysis mode were developed by Pro. Xu at Zhejiang University. Compared with the usual 
three dimensional solid isoparametric element, it has the same discrete form, shape function, bal-
ance and geometric equation. 
The current beam and link element was developed to show the general mechanical performance of 
the structure on the classic elastic theory. In the degenerated solid elements, the current assumption 
can be introduced to expand the elastic matrix, and then obtain the three-dimensional isoparametric 
element form of the beam components. As the real cable section is various, 20-nodes hexahedron 
isoparametric element can approximate the irregular boundaries and get a well calculation accuracy. 

 
 

Figure 1. displacement vector of the 20-nodes isoparametric element. 
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The shape function of the 20-nodes isoparametric element 
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According to the spatial elastic theory, the stress-strain relationship of a solid element can be de-
scribed as，and the constitutive relationship model D is 
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Ed ，E is Young's modulus，and µ is Poisson's ra-

tio. 
After introducing the assumption that the transverse stress is very small than other stress and strain 
caused by is can be neglected, the elastic matrix of the degenerated solid element can be revised as 
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where λ  is penalty parameter（λ =1000）to meet the mechanical performance of beam element，
and have a same order as the spatial isoparametric element. 
Compared with the current element，the degenerate element can be divided into several regions, 
with each region having its own material, and the cavity in the element is treated as a special kind of 
material. The stiffness matrix of the new parent element is integrated by different regions composed 
with 8-20 nodes. The region nodes can be determined by the coordinates in the parent element. Giv-
en the local coordinates of node i in the region k as ( )k
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where m  is the number of regions in the element; Dk is the material elastic matrix; kρ is the densi-
ty of the region k; J ′  is the Jacobi determinant of the region coordinate transformation matrix. 
Then the global equilibrium equation is solved by introduction the nodal force vector and boundary 
condition. 

SIMULATION OF THE DEGENERATE SOLID ELEMENT 
The cable model using the presented element was conducted to validity its effect by the VEAP pro-
gram. The cable was meshed by the 20-nodes degenerate solid element. The 4m and 40m cable had 
580 nodes in 100 elements, while the 10m and 100m cable had 720 nodes in 125 elements. The 
constraints was applied on the two ends in the 3 degrees, and the uniform axial force was imposed 
along the cable.  
Also the dynamic analysis by 2-nodes beam element was carried out to contrast the results. 20 ele-
ments was meshed in both 4m and 10m cable while 40 elements in another two models. The 
hinged–hinged constraint conditions were used in the calculation model, and the axial force was si-
mulated by initial strain.  
In the two calculation model above, the diameter of the cable is 0.08m; The elastic module is 
1.9×105MPa; The Poisson's ratio is 0.167; The density is 8000kg/m3. The tension force on every 
cables changes from 400kN to 5000kN. Fig. 2 shows the results from every calculation model. The 
graph's horizontal coordinate shows the cable force range, and the vertical coordinate shows the fre-
quency of the cables. 
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(d) 
Figure 2. Contrast with frequencies of cables using different calculation models(a:40m cable; b:10m 
cable; c: 40m cable; d: 100m cable) 
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Table 1.  Calculated frequencies of cables under different axial force (A: Using degenerate Ele-
ment ; B: Using beam element; C: Using current vibration theory) 
 

Cable 
Force/kN 

4m Cable 10m Cable 40m Cable 100m Cable 
A B C A B C A B C A B C 

400 15.754 15.717 15.716 5.248 5.218 5.217 1.268 1.251 1.250 0.527 0.499 0.499 
500 16.958 16.909 16.907 5.817 5.783 5.782 1.415 1.398 1.397 0.584 0.558 0.558 
600 18.081 18.023 18.019 6.336 6.298 6.297 1.548 1.530 1.530 0.635 0.611 0.611 
700 19.139 19.072 19.067 6.815 6.775 6.772 1.670 1.653 1.652 0.683 0.670 0.660 
800 20.141 20.066 20.060 7.262 7.220 7.217 1.784 1.766 1.766 0.728 0.716 0.705 
900 21.095 21.014 21.006 7.683 7.639 7.635 1.891 1.873 1.872 0.770 0.758 0.748 
1000 22.009 21.921 21.912 8.083 8.036 8.032 1.993 1.975 1.974 0.810 0.799 0.788 
1100 22.885 22.791 22.781 8.463 8.419 8.410 2.089 2.071 2.070 0.848 0.837 0.827 
1200 23.730 23.631 23.619 8.828 8.777 8.772 2.181 2.163 2.161 0.884 0.874 0.864 
1300 24.545 24.441 24.427 9.178 9.126 9.119 2.270 2.251 2.250 0.919 0.910 0.899 
1400 25.334 25.225 25.210 9.514 9.461 9.454 2.355 2.336 2.334 0.953 0.944 0.933 
1500 26.099 25.987 25.969 9.840 9.785 9.777 2.437 2.418 2.416 0.985 0.976 0.966 
2000 29.631 29.501 29.474 11.327 11.267 11.255 2.812 2.792 2.789 1.134 1.126 1.115 
3000 35.659 35.509 35.458 13.831 13.764 13.742 3.441 3.421 3.416 1.384 1.378 1.366 
4000 40.805 40.649 40.569 15.946 15.877 15.844 3.972 3.952 3.944 1.595 1.590 1.577 
5000 45.372 45.217 45.104 17.812 17.743 17.697 4.440 4.420 4.409 1.782 1.778 1.763 

 

CONCLUSION 
This paper presents a new element for the dynamic analysis of the tension cables, and a numerical 
example is given to study its validity. The results can be obtained as follows. 
(1) The calculation frequency of different cables with degeneration element are basically consistent 
with theoretical and beam element solution. The result from the degeneration element model of 4m 
cable is 0.242% higher than that from the theoretical solution, while 0.234% higher than from the 
beam element model. For the 10m cable, this extension becomes 0.606% and 0.587%. For 40m ca-
ble, it becomes 1.448% and 1.446% respectively. It can be found that this deviation increase with 
the length of the cables. Up to 100m cable, the deviation change into 5.589% and 3.574% respec-
tively. 
(2) Compared with the theoretical solution, the maximum relative error of the numerical results us-
ing beam element is not more than 2.8% in long cables. It might by caused by the effects of sag, 
which has a significant effect when cables become longer. In the basic dynamic theory, this effect is 
neglected in the vibration equation of small deflection beams. 
(3) In the degenerated three-dimensional solid element, the spatial characteristic of the plane beam 
element is expressed by introducing an appropriate penalty coefficient in the elastic matrix, then the 
torsion and warping can be included to satisfy the three-dimensional numerical analysis. As de-
scribed above, the numerical result using the present element is slightly larger than the other two 
methods. The differences was caused by the mesh of the finite element mesh generation. The cable 
section can only be meshed by was meshed by one beam element, but by five or more degenerated 
solid elements. Therefore, the stress produced by the cable gravity can be computed and superim-
posed in the geometrical stiffness matrix using presented model. 
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