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Abstract. Transmission line icing is a serious threat to the security of power system. Risk evaluation 
for icing is the foundation of building ice disaster defense system and ensuring the safety of power 
system. In this paper, the index system of transmission line icing risk assessment was developed in 
consideration of the influence factors. By applying Bayesian inference to ANFIS, the Bayesian 
ANFIS icing risk evaluation model was established and was applied into practice. Experiments 
showed that, the ANFIS system can optimize the parameters of the network by applying Bayesian 
inference and has good learning abilities and adaptabilities. The method is effective and feasible in the 
risk evaluation of transmission line icing. 

Introduction 
With the high frequency of disastrous weather such as global continuous low temperature, rain, snow, 
ice, haze and fog, the grid disasters are aggravating. The damage caused by transmission line icing 
becomes more and more severe. Freeze disaster has become a significant problem of the grid system 
[1], seriously threatening the safe operation of power system [2]. The risk evaluation of icing, line trip 
and insulator flashover is the foundation of establishing ice disaster defense system. In order to reduce 
the lines icing accidents and effectively guarantee the safe operation of the power system, it is 
necessary to establish on-line monitoring and warning system of line icing to report the possible 
freeze disaster risks timely and accurately. So it becomes essential to carry out transmission line icing 
risk evaluation. 

At present, there are mainly three aspects of the research related to transmission line icing risk 
evaluation. The first is the research about the reliability of the power grid operation under freezing 
weather conditions. In the research, the focuses are mainly on the states of the transmission 
components and transmission network failure modes under different climate conditions. Besides, the 
calculation formulas of system failure rate and average interruption duration have been derived [3-5]. 
This aspect is the study of the transmission network during the freezing disasters, with the lack of 
analysis before the freeze disaster. The second is devoted to the study of the risk assessment of 
transmission line icing. There are a few such studies currently. And the majority of the literatures still 
focus on the cost and the economy of the transmission line icing [6], the power system security 
assessment framework [7], the safety assessment under extreme snow and ice disaster [8], and so on, 
which lacks a scientific, practical and comprehensive icing risk assessment model. The third is the 
research of on-line monitoring of transmission lines. Online monitoring can contribute to the on-line 
analysis of line icing state and predicting the safety status of electrical equipment, which is the basis 
of warning grid faults and maintaining the safe and stable operation of power grids. Japanese Koichi 
Nara and other men established the overhead line icing prevention decision-making expert system for 
187kV and 66kV, using the on-line meteorological data such as temperature to judge the current state 
of overhead lines. So the operators can choose how to deal with the line icing, to prevent or to get rid 
of the ice [9]. But the correlative work about the on-line icing risk assessment is seldom inland. 

From the above, we know that currently there is a lack of scientific, practical and comprehensive 
icing risk assessment model to guide the design of transmission lines and the icing emergency 
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management. And the study about the on-line transmission line icing risk assessment is almost blank 
particularly. Therefore, the full use of online monitoring data was made and the intelligent evaluation 
model was combined effectively to evaluate the transmission line icing risk systematically. 

Adaptive Network-based Fuzzy Inference Systems (ANFIS) is the a combination of fuzzy 
inference and neural networks, which not only has the adaptability and learning ability of neural 
network, but also enables the nodes and weights of the neural network to have definitude physical 
meanings. Statistical inference is based on the posterior distribution in Bayesian inference. ANFIS 
based on Bayesian inference can adaptively tweak the regularization parameters to achieve the 
optimal ones by focusing on the probability distribution of the whole parameter space during training 
the neural network. Meanwhile, Bayesian ANFIS has more robust and better generalization capacity 
in theory [10]. 

In this paper, transmission line icing risk evaluation index system was established and icing risk 
level was divided based on the transmission line on-line monitoring data and the comprehensive 
analysis of various icing influence factors such as temperature, humidity, wind speed. Then the 
intelligent Bayesian ANFIS line icing risk evaluation model was obtained by applying Bayesian 
inference to optimize the parameters of ANFIS model. Finally, adapt this model for the regional 
power grid. 

Bayesian ANFIS Icing Risk Evaluation Model 
Basic ANFIS.ANFIS is a system which can be built by self-adaptive modeling based on a large 
sample of data [11]. It assumes a parameterized fuzzy structure firstly and uses the data to train the 
Fuzzy Inference System (FIS) model. Then, according to a selected error criterion, it corrects the 
member function parameters to make the FIS harmonize the training data [12-13]. ANFIS can get rid 
of the condition where the membership functions are designed by relying on the human mind in the 
process of the traditional fuzzy logic reasoning. So it can reduce the error and increasing the system 
efficiency. ANFIS automatically adjusts its variable membership function parameters continually to 
make itself adapt to the best of input and output relationships by self-training and self-learning on the 
basis of the established fuzzy rules. 
Bayesian ANFIS. Regarding the experience and knowledge as a priori information, Bayesian 
inference amends the previous knowledge and the previous distribution continually combined with 
the current samples. So the parameters are more and more precise [10]. The following formula can be 
used. 
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Where ( / )P xθ  indicates the modified probability value after sampling. ( )P θ  indicates cognitive 
probability value before sampling. ( / )P xθ  refers to the result of the adjustment of ( )P θ . 

The objective function in basic ANFIS is usually the likelihood function of the data and the 
regularization corresponds to the priori probability distribution when applying Bayesian inference to 
ANFIS. And all the parameters of the network are regarded as random variables. Then it learns in the 
whole weight space and gets the posterior conditional probability of the parameters based on the 
assumption of prior probability distribution. Finally, it obtains the optimal parameters values based on 
the posterior distribution of Bayesian inference [10]. 

The difference between Bayesian ANFIS and basic ANFIS is that Bayesian ANFIS focuses on the 
probability distribution in the whole parameter space and predicts based on the average of the 
posterior probability distribution. One model corresponds to a point in the parameter space and all 
models correspond to the whole parameter space. So Bayesian ANFIS has more generalization ability 
in theory [10]. 

In general, the error of the typical feed-forward neural network is mean square error. Here DE  is 
computed by 
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Where N is the total number of the samples, ie  is the error. 
In order to modify the error function, the mean square errors of the network weights and the 

thresholds are added [10]. 
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Where α  and β  are regularization parameters. iW  is network weight. 
The weights and thresholds can be smaller by applying the formula (8) to modify the error function, 

which means to make the effective weights and thresholds as small as possible. This is actually 
automatically reducing the size of the network, so as to make the network response smoother and 
reduce over training. 

α  and β  are named as super parameters, controlling the distribution of other parameters (weights 
and thresholds). The size of the super parameter determines the training targets of the neural network 
[10]. If α β≤ , the training target is to reduce the training error of the network. If α β≥ , the training 
aims at making the network response smoother, which means to reduce the number of the effective 
network parameters as possible to make up the large network error. In a practical application, this 
objective needs tradeoffs and minimizing is to reduce the complexity of the network structure when 
reducing the network training error [10]. The conventional regularization methods are always difficult 
to determine the size of the regularization parameters. But Bayesian ANFIS can adaptively adjust the 
size of the regularization parameters in the process of network training and make them optimal [10]. 

Regard α  and β  as the random variables. Based on Bayesian theory, their posterior distributions 
are computed by 

( / , , ) ( , / )( , / , )
( / )
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Assume ( , / )P Mα β  is a wide distribution. Because it is irrelevant to the normalization factor, 
( / )P D M , it is called the significant degree of α  and β . Therefore, to make the posterior 

distribution of α  and β  maximum, the only need is to make the likelihood function, ( / , , )P D Mα β , 
maximum [10]. 

Bayesian focuses on the probability distribution of the weight (threshold) in the whole space. Use 
M to represent the network structure, which means the number of hidden layer neurons. Under the 
condition of the network structure determined, the prior distribution of the weight (the threshold) is 

( / , )P w Mα  without any samples. Where w is the weight (the threshold) vector. And the posterior 
distribution is ( / , , , )P w D Mα β  with the sample date sets, D. Based on the Bayesian, ( / , , , )P w D Mα β  
is computed by 

 
( / , , ) ( / , )( / , , , )

( / , , )
P D w M P w MP w D M

P D M
β α

α β
α β

=                                                                                                   (6) 

The prior distribution is a wide distribution due to low awareness of the distribution of the weight 
without any data, while the posterior distribution is compact with data. That is, only the weight in a 
very small range may be in line with the network mapping. In order to obtain the posterior distribution, 
the prior distribution and the likelihood function should be known at first. 

According to the literature [10], the prior distribution of the network weight obeys Gauss 
distribution. 
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Transmission Line Icing Risk Evaluation Index System 
Transmission Line Icing Risk Evaluation Index System.The main factors of transmission line 
icing can be divided into three groups: meteorological factors, environmental factors and line 
parameters.  

Different conditions of the factors determine the different types, degree and the risk levels of icing. 
According to the factors, the icing risk evaluation index system is established, as shown in Table 1 
[14]. 

Table 1 Icing Risk Evaluation Index System 

 First class indexes Second class indexes  

Icing Risk 
Evaluation Index 

System 

Meteorological factors 

Temperature X11 
Humidity X12 

Wind speed X13 
Wind direction X14 

Environmental factors 
Altitude X21 
Terrain X22 
Forest X23 

Line parameters 

Line route X31 
Conductor suspension height X32 

Wire rigidity X33 
Wire diameter X34 
Load current X35 

Transmission Line Icing Risk Level.In this paper, the line icing thickness is adopted as the standard 
of the line icing risk level, as shown in Table 2 [15]. 

Table 2 Icing Risk Level 
Icing 

thickness
（mm） 

Icing risk level Degree of 
icing risk 

0 1 None 
0~10 2 Light 
10~20 3 Medium 
20~30 4 Serious 

30above 5 Super serious 
The icing thickness is the difference the wire icing diameter (the data reported from observation 

station) and the wine diameter and shown in millimeter. 

Empirical Analysis 
The data monitored at Zhongkuang Line No. 55 in Hunan Province during January and February in 

2015 were selected in this paper. In order to ensure the comprehensiveness of all the variables, 126 
samples were screened. And 106 of them were used as training samples, accounting for 84.1% of the 
total samples, while 20 samples as testing samples, accounting for 15.9%. Besides, the temperature, 
humidity, wind speed and icing thickness of all the samples are shown in Figure 1. 

Firstly, the original data were normalized by 
max min

n
max min

2

2

x xx
x x x

+
−

=
−

                                                                                                                                     (7) 

Where nx  is the normalized. x  is the original. maxx  is the maximum of all and minx  is the 
minimum of all. 
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The relative error (RE), the root mean square error (RMSE) and the mean absolute percentage error 
(MAPE) were also adopted to evaluate the results of the algorithm. 
Then, in order to make a comparison, the basic ANFIS model and the BP neural network model were 
always applied to this paper to test the data above. The parameter values were set as follow. 
 

 

 

 

 

 

Figure 1 The Temperature, Humidity, Wind speed and Icing thickness of All Samples 
① Bayesian ANFIS 
The ranges of input variable x and output variable y were both [-1,1]. Each variable only took 2 

values in the fuzzy layer on the premise of meeting certain accuracy, so 256 rules were set. The 
generalized bell-type membership function was adopted as input fuzzy membership function because 
it can reflect the reality well. And the hybrid algorithm was chosen in the Bayesian ANFIS training, 
while the error accuracy was set to 0.001, the training number was 500. 
②Basic ANFIS 
The parameter values were set as the Bayesian ANFIS in basic ANFIS. The ranges of input 

variable x and output variable y were both [-1,1]. Each variable only took 2 values in the fuzzy layer 
on the premise of meeting certain accuracy, so 256 rules were set. The generalized bell-type 
membership function was adopted as input fuzzy membership function. And the hybrid algorithm was 
chosen in the basic ANFIS training, while the error accuracy was set to 0.001, the training number was 
500. 
③ BP neural network 
The numbers of node in input layer, hidden layer and output layer of BP neural network were 12, 8, 

1. The maximum training times was 500; the learning rate was 0.01; the precision was 0.001; the 
frequency was 20; the additional momentum factor was 0.95; the minimum performance gradient was 
1e-6; the maximum failure number was 5. And the traingd function was chosen as training function. 

Next, the normalized data were input to the various models above to get the results by MATLAB, 
as shown in Table 4. 

Figure 2 is the training iteration root mean square error of Bayesian ANFIS, basic ANFIS and BP 
neural network. From the figure, the iterations of Bayesian ANFIS, basic ANFIS and BP neural 
network stopped at 124 times, 201 times and 222 times, while the error precision reached 0.00092, 
0.00099 and 0.00097 (<0.001). It can be seen that the Bayesian ANFIS algorithm can converge 
quickly and meet the expected results in a short time. It also can be inferred that the nonlinear fitting 
ability of the ANFIS algorithm was improved by optimizing the weights based on Bayesian inference, 
so as the generalization ability. 
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Figure 2 The Training Error Iteration of Each Algorithm 

 

Figure 3 The Relative Error of Each Algorithm 
Table 3 The Comparison of the Predicting Values and the True Values 

Testing  
samples 

True  
value 

Actual 
risk 
level 

Risk 
level 

evaluated 
by 

Bayesian 
ANFIS 

Bayesian ANFIS Basic ANFIS BP neural network 

Predicting  
value 

Relative  
error 

Predicting  
value 

Relative  
error 

Predicting  
value 

Relative  
error 

1 0.59  2 2 0.60  2.07% 0.56  -3.69% 0.55  -6.11% 
2 5.15  2 2 5.23  1.53% 5.04  -2.15% 5.44  5.59% 
3 5.27  2 2 5.19  -1.47% 5.49  4.21% 5.58  5.91% 
4 6.51  2 2 6.59  1.15% 6.33  -2.87% 6.11  -6.20% 
5 7.40  2 2 7.48  1.12% 7.64  3.28% 7.23  -2.26% 
6 8.19  2 2 8.07  -1.51% 8.11  -1.04% 8.42  2.82% 
7 8.89  2 2 9.11  2.47% 8.52  -4.18% 8.53  -4.03% 
8 10.20  3 3 10.28  0.77% 9.99  -2.06% 10.47  2.59% 
9 11.70  3 3 11.80  0.82% 11.99  2.44% 11.25  -3.92% 

10 13.50  3 3 13.42  -0.60% 14.10  4.46% 13.92  3.09% 
11 14.80  3 3 14.53  -1.83% 14.99  1.31% 15.41  4.14% 
12 15.35  3 3 15.49  0.91% 15.06  -1.91% 14.67  -4.44% 
13 17.78  3 3 17.55  -1.29% 18.30  2.93% 18.54  4.28% 
14 18.40  3 3 18.25  -0.80% 18.21  -1.04% 18.03  -2.02% 
15 22.03  4 4 22.12  0.41% 21.40  -2.85% 22.84  3.68% 
16 32.51  5 5 32.08  -1.34% 31.71  -2.46% 31.01  -4.63% 
17 33.58  5 5 33.69  0.32% 34.67  3.24% 34.91  3.96% 
18 38.19  5 5 38.88  1.80% 39.12  2.43% 39.21  2.66% 
19 39.89  5 5 39.65  -0.60% 39.27  -1.57% 38.52  -3.44% 
20 49.20  5 5 48.70  -1.03% 48.31  -1.82% 50.50  2.62% 

RMSE     1.31%  2.78%  4.11% 
MAPE     1.19%  2.60%  3.92% 
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Table 3 is the prediction results of the 3 algorithms. Figure 3 is the testing error of the 3 algorithms. 
Compare the testing results of Bayesian ANFIS, basic ANFIS and BP neural network and it can be 
seen that the maximum gap between the predicting value of Bayesian ANFIS and the actual value is 
0.69mm, which is less than the maximum gap of basic ANFIS, 1.09mm and the maximum gap of BP 
neural network, 1.50mm. And the minimum gap between the predicting value of Bayesian ANFIS and 
the actual value is 0.01mm, which is also less than that of basic ANFIS, 0.02mm and that of BP neural 
network, 0.04mm. It shows that the Bayesian ANFIS model has more stable predicting results than 
the basic ANFIS model and the BP neural network model. 

The maximum values of the absolute relative error of Bayesian ANFIS, basic ANFIS and BP 
neural network were 2.47%, 4.46%, and 6.20%, while the minimum value were 0.32%, 1.04%, 2.02%. 
It showed that the Bayesian ANFIS model had higher accuracy, more accurate predictions and more 
robustness. The root mean square error is to measure the variation between the predicting values and 
the true values. As seen in Table 4, the root mean square error values of Bayesian ANFIS, basic 
ANFIS and BP neural network were 1.31%, 2.78%, and 4.11%, which indicated that the difference 
between the predicting value of the Bayesian ANFIS model and the true value was the least. So the 
Bayesian ANFIS model obtained the best prediction effect and the basic ANFIS model, the BP neural 
network model follow in turn. In addition, it can be seen that the mean absolute percentage error 
values of the Bayesian ANFIS algorithm was 1.19%, which was less than that of the basic ANFIS 
algorithm, 2.60%, and 3.92% of the BP neural network algorithm. It indicated that the Bayesian 
ANFIS model had the highest overall prediction accuracy and the strongest nonlinearity mapping 
ability and was more suitable for the evaluation of transmission line icing risk.  

In the icing risk evaluation results of Bayesian ANFIS, there were 7 samples in the risk level 2 and 
they were samples 1-7; there were also 7 samples in the risk level 3 and they were samples 8-14; there 
was only one sample in the risk level 4 and it was sample 15; there were 5 samples in the risk level 5 
and they were samples 16-20. From the results, the accuracy of transmission line icing risk evaluation 
by Bayesian ANFIS was 100%. 

Conclusions 
First, the transmission line icing risk evaluation index system was established according to the 
influence factors of icing in this paper. Then the Bayesian ANFIS icing risk evaluation model was 
built by applying Bayesian inference to the ANFIS algorithm to evaluate the risk of transmission line 
icing. This paper selected Hunan Province line, Zhongkuang line 55, as the case to test and verify the 
Bayesian ANFIS model. The results showed that Bayesian ANFIS system could optimize the network 
parameters continually and obtained good learning ability and adaptability. And the comparison with 
the basic ANFIS algorithm and the BP neural network algorithm indicated that the Bayesian ANFIS 
model had a higher prediction accuracy, stronger robustness and better evaluation effect of the 
transmission line icing risk. 
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