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Abstract. The motion of many solid-gas two-phase flows is often characterized by the Boltzmann 
equation. In order to simplify the Boltzmann equation, the one-dimensional Bharnagar-Gross-Krook 
(BGK) model is applied to replace the collision term while reserving the convective-diffusion term. 
Then, the homotopy perturbation method (HPM) is utilized to solve the simplified Boltzmann equation 
to obtain the approximate analytical solution. The results show that the analytical solution satisfies all 
the constraint conditions, and its structure is in accord with the structure of the solution that is obtained 
by traditional Chapman-Enskog method, and moreover, the solution process of HPM is much more 
simple and convenient. 

Introduction 
The scientific development of two-phase flow theory begins in the 1950s. There are two theories for 
studying the two-phase flow; one is the traditional macroscopic continuum theory, the other is the 
rapid developing microcosmic kinetics theory [1]. Then the microcosmic kinetics theory can be 
classified into two types, one is the kinetics method based on the Boltzmann equation, the other is the 
method of probability density function (PDF) transport equation based on single particle motion 
equation [2,3]. 

Macroscopic continuum theory is the principal theory for the study of two-phase flow, and it 
requires any micro unit containing numberless particles [4]. Generally, if the molecule size of the fluid 
phase is very small, we can apply continuum theory to study it, but for the larger solid particle, it is 
unable to apply continuum theory to describe the inter-collision of particles [5]. Therefore, the solid 
particle of solid-gas two-phase flow can be regarded as the molecule in gas kinetic theory, and its 
motion can be described by the Boltzmann equation. For instance, the dry sturzstrom of high-speed 
distant landslide that is generally caused by strong earthquake can be regarded as a solid-gas two-phase 
flow, and the motion of its solid sturzstrom particles can be described by the Boltzmann equation. The 
Boltzmann equation is as follows: 
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X ff f fv
t x v t

∂ ⋅∂ ∂ ∂ + ⋅ + =  ∂ ∂ ∂ ∂ 
.                                                                                                     (1) 

where ( ), ,i if f x v t=  denotes the velocity distribution function of single particle; ix  denotes the 
space coordinate; iv  denotes the velocity of particle; t  denotes the time coordinate; iX  denotes the 
external force acting on the particles of unit mass, and it depends on iv ; if only the gravity act on the 

particle, iX  is namely gravitational acceleration gi , and doesn’t depend on iv ;
coll
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∂ 
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denotes the 

change rate of distribution function cased by inter-collision of particles. 
Because the Boltzmann equation is a complex differential and integral nonlinear equation, it is very 

hard to solve it, and it is also a frontier subject in recent years. The main methods for solving the 
Boltzmann equation are variation method, Chapm-Enskog perturbation method and Grad-13 moments 
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method. Recently, the researches of the Boltzmann equation become diversification and perfection. 
Huang and Ding [6] solved the Boltzmann equation with small Knudsen parameter by singular 
perturbation method, and the regular solution, initial layer solution and boundary layer solution were 
obtained. Zhang et al. [7] applied homotopy analysis method to solve the Boltzmann equation of dilute 
solid-liquid two-phase flows and the first-order approximate solution was obtained. These researches 
advanced the proceeding for solving the Boltzmann equation. Moreover, Monte Carlo method, test 
particle method, molecule kinetics method, direct modeling Monte Carlo method, energy method and 
so on dramatically advanced the numerical modeling solving of the Boltzmann equation [8]. But all of 
these methods need some additional optimization conditions, and its derivation process is very 
complex. The simple and clear analytic solution of original Boltzmann equation has not been obtained. 

The homotopy perturbation method (HPM) introduced by He [9] is an effective method to solve 
strong nonlinear problems. It is widely applied to mathematics, mechanics, economics, and biology and 
so on [10-12]. This method does not depend on the small parameter. We can obtain the solution with 
enough precision regardless of the nonlinear equation containing a small parameter. Therefore, we 
solved the Boltzmann Equation with one-dimensional BGK models and the first-order approximate 
analytic solution was obtained in this paper. 

The HPM solution for the Boltzmann equation with BGK model 
Equation (1) was widely applied to describe the rapid granular flow, solid-gas two-phase flow and 
solid-liquid two-phase flow. Wang and Ni [1] neglected the collision term and time-dependent term to 
simplify the Boltzmann equation. We reserve the convective-diffusion term and replace the collision 
term by the BGK model in the Boltzmann equation to simplify it, and the simplified Boltzmann 
equation is 

( )(0)ˆˆf f fv X v f f
t x v

∂ ∂ ∂
+ ⋅ + = − −

∂ ∂ ∂
.                                                                                                                        (2) 

where
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denotes local Maxwell velocity distribution function; v̂ denotes 

collision frequency; v v v′ = − denotes peculiar velocity; v denotes the velocity of particle; 

v denotes the average velocity of particle; C denotes the volume specific concentration of particle; 

T denotes the temperature of particle. C , v and T depend on x and t . 
Assume that Eq. (2) is satisfied by particles along the x-direction. Namely, v and x  are the component 
of spatial velocity vector and position vector respectively, and X is constant, and 

C fdv
+∞

−∞
′= ∫ , 1  v fv d v

C
+∞

−∞
′ ′= ∫ , 2CT fv dv

+∞

−∞
′ ′= ∫ . 

From v v v′ = − , we can obtain dv dv′ = . Then we use t , x  and v′  to express Eq. (2) and obtain:  

( ) ( ) ( )(0)ˆˆ
v vf f fv v v v X v f f

t x t x v
∂ ∂ ∂ ∂ ∂′ ′+ + − + + − = − −  ′∂ ∂ ∂ ∂ ∂ 

.                                                      

(3) 

According to HPM, we determine the nonlinear operator for Eq. (3), which is 
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( ) ( ) ( ) ( )(0)ˆˆ, ,
v vf f fN f x v t v v X v f f v v

t t x v x
∂ ∂ ∂ ∂ ∂′ ′ ′= − + + − + − + +     ′∂ ∂ ∂ ∂ ∂ 

.                        

(4) 

Assume that the assistant linear operator for Eq. (3) is [ ]L f , in order to ensure the dimensional 

accordance of the homotopy transformational equation and let the solution of [ ] 0L f =  contain the 

basic structure ( )2exp 2v T′− , the determined assistant linear operator for Eq. (3) is 

( )
2

0 2, , f fL f x v t t T v f
v v

 ∂ ∂′ ′= + +     ′ ′∂ ∂ 
.                                                                                                             (5) 

where 0t  is a undetermined constant, and its dimension is 1t− . 
According to HPM, we construct the following homotopy 

( ) ( ) ( ) ( ) [ ]0, 1 0H F p p L F L f p N F= − − − ⋅ =   .                                                                                        (6) 

where ( )0,1p ∈  is an embedding parameter; ( ), , ;F F x v t p′=  is a unknown function; 

( )0 0 , ,f f x v t′=  is an initial approximate solution of Eq. (3). The following function is chosen as the 
initial approximate solution of Eq. (3) 

( )
( )

2
(0)

0 0 1 2
ˆ, , exp

22
C vf f x v t f

TTπ

′ ′= = = − 
 

.                                                                                                 (7) 

By expanding Eq. (6), the following equation is obtained  
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(8) 

The imbedding parameter p is used as a ‘‘small parameter’’, and the solution of Eq. (8) can be 
expressed as: 

2
0 1 2F F F p F p= + ⋅ + ⋅ +L .                                                                                                                                    (9) 

By substituting Eq. (9) into Eq. (8) and comparing the coefficient of each power of p, the following 
equations are obtained  

2 2
0 0 0 0 0

0 0 0 02 2:   0F F f fp t T v F t T v f
v v v v

   ∂ ∂ ∂ ∂′ ′+ + − + + =   ′ ′ ′ ′∂ ∂ ∂ ∂   
.                                                                  (10) 
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.                         (11) 

From Eqs. (10) and (7), we know 

( )

2
(0)

0 0 1 2
ˆ exp

22
C vF f f

TTπ

′ 
= = = − 

 
.                                                                                                              (12) 

Then, Eq. (11) can be simplified as 

( ) ( )
2

0 0 01 1
0 12 0

v vf f fF Ft T v F v v v v X
v v t x t x v

 ∂ ∂   ∂ ∂ ∂∂ ∂ ′ ′ ′+ + − + + − + + − =   ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂     
.                 (13) 

By computing the mass, momentum and energy equation for Eq. (3), the following equations are 
got  

vC CC v
t x x

∂∂ ∂
= − −

∂ ∂ ∂
.                                                                                                                                         (14) 

v vT C TX v
t C x x x

∂ ∂∂ ∂
= − − −

∂ ∂ ∂ ∂
.                                                                                                                    (15) 

2
vT TT v

t x x
∂∂ ∂

= − −
∂ ∂ ∂

.                                                                                                                   (16) 

and 

0 0 0 0vf f f fC T
t C t v t T t

∂∂ ∂ ∂ ∂∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
.                                                                                                               (17) 

0 0 0 0vf f f fC T
x C x v x T x

∂∂ ∂ ∂ ∂∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
.                                                                                                               (18) 

From Eqs. (14)-(18), we obtain 

( ) ( )

( )

(0) (0) (0)
0 0 0

(0) (0) (0) (0) 2
(0)

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ 3 ˆ
2 2

v v vf f f f C f T fv v v v X
t x t x v C t T t v t

vf f C f T f v v Tv v X f
v x C x T x v T T x

   ∂ ∂  ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ′ ′+ + − + + − = + −    ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
  ∂ ′ ′ ∂ ∂ ∂ ∂ ∂ ∂ ∂′+ + − + + + = −     ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

.      (19) 

By substitution of Eq. (19) into Eq. (13), the following equation is got  

2 2
(0)1 1

0 12

3 ˆ 0
2 2

F F v v Tt T v F f
v v T T x

′ ′   ∂ ∂ ∂′+ + − − =   ′ ′∂ ∂ ∂  
.                                                                                      (20) 

By solving Eq. (20), we obtain 
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.                                                                                                       (21) 

Therefore, the first-order approximate solution of Eq. (6) is 

2
(0) (0)

0 1
0

ˆ ˆ 1
2 3
v v TF F F p f p f
Tt T x
′ ′  ∂

= + ⋅ = + ⋅ −  ∂ 
.                                                                       (22) 

According to the basic idea of HPM and Eq. (22), we obtain 

( )
2

(0)

1
0

ˆ, , lim 1  1
2 3p

v v Tf f x v t F f
Tt T x→

 ′ ′  ∂′= = = + −   ∂  
.                                                                               (23) 

Formula (23) is the HPM solution of Boltzman equation with one-dimensional BGK model. 

Discussion 
By applying homotopy perturbation method (HPM), we obtained the first-order approximate solution 
(expression (23)) of Blotzmann equation with one -dimensional BGK model (Eq. (3)). By substitution 
of these solutions into the constraint conditions, the accuracy, reliability and rationality of the proposed 
solutions are verified. 

For the first-order approximate solution of Eq. (3), namely expression (23), from the definition of 
C , v  and T , and the expression of ( )0f̂  we can obtain: 

0C fdv f dv
+∞ +∞

−∞ −∞
′ ′= =∫ ∫ , 0Cv fv dv f v dv

+∞ +∞

−∞ −∞
′ ′ ′ ′= =∫ ∫ , 2 2

0CT fv dv f v dv
+∞ +∞

−∞ −∞
′ ′ ′ ′= =∫ ∫ . 

Therefore, they require: 

2
1 1 10,  0,  0F dv F v dv F v dv

+∞ +∞ +∞

−∞ −∞ −∞
′ ′ ′ ′ ′= = =∫ ∫ ∫ .                                                                                               (24) 

It is easy to verify that formula (21) satisfies all the constraint conditions in expression (24), hence the 
first-order approximate solution of Eq. (3), namely expression (23) satisfies the quality, momentum 
and energy conservation equations. 

Conclusions 
According to the kinetics theory, we applied the Boltzmann equation to describe the motion of 
particles in solid-gas two-phase flow. Firstly, we considered the simple situation of the Boltzmann 
equation with one-dimensional BGK model and applied homotopy perturbation method (HPM) to 
solve it. Through selecting Maxwell velocity distribution function as the initial approximate solution, 
and determining the adequate assistant linear operator, we obtained the first-order approximate 
analytic solution of the Boltzmann equation with one-dimensional BGK model. Through analyzing, it is 
proved that the obtained analytical solutions satisfy all the constraint conditions, and the structure of 
the obtained solutions is in accord with the structure of the solution that is obtained by traditional 
Chapman-Enskog method. This preliminarily shows the effectiveness and rapidness of HPM to solve 
the Boltzmann equation, and provide an effective method for solving other nonlinear fluid mechanic 
problems. The results obtained herein provide some theoretical basis for the further study of dynamic 
model of solid-gas two-phase flows, such as the sturzstrom of high-speed distant landslide caused by 
microseism and the sand storm caused by strong breeze. 
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