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Abstract.  In this paper, three fatigue models are employed and proposed for modeling the fatigue life 
of different fiber-reinforced composite material systems. In order to identify the unknown parameters 
in these models, Genetic Algorithm (GA) is used for estimating its values. This technique is a 
stochastic process that leads straight to different S-N curves that predicts the trend of the 
experimental data without the need for any assumptions. The calculation results show that these three 
models, especially the nonlinear regression model, whose parameters are assigned by using GA are 
all satisfied with the experimental data, and the average value of RMSE is below 0.1. The method of 
fatigue damage simulation presented should have a very good application prospect. 

Introduction 
Composite materials show high specific stiffness and strength, so it is widely used in automotive, 

aerospace and civil engineering applications up to now. Some of these applications involve 
components that are yielded by cyclic loading. As a result, fatigue becomes one of the most important 
research objects that need to be given close attention to by the designer. In general, the S-N diagram is 
frequently used in modeling fatigue life of composite materials, which is extremely explicit and 
straightforward way to represent experimental fatigue data. A number of different types of S-N 
curves have been presented in the literature, the most famous being the semi-logarithmic and the 
logarithmic relations. A new linear damage summation model was first used to evaluate the fatigue 
behavior of composite materials by Nicholas et al[1]. In another work by Mahadevan[2], a damage 
accumulation model is presented to describe the degradation of composite materials. Recently 
methods of intelligent algorithms have been employed for interpretation of fatigue data of composite 
materials. They can offer a means of dealing with many multivariate problems for which an accurate 
analytical model does not exist or would be very difficult to develop. For example, aritificial neural 
networks (ANN) have proved to be very good tools to simulate the fatigue life of composite 
materials[3-5]. Genetic programming has been successfully used as a tool for modeling the fatigue 
behavior, as presented by Anastasios et al [6]. This paper aims to develop a versatile method to explain 
the fatigue behavior of FRP composite materials. And its effectiveness is evaluated between different 
models, such as linear regression and accumulation models that are commonly used for this type of 
material analysis.  

Fatigue of composite material 
Fatigue is the main failure mechanism for structures under cyclic loading. Many experimental 

studies have been carried out for obtaining the fatigue properties of different types of composite 
materials. Based on these results, numerous fatigue models have been elicited to describe the 
relationship between stress and fatigue life. Herein we mainly concern with three models which are 
linear regression model [7] , nonlinear regression model (proposed in this paper) and damage 
accumulation model [2] respectively.  
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Linear regression model. 
Primitively semi-logarithmic equation is applied here to fit the S-N curve. Then a linear 

relationship between the maximum stress S and the logarithm of N, the number of load cycles of 
fatigue failure, is given as  

( )S aLog N b= + .           (1) 
where a and b  are parameters related to material properties. 

In the previous equation, the parameters should be determined and then fatigue damage will be 
predicted after a given number of cycles with damage accumulation model.  

Nonlinear regression model. 
In this paper, we also design a new model which named as nonlinear or polynomial model on the 

basis of linear regression model mentioned before. A nonlinear relationship between the maximum 
stress S and the logarithm of N, the number of load cycles of fatigue failure, is expressed by 

2[ ( )] ( )S a Log N b Log N c= + + .          (2) 
where there are three unknown parameters in Eq.(2).  Because this model is much more complex and 
flexible than Eq.(1), it should be more accurate in simulating the fatigue property of composite 
materials, also which is verified by the following simulation examples. 

Damage accumulation model. 
Mahadevan[2] proposed a versatile damage accumulation model which can accurately explains the 

rapid damage growth during both the early and final stages of life. The proposed function is of the 
form 

( ) (1 )( )a bn nS q q
N N

= + -  .          (3) 

where S is the normalized accumulated damage; q , a and b are material dependent parameters; n is the 
number of applied loading cycles; N is the fatigue life at the corresponding applied load level. 
The parameters in Eq.(3) are defined in terms of fatigue life of interest as 

0

0

( )

1 (1 )( )

NA
Nq

NA
N

a

a
=

- -
 .          (4) 

0

( )Na
N

b=   .          (5) 

0

( )Nb
N

g=  .           (6) 

where 0N is the reference fatigue life; the parameters a , b and g are material dependent constant value. 
Regression analysis can be carried out to design the value of q , a and b , which can be calculated with 
Eqs.(4)-(6) in a general way. 

Parameter identification for Fatigue model  
As a powerful computational search and optimization tool, GA makes the analogy that survival of 

the fittest individual to its environment is akin to an optimal design. On account of the multi-agent 
parallelized stochastic search capability of the GA, this technique can be employed herein for 
modeling the fatigue behavior of composite materials. The process is introduced as follows: At first, 
fatigue life cycles from experiment were collected, they were incorporated into the fatigue model 
formulation. Then, the simulated stress was figured out. During the phase of the GA, the objective 
function was defined as the sum of differences between the stress of experimental results and the 
simulated results obtained by GA. Through appropriate iterative circulation, the best individual 
(parameters) will be eventually obtained. 

In this study, a computationally-efficient implementation of GA is improved with the appropriate 
design of chromosome structure and fitness function.  
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Chromosome structure. 
Chromosome structure is largely dependent on the nature of the problem itself. Take Damage 

accumulation model for example, there are three parameters to be estimated in Eq.(3), that 
are q , a and b respectively, hence the chromosome representation can be defined as 

{ , , }i i i iq a bQ = , 1, ,i N…= .                     (7) 
where N  is maximum number of chromosomes, i is the i th individual in chromosome. 

Fitness function 
Each chromosome is individually going through the same evaluating exercise. A fitness function is 

a measuring mechanism that is applied to measure the status of a chromosome. Design principle of 
the fitness function is to make the value of it greater than zero and relatively moderate. In view of this, 
the root-mean-square error (RMSE) between the simulated and experimental data is taken as the 
fitness function, which is given by 

2
, exp,

1

1 ( )
n

i sim i i
i

Fit F F
n =

= -å  .         (8) 

where n  is the number of data points, and each simulation/experiment data point is indexed by 

subscript .sim i / exp, i .In order to facilitate the fitness function expression, the RMSE is called “ error”  
for short in the following paragraphs. The rest parameter’s design is revealed in Table 1. 

Table 1.  Parameter design of GA 

Gene type Population Selection Crossover rate Mutation 
Rate 

Termination 
rule 

Binary code 60 Roulette 0.85 0.01 
Terminate when 
RMSE≥ 0.08 

Experimental data and curve fitting 
In this paper, four different composite material systems tested under different fatigue loading 

conditions of constant amplitude have been modeled using the aforementioned methods and results 
are compared. 

No.1 Material [8]: GFRP multidirectional specimens cut at 15o off-axis from a laminate with the 
stacking sequence: {0/( ±45)2/0}T.    

No.2 Material [9]: GFRP multidirectional laminate with a stacking sequence of {90/0/( ±45)/0}C. 
The fatigue data is from tests at compressive-compressive cycle loading. 

No.3 Material [10]: Multidirectional glass-epoxy laminate with a stacking sequence:  
{( ±45/0)4/±45]T.  
No.4 Material [11]: Glass epoxy (S2/5208) unidirectional laminate comprised of eight layers, 

{0}8. 
Noting the expression in brackets “{}”, for example, "0/( ±45)2/0"  represents that the material is 

with fibers at 0o direction and two stitched layers with fibers in both 45o and-45o directions. Also the 
subscript of “C” or “T” means that the fatigue data is from tests at tension-tension or 
compression-compression cycle loading. In the present study, the idea of modeling fatigue life with 
GA is applied on the four data sets.  Fatigue data is considered as pairs of maximum cyclic stress and 
the corresponding cycles to failure. In order to unify the maximum stress in an appropriate range from 
0 to 1, the stress data is divided by its corresponding maximum stress value. These divided stress 
values are then called normalized stress in the following. 

The fatigue data are simulated by three preceding models, and its parameters of the proposed 
models are identified by GA. Firstly the accuracy and efficiency of the GA should be tested .Taking 
the example of parameter identification of nonlinear model when using No.1 material's experimental 
data, the optimization process of GA in Fig.1 indicates an approximate descending function including 
the minimum and average "error". And only within 35 generations the RMSE reaches the lowest 
value that is 0.0349. It illustrates the GA is enough efficient with high precision.  
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The identified parameters by GA are determined according to the directives of each of the 
proposed processes, which are tabulated in Table 2.  In order to analyze all available data with all 
methods, the error comparisons are performed for the linear, nonlinear and accumulate models (see 
Table 3).  Based on the comparison, it is found that the "error" results derived from nonlinear model is 
the most accurate than the other methods illustrating that the parameters in this model do not have its 
physical meaning, but it is more practical and effective than the other methods. 

   
   Fig.1. Optimization process of GA                                  Fig.2. Simulation by linear model 

   
     Fig.3. Simulation by nonlinear model                                Fig.4. Simulation by accumulate model    

Table 2. Calculated fatigue parameters 

Model →  Linear model Nonlinear model Accumulate model 
Materia↓  a b a b c q a b 

Mat 1 -0.130 1.466 0.021 -0.351 2.021 0.541 -0.082 1.936 
Mat 2 -0.084 1.1387 0.009 -0.164 1.315 0.503 -0.064 1.063 
Mat 3 -0.123 1.219 0.003 -0.162 1.330 0.389 -0.085 10.000 
Mat 4 -0.203 1.383 0.002 -0.210 1.373 0.180 -0.160 -1.624 

Table 3 Error comparison with different models 

Error →  RMSE 
Model ↓  Mat 1 Mat 2 Mat 3 Mat 4 Average 

Linear model 0.0438 0.0458 0.0684 0.0753 0.0583 
Nonlinear model 0.0349 0.0383 0.0680 0.0731 0.0536 

Accumulate model 0.0419 0.0630 0.0865 0.0485 0.0600 

  

Predicted S-N curves from all the available methods are presented in Figs.2-4. It can be concluded 
that, although based on different approaches, generally speaking all fatigue models have the 
capability of adequately representing the fatigue properties of the selected experimental data. Herein 
GA predictions seem to compare favorably with those produced by fatigue models. The simulation 
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results prove it superior as it can follow the real trend of the experimental data, without the constraints 
of a specific equation type. 

Conclusions 
 GA has been verified to be an extraordinary powerful tool for modeling the behavior of composite 

specimens subjected to cyclic constant amplitude loading. It can be employed to simulate the fatigue 
life of different composite material systems. Its unique advantage is that modeling fatigue life by 
using GA does not need any additional assumptions and the predicted S-N curves do not follow any 
specific mathematical form. In addition, by comparing the results from linear, nonlinear regression 
models and damage accumulation model, the nonlinear regression model is the most accurate and 
effective one which should be used more widely. So it would be a very bright prospect of nonlinear 
regression model combined with GA for predicting fatigue life of composite material. 
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