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Abstract—In this paper, we investigate the low-rank tensor 

completion problem, in which we wish to estimate missing values 

of tensors from incomplete samples its entries. In real world, the 

low-rank tensor can be seen everywhere and the exact rank of it 

is often known. Based on the fact that singular values before the 

target rank does not affect rank minimization of tensors, we 

propose low rank tensor completion via partial sum minimization 

of singular values algorithm(PSSV-LRTC). Some experiments 

are performed on both synthetic data and real applications; all 

results show that our algorithm has a higher precision and 

convergence rate than previous work. 

Keywords—tensor completion; matrix completion; nuclear 

norm minimization; alternating direction method of multipliers 

I.  INTRODUCTION  

Low rank matrix completion [1]-[3] mainly deals with 
estimating missing information from the incomplete 
observations of a data matrix. The problem has triggered wide 
attention and has various applications in the industrial field, 
such as image inpainting [4], [5], Netflix competition [6], High 
Dynamic Range [7]. We not only need to estimate the missing 
values, and more important is to recover underlying low rank 
structure of the interested matrix. The key to solve this problem 
is how to establish the relationship between the observed value 
and unknown elements. The traditional methods [8]-[10] 
assume that the missing values are only related to its neighbors 
and ignore the correlation of the remaining points, so that it 
can’t capture the global information. Just now, the rank 
minimization is put forward to overcome this disadvantage. So, 
the low rank matrix completion problem can be formulated as 
follows: 
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where L , nm
O  are a low rank matrix to be reconstructed 

and an observation matrix, respectively.  is the support set of 

the observed entries. However,  rank  is a nonconvex and 

nonsmooth function, so the problem (1) is a NP-hard problem 
that can’t be effectively solved in practice. As we known, 

although, the nuclear norm 
*

 is not a best approximation of 

the rank function; it is a convex relaxation of the optimization 
(1). Therefore, some scholars [1], [11], [12] have investigated 
the following convex optimization model: 
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where   i
i LL   and  Li  is the ith largest singular 

value of L . In practical application, we often known some 
prior information about the rank of L , for instance, 

  1Lrank  for background subtraction,   3Lrank  for 

photometric stereo. In 2015, Tae-Hyun Oh, Yu-Wing Tai et al. 

[13] noticed the major shortcoming of using 
*

 to 

approximate  rank  is that the nuclear norm minimizes not 

only the rank of  L , but also the variance of L  by 
simultaneously minimizing all the singular values of L  
including the singular values within the target rank. Therefore, 
they put forward the partial sum minimization of singular 

values(PSSV), that is using 
rp

L  to approximate  rank  to 

take full advantage of the prior information, where 
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LL   and r  is the target rank of L . 

Innovatively, we apply this technique to the matrix completion 
and form the following model: 
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When the number of observation in O  is very sufficient, 

the singular value thresholding algorithm(SVT), the fixed-point 
shrinkage algorithm(FPC), and the accelerated proximal 
gradient algorithm(APC) et al. [14]-[16] can well reconstruct 
the unknown matrix based on the model (2). Although the 
problem (3) is nonconvex, when the number of observation in 

O  is deficient, the method (3) can lead to a higher success 

rate than the model (2) [13]. 

In recent years, with the development of computer 
technology, data collection becomes much easier. But the 
dimension of the collected data is growing geometrically, such 
as aerospace data, biology data, image data and so on. Owing 
to the abundant information from these data named higher-
order tensors, the research of higher-order tensors have great 
significance. How to deal with higher-order tensors effectively 
is an enormous challenge because of "the curse of 
dimensionality". One of the most basic ideas is to reduce the 
dimension, namely, higher-order tensors are processed as a 1D 
signal or a 2D matrix. This processing method can not capture 
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the structural information of higher-order tensors, which is not 
conducive to our further analysis. To overcome this problem, 
we establish a new model based on the partial sum 
minimization of singular values (PSSV) for tensor completion 
that is an extension of matrix completion in next section. 

The paper is organized as follows. In Section II, we 
introduce some notations and give our problem formulation 
and its algorithm. In Section III, we perform a series of 
experiments based on the proposed algorithm in Section II. 
Finally, the conclusion is addressed in section IV.  

II. TENSOR COMPLETION BASED ON PSSV  

In order to facilitate the analysis, we firstly provide a brief 
notational summary following Kolda and Bader’s review on 
tensor decompositions [17]. 

A. Notation 

Let an N-order tensor as NIII 


21  and iNinil 1  

represent each element of  , where NIin 1 . The order N 

of a tensor is the number of dimensions, also known as ways or 
modes. A first-order tensor is a vector and a second-order 
tensor is a matrix. We define the mode-n unfolding matrix 

as    
  


 ni in II

nn unfoldL . It's inverse operation 

defined as   nn Lfold . The inner product of two tensors 

  and   with the same dimension is defined 

as  
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， . The Frobenius norm 

of   is defined as  ，
F

 and  
F

iF
L  for 

any Ni 1  is clear.   

B. Problem Formulation 

A core problem of the research on tensor completion is how 
to define the trace norm of tensors. We should thank to Liu, 
Musialski et al. [18] who proposed a great definition for the 
tensor trace norm as follows: 

  
N

i

ii
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: L , (4) 

where 1
N

i
i . As we pointed out in our introduction, we 

can learn some prior information about the rank of the 

unfolding matrix  iL  along mode-i in advance. For 

convenience, we assume that the rank ir  of  iL  is known 

without loss of generality. Based on the model (3) and the 
definition (4), we initiatively propose our major research model 
in this paper as follows: 
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However, when the tensor is represented by the mode-i 
matrices, these matrices share the same variables. It is precisely 
because of the interdependent between PSSV, so we can’t 
directly solve each norm. Hence, we introduce N auxiliary 

tensors si
'

  to remove these interdependencies and to optimize 

these terms independently. Therefore, the optimization problem 
(5) becomes 
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One remaining challenge is to build an algorithm for solving 
efficiently the problem (6). We will present it in next 
subsection. 

C. Optimization Algorithm 

To solve our partial sum objective function with equality 
constraints, we utilize the Alternating Direction Method of 
Multipliers(ADMM) [19] and obtain the following the 
augmented Lagrangian function 
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where   is a positive scalar for controlling the speed of the 

algorithm and i  is the Lagrangian multiplier tensor. It is 

obviously difficult to solve the function (7) directly. We can 
fist minimize a variable for fixed the other variables as follows: 
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Computing 
1k

i : 

As Tae-Hyun Oh et al. [13] pointed out, the optimal solution of 
the sub-problem (8) in the matrix case can be described as: 
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where TT

22211121 YYYYYY VDUVDUYYY  , 
1YU , 

1YV  are 

the singular vector matrices corresponding to the ir  largest 

singular values by SVD, and 
2YU , 

2YV  from the  1ir th to 

the last singular values;  0,,0,,,11


ir
diag YD , 
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diag ,min1 ,,,0,,0
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Computing 
1k

 : 
Solving sub-problem (9) directly, we have 

2016 International Conference on Automatic Control and Information Engineering (ICACIE 2016)

© 2016.  The authors – Published by Atlantis Press 0017



 




 













  k

ik

N

i

k
i

k

N


111
. 

The above results can be summarized in the Algorithm 1. 

Algorithm 1 PSSV-LRTC: Low Rank Tensor Completion Based 
On PSSV 

1: Input:  , the target rank ir , and the maximum iterations K. 

2: Initialization:   
00 ,    mean

00 ,   

0
0
 , 0

0
 , 1 , and 0k . 

3: for 0k to K do 

4:          for 0i  to N do 
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6:         end for 
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10: end for 

11: Output: k
  

Obviously, Computing 1k
i  is a non-convex problem. 

when ADMM solves both the convex and non-convex problems 
at the same time, its convergence property has not been 
explained. But our each sub-problem has a closed form 
solution and our algorithm has a great performance in the 
experiment. More convergence analysis about PSSV can be 
obtained in [13]. 

III. EXPERIMENTAL RESULTS 

In this section, we compare the performance of the 
proposed PSSV-LRTC algorithm against synthetic data and real 
word data with two related algorithms: simple low rank tensor 
completion (SiLRTC) and high accuracy low rank tensor 
completion (HaLRTC) [18]. SiLRTC solves a simple convex 
structure via block coordinate descent. HaLRTC solves the 
convex problem of SiLRTC based on ADMM. All experiments 
are performed in Matlab on a 2.4 GHz Intel Core i3 machine 
with 3 GB RAM. 

A. Synthetic Data 

For synthetic data, we first sysnthesize a ground-truth low 

rank 3-order tensor 125125125 
  whose rank 

   1,1,1,, 321 rrr  based on the Tucker decomposition [17]. In all 

tests, we set 31


 e , 05.1 , 500K , tolerance error 

51


 etol  and other parameters are same as [18]. The 

reconstruction performance is defined by the relative standard 

error: 

F

FRSE


 
 . We perform 10 time against each test 

and report the average result. 

We randomly select 10%, 30%, 50%, 70% and 90% of   
as known samples. The comparison results are shown in Fig.1. 

 
Fig. 1. RSE comparison for synthetic data between PSSV-LRTC and SiLRTC 
for sample rate-10%, 30%, 50%, 70%, 90% cases. 

Fig.1 shows that our proposed PSSV-LRTC has a higher 
accuracy than SiLRTC for recovering the missing values of 
synthetic tensors under different sampling rates. Even in the 
case of 90% of the data is lost, we also can restore the original 
tensor successfully and RSE is about 0.2075. 

B. Real Word Data 

As Y Hu, D Zhang ea al. [20] remarked, the information of 
a picture is dominated by the top singular values, so most 
images can be viewed as approximately low rank matrices. 
Similarly, the color images also can be regarded as 
approximately 3-order low rank tensors and each color channel 
of it is defined as a mode of tensors. The followings are two 
recovery example of a baboon image with 50% missing entries 
and a facade image with block missing entries. 

 
Fig. 2. Reconstruction results of the boboon image by PSSV-LRTC and 

HaLRTC. 
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Fig. 3. Reconstruction results of the facade image by PSSV-LRTC and 

HaLRTC. 

 

 
Fig. 4. Convergence curves of PSSV-LRTC and HaLRTC based on the 

example of Fig. 3. 

Fig.2 and Fig.3 show that PSSV-LRTC and HaLRTC can 
successfully restore the picture with random missing values or 
block missing values. But our algorithm achieves much smaller 
RSE than HaLRTC. Fig.4 shows that although the gap between 
the RSE obtained by our algorithm and the HaLRTC algorithm 
is not large, our convergence rate outperforms the HaLRTC 
algorithm. 

IV. CONCLUSION 

In this paper, we extend the low rank matrix completion 
problem to the low rank tensor completion problem. Taking 
full advantage of the prior information about the rank of 
tensors, we creatively propose the partial sum minimization of 
singular values model of the low rank tensor completion and 
the PSSV-LRTC algorithm. By comparing our work with 
SiLRTC and HaLRTC in the simulation experiment and the 
practical application, it is demonstrated that our algorithm has a 
high ability of data recovery. 
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