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Abstract—This study investigates long-term significant wave 

heights trends in the South China Sea. The Hs–SLP relationship 

in each domain is represented by a multivariate regression model 

with lagged dependent variable, which is calibrated and validated 

using the ERA-Interim reanalysis of Hs and SLP for the period 

1981–2010. The 6-hourly Hs time series at each grid point was 

homogenized for discontinuities identified in the regional mean 

series. The homogenized wave heights were then used to assess 

wave height trends over the period 1911-2010. For comparison, 

the wave height trends derived from the inhomogenized wave 

heights were also showed. The reconstructed wave heights trends 

are also compared with the trends as derived from ERA40 

dynamical wave reanalysis datasets. 
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I.  INTRODUCTION  

Under the circumstance of climate warming[3], the globally 
mean sea level has risen over the 20

th 
Century [11], and the 

change of ocean wave height is also affected[14]. Thus wave 
height modeling is of great importance since increased wave 
heights on top of the rising sea level could not only increase the 
risk of coastal flooding, but also impact the offshore industries. 

 There are two approaches to project ocean wave heights: 
dynamical downscaling and statistical downscaling. Dynamical 
downscaling involve using climate-model-simulated 
atmospheric variables to drive an ocean wave model while 
statistical downscaling relies on statistical relationships 
between selected large scale predictors and regional scale 
predictands [3,8,9]. Since dynamical approach was found to be 
not as good as the statistical methods in terms of reproducing 
the observed climate and interannual variability of the 
predictand, several works were done with statistical 
downscaling [7,14,15]. The general principle is to establish a 

link between the simulated large scale and the finer scale of 
extreme events using one or a combination of statistical models 
calibrated on observational datasets.  

Observations of ocean wave heights are available only for 
the last few decades at limited buoy locations around the globe, 
in addition to some volunteer ship observations which are 
limited to major ship routes. Satellite data for wind speed and 
wave height have global coverage; however, they span only the 
last couple of decades, which hampers reliability of trend 
estimates, especially for extremes [17]. And until recently, 
reanalysis of the atmosphere were limited to span only the 
second half of the 20th century. The 20th century reanalysis 
(20CR) [1] is the first reanalysis data set that spans over the 
past 140 years (1871–2010). Thus, this data set makes it 
possible to assess South China sea wave height trends on a 
centennial scale, which would be helpful for related decision 
making.  

South China Sea (SCS) is China's deepest and largest sea 
and it is the world's third continental marginal sea (second only 
to the Coral Sea and the Arabian Sea). Surrounded by most of 
the peninsula and the islands, SCS is the major shipping 
channel between South Pacific and the Indian. SCS is also an 
important natural resource of oil and gas production, tourism 
and recreation, commerce, navigation and fisheries [12]. 
However, the information on potential long-term changes of 
wave height in the SCS is fragmented and incomplete. The 
number of studies on SCS waves covers only a short period of 
time [5, 10]. This study aims to make wave height trends 
assessment on a centennial scale on SCS by a statistical 
reconstruction of historical wave heights using the mean sea 
level pressure (SLP) fields of the 20CR ensemble. 

The rest of this article is structured as following: The data 
sets and methodologies used in this study are described in 
Sections 2. Section 3 presents the two series of wave height 
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climate which derived from the 20CR reconstructed wave 
height series before and after homogenization, in comparison 
concluding remarks are given in Section 5.with that derived 
from ERA40 and ERA-Interim wave reanalysis data sets. 
Historical wave height trends derived from 20CR are described 
in Section 4. Finally the results and some concluding remarks 
are given in Section 5. 

II. DATA AND METHODOLOGY  

A. Data 

We use the ERA-Interim Reanalysis [2] of the atmosphere 
(SLP) and ocean significant wave heights (Hs) for the period 
1981–2010 to calibrate and validate the statistical relationship 
between the predictand Hs and its SLP-based predictors[15]. 
The model calibration period is from 1981 to 2000 and the 
evaluation period is from 2001 to 2010. Using the best chosen 
model (with the best set of predictors) in Wang’s research, we 
also use the 30-yr (1981–2010) data from the ERA-Interim 
Reanalysis to recalibrate the best model, which is then used to 
reconstruct Hs. Then, the 20CR ensemble of SLP fields for the 
period 1871–2010 [1] are used to derive time series of the 
predictors to reconstruct the corresponding significant wave 
heights (Hs) in the SCS. Since the 20CR ensemble of SLP 

fields are available on a 2°-by-2°lat/long grid, this study 

uses the ERA-Interim SLP data on this grid, and the Hs data, on 

a 1°-by-1°lat/long grid. All the SLP and Hs data are 6-hourly 

instantaneous values. The unit is hPa for SLP and m for Hs. 

To find out the seasonal difference of ocean wave height 
variations, we model the 6-hourly Hs in four seasons: JFM 
(January-February-March), AMJ (April-May-June), JAS (July-
August-September), and OND (October-November-December). 
And JFM refers to winter and JAS refers to summer in this 
paper. 

B. Wave modeling method 

We use the multivariate regression model of the form[Wang 
et al., 2012]: 

,
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                        (1) 

where Ht is the Box-Cox transformed Hs at a target wave 
grid point, Xk,t are the K SLP-based predictors that are retained 
for the wave grid point, P is the order of lags of the predictand, 
and the residuals ut can generally be modeled as an M-order 
autoregressive process, AR(M). ut is a white noise process if M 

= 0. And the detailed reason of the selection of model and 
predictors is described in [15]. The main difference of the 
model used in this article is that the predictor is based on semi-
enclosed regional scale while Wang’s is based on global scale. 

Due to different wave surge influence to Sea level pressure 
(SLP) based predictor according to different SLP field 
choosing, the same model may have different projection 
performance. So the first thing is to select a suitable SLP field, 
the predictor domain (PD) to make the projection. We 
calculated the model performance to compare PD1 and PD2. 
Also we added the global scale projection result (W14) of 
Wang et al. (2012) to make sure whether the regional scale 
predictor performs better than that based on global model. 
Since the model skill with the PD2 got the best results, PD2 
was chose to make the Hs reconstructions.  

We compare the model performance mainly by the hit rate 
(HR) and root mean square errors (RMSEs).For the hit rate 
(HR) shown in Fig. 1, a hit is defined as when the forecast 
value and the corresponding observed value fall within the 
same category. We used the 5th, 10

th
…, and 95th percentiles of 

the observed values to define 20 categories for calculating the 
hit rates to assess the model skill in predicting Hs in each 
category. A hit rate is the ratio of the number of hits to the 
number of observations in the category. 

The relative RMSE is the RMSE expressed in percentage of 
the corresponding 2001-2010 mean Hs (i.e., the mean of the 
validation period). The RMSEs are defined as  

2

1

1
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t
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                           (2) 

  The four grid points chosen in the South China Sea are:  

(9° N,107° E)(South Vietnam coast), (11° N,114° E) 

(central SCS), (20°N,112°E) (East of Hainan Island)  and 

(25°N,120°E)(Taiwan Strait). We could see that the model 

skill is higher in the cold seasons (winter and fall) than in the 
warm seasons (summer and spring), which is also true in the 
global setting of Wang et al. [2014] as represented by the 
parameter W14, as shown in Fig. 2. W14 stands for the result 
of the global predictor domain of Wang et al. [2014]. We could 
find that the improvement of our regional model settings over 
the global model setting is noticeable.  
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Fig. 1. The HR(see the left vertical axis) and RMSE(see the right vertical axis) of the model with the indicated predictor-domains (PD1 and PD2) for winter 

(JFM) and summer (JAS) significant wave heights (Hs) at eight different grid points in SCS.  

 

 

Fig. 2. The RMSE of the statistical model with Predictor Domain 2 (PD2) for 

the significant wave heights (Hs) in SCS in winter (JFM, left panels) and 

summer (JAS, right panels) 

Having got the best skilled model of SCS with the 
corresponding best predictors derived with the PD2, we used 

the 30-year period data (1981–2010) of SLP and Hs from the 

ERA-Interim to recalibrate the best model which is also 
performed in Wang et al. [2012]. Then the recalibrated model 

was used to reconstruct the SCS significant wave height. 
Namely, the predictors were derived from each part of the 
20CR ensemble of 6 hourly SLP and then were fed to the 
calibrated best model to hindcast Hs at 6 hourly time scale.  

III.  RECONSTRUCTED WAVE HEIGHT SERIES 

COMPARISON(BEFORE AND AFTER HOMOGENIZATION) 

Fig.3 shows the climatological mean fields of annual mean 
(Havg) and annual maximum (Hmax) significant wave heights 
in the South China Sea (SCS) as derived from the reconstructed 
20CR ensemble-mean Hs and derived from the ERA40 
dynamical wave reanalysis before homogenization. 

 

Fig. 3. The Havg and Hmax significant wave heights in the SCS, as derived 

from the 20CR ensemble mean, the ERA40 and ERA-Interim dynamical wave 
reanalysis before homogenization. 
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As Wang et al. [2013] has described that the 20CR data 
may have partial inhomogeneities in the early decades due to 
the very low amount and intensity of observations available for 
assimilation. Following Wang’s method, we detected the 
sudden changes and completed the homogenization process.  

 

Fig. 4. The Havg and Hmax significant wave heights in SCS, as derived from 

the 20CR ensemble mean, the ERA40 and ERA-Interim dynamical wave 

reanalysis after homogenization. 

Fig.4 shows the climatological mean fields of annual mean 
(Havg) and annual maximum (Hmax) significant wave heights 
in SCS as derived from the reconstructed 20CR ensemble-
mean Hs and derived from the ERA40 dynamical wave 
reanalysis after homogenization. Comparing with the results 
showed in Fig.3, the statistical reconstructions presented the 
annual mean and maximum wave height climates fairly well 
after homogenization (Fig. 4). 

However, the reconstructions slightly overestimate the 
annual mean and maximum wave heights in SCS especially 
compared with ERA40 (Fig.4a and Fig.4c). This is partly 
because that the statistical reconstructions are derived from the 
ERA-Interim reanalysis, which has better resolution than the 
ERA40. Within the resolution scope of the ERA40 and ERA-
Interim models, significant wave heights especially extreme 
series are better reproduced with a higher resolution. This is 
evidently described by J.-R. Bidlot’s comparison in ECMWF 
Report Series and also is presented in the results that the 
reconstructed annual wave height climate is more similar to its 
ERA-Interim counterpart than to its ERA40 counter part 
(compare Fig.4a and 4c with 4b and 4d). Thus the ERA-Interim 
annual mean wave height climate largely determines the 
reconstructed annual mean wave height climate.  

IV. HISTORICAL WAVE HEIGHT TRENDS 

From the inhomogenized and homogenized 6 hourly 
significant wave heights, we picked up the annual and seasonal 
mean and maximum values of Hs at each grid point in SCS. 
We used the trend analysis method of Wang and Swail [2001] 
to assess trends in Hs time series which are not asymmetrically 
distributed. And this method is on the basis of Mann-Kendall 
test for trend against randomness [6] and an iterative procedure 
is applied to display the effect of lag-1 autocorrelation on trend 
analysis. This nonparametric method with no distributional 
assumption for the data is less sensitive to gross errors and has 
been found to have best performance comparing with other 

trend estimate methods [18]. So we choose to use this method 
on each sequence of Hs statistics at each grid point in South 
China Sea.  

 

Fig. 5. Maps of monotonic trends estimated from the homogenized 

significant wave heights Hs in SCS.  

Fig.5. shows the trend analysis results derived from 
homogenized 6 hourly Hs series in SCS compared with  Fig. 6 
which shows the results of inhomogenized series (Stippling 
denotes areas where the significant trends exceed 5% level). 
For the inhomogenized series, the seasonal mean/maximum of 
significant wave heights only shows a significant decreasing 
trend mainly in JFM season (Fig. 6c and 6h). 

Compared with Fig.6, it shows that homogeneities greatly 
improve the estimate of wave height trends. In SCS, as shown 
in Fig.5a-5e, the annual/seasonal mean of significant wave 
heights shows a significant decreasing trend over the period 
1911-2010, with the decreases being largest and most 
extensively significant in winter, and least extensively 

significant in summer. However, the seasonal maximum of 
significant wave heights shows a significant increasing trend in 
central SCS in summer and spring (Fig. 5f, Fig.5i), and along 
the South Coast of China in summer (Fig. 5f). These increases 
were accompanied with a significant decreasing trend in winter 
maximum Hs (Fig. 5h), and with little change in autumn (Fig. 
5g). Trends in the annual maximum of significant wave heights 
in the South China Sea are predominantly negative, with the 
exception of the nearshore area along the South Coast of China 
where it seems to have increased over the past century (Fig. 5j). 

 

Fig. 6. Maps of monotonic trends estimated from the inhomogenized 

significant wave heights Hs in SCS.  
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V.  CONCLUSIONS 

The 20CR ensemble of 6 hourly SLP fields and a 
multivariate regression model with lagged dependent variable 
to represent the Hs-SLP relationship at each grid point were 
used to reconstruct 6 hourly Hs in the SCS of the period from 
1871 to 2010. We use the ERA-Interim data of Hs and SLP of 

the period 1981–2010 to calibrate and assess the multivariate 

regression model. The result demonstrate that our statistical 
reconstructions of 6 hourly Hs fairly well represented the 
seasonal mean and maximum Hs climates of  SCS as displayed 
by the ERA40 and ERA-Interim reanalysis.  

We have examined temporal homogeneity for the SCS 
mean series of the ensemble mean of the reconstructed 
consecutive monthly mean Hs and have homogenized the 6 

hourly Hs time series for the period 1911–2010 at each grid 

point in SCS for the few discontinuities identified in the 
respective regional mean series of the ensemble mean of the 
reconstructed consecutive monthly mean Hs. Then we have 
derived seasonal mean and maximum Hs from the 
homogenized 6 hourly Hs data and have used a nonparametric 
trend analysis method to estimate historical trends of seasonal 
and annual mean and maximum Hs in South China Sea.  

We also derived seasonal mean and maximum Hs from the 
inhomogenized 6 hourly Hs data and estimated historical trends 
for comparison. And could found that homogenization really 
greatly improve the Hs trend estimate in SCS, although it does 
not differ much in the climatological mean fields.  

And for homogenized series, the trend analysis results show 

that the Hs trends calculated in the period 1911–2010 are 

mainly negative except that the seasonal maximum wave 
heights have apparently increased in spring and summer in 
central South China Sea. Since South China Sea is subject to a 
lot of tropical cyclone activity such as typhoon in spring and 
summer, the trend increases in seasonal maximum wave 
heights might demonstrate an increase in tropical cyclone 
activity in SCS. And these might increase the public awareness 
of coastal hazards in this area. 
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