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Abstract—This article considers the stability problem of a class
of coupled differential-Functional equations(CDFEs) with multiple
delays via the discretized Lyapunov-Krasovskii functional (LKF)
approach. The system discussed contains both distributed delays
known and discrete delays unknown, a LKF with two parts
is chosen, where one part is a complete quadratic LKF which
involves those known delays only and can be done discretization,
the other is a simple LKF for the unknown delays. Through
independently divided every known delay region that the plane
regions consists in two known delays to discritized the LKF, the
stability conditions of the systems are established based on a linear
matrix inequality (LMI), which is dependent with the known
delays, is independent with the unknown. Finally, Two examples
are given to illustrate that the result is reliable and effective.

Keywords—discretized LKF approach; coupled differential-
functional equations; multiple unknown discrete delays; multiple
known distributed delays

I. INTRODUCTION

The coupled differential-functional equations

ẋ(t) = f(t, x(t), yt),

y(t) = g(t, x(t), yt)

offers significant advantage over the traditional model of re-
tarded and neutral type. Typically, the number of state variables
in the practical systems may be rather large, but only a
few components involve delay elements and are often low
dimensional, i.e. dim(x(t))� dim(y(t)). It is well known that
many electrical, fluid and other systems initially described by
partial differential equations can be arrived at a set of coupled
differential-difference equations(CDDEs) as lossless propaga-
tion model [1][2], steam pressure control problem and water
transmission problem [3]. Up to early 1990s, such systems
were analyzed by taking the systems in a class of standard
DDEs of neutral type. A nice overview is to analysis it directly
as [4]. Related to most important works can be found in the
references [5][6][7]. Gu and Niculescu [5] showed the existence
of a quadratic LKF is necessary and sufficient for the stability
of linear CDDE with single delay. Gu and Liu [9] generalized
the difference equations to functional equations under the
assumption of input-to-output stability (IOS) of the equations,
and considered the uniform asymptotic stability of the systems.
[6] also formulated a discretized LKF method based on the
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quadratic functional in [5]. Gu [7] extend the formulation of
single delay to the case of multiple delay channels, and [10]
generalized the analytical results of [5][6].

A special form of CDFEs

ẋ(t) = f0(t, x(t), yt) +

∫ 0

−r
H(σ)y(t+ σ)dσ,

y(t) = g0(t, x(t), yt) +

∫ 0

−r
M(σ)y(t+ σ)dσ

are more general than CDDEs. Specially, H(σ) and M(σ) in
[−r, 0) may be bounded, piecewise constant matrices. Such a
system may be written as a forward system, and

ui(t) = Ki

∫ 0

−ri
y(t+ θ)dθ, i = 1, 2, . . . , N

as the feedback. Closely, Li [11] discussed the stability of
CDFEs with a discrete and distributed delays via discretized
LKF approach. In engineering practice, however, some of the
time-delays for the systems are known or can be measured in
a finite region, the others are difficult to measure, even if they
can be estimated, is also very big. So we hope to control known
delays in input to stabilizing system. In this paper we will
investigate the stability of such CDFEs with multiple known
and unknown discrete delays and known distributed delays. And
we wish to set up the stability condition with a well robustness,
which is dependent with the known or small delays, and is
independent with those unknown or large delays.

In this article, Rn and Rm×n represent the set of real n-
vectors and m by n matrices, respectively. R+ denote the sets
of positive real numbers. For a given delays ri ∈ R+(i =
1, 2, . . . , N), PC([−r, 0),Rm) is the space of bounded, right
continuous, and piecewise continuous functions defined on
[−r, 0)(r = max1≤i≤N{ri}). These spaces are equipped with
the L2 norm ‖φ‖2L2

=
∫ 0

−r ‖φ(θ)‖2dθ. For a given function
y(t) ∈ Rm and σ ∈ R, we define yσ ∈ PC by yσ(θ) = y(σ+θ),
θ ∈ [−r, 0). || · || denotes 2-norm for vectors and matrices.
λmin(M) denotes the minimum in eigenvalues of Matrix M .
(Rij)

j=j1→jn
i=i1→im denotes a block matrix with some block matrices

Rikjl , where the line index i is from i1 to im and the column
index j is from j1 to jn.
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II. PROBLEM STATEMENT

In this section, we discuss the system described by the
following coupled functional-differential equations

ẋ(t) = Ax(t)+
N+M∑
i=1

Biy(t−ri)+
N∑
i=1

Hi

∫ 0

−ri
y(t+θ)dθ, (1)

y(t) = Cx(t)+
N+M∑
i=1

Diy(t−ri)+
N∑
i=1

Mi

∫ 0

−ri
y(t+θ)dθ (2)

with the initial condition

x(t0) = ψ, yt = φ.

where x ∈ Rn, y ∈ Rm are state vectors, ri ∈ R+

(i = 1, 2, ..., N) is some known delays, rN+j ∈ R+ (j =
1, 2, ...,M) is some unknown delays and r = max

1≤i≤N+M
{ri},

A ∈ Rn×n, C ∈ Rm×n, Bi, Hi ∈ Rn×m, Di,Mi ∈
Rm×m, i = 1, 2, ...,K, are some known real matrices.

The Lyapunov-Krasovskii functional method is an effective
method of studying the stability of a system described by
differential-functional equations. Choose the LKF as

V (x(t), yt) = V1 + V2, (3)

where

V1 = xT (t)Px(t) + 2xT (t)

N∑
i=1

∫ 0

−ri
Qi(η)y(t+ η)dη

+
N∑
i=1

N∑
j=1

∫ 0

−ri

∫ 0

−rj
yT (t+ ξ)Rij(ξ, η)y(t+ η)dηdξ

+
N∑
i=1

∫ 0

−ri
yT (t+ ξ)Si(ξ)y(t+ ξ)dξ,

V2 =

N+M∑
j=N+1

∫ 0

−rj
yT (t+ ξ)S̄jy(t+ ξ)dξ.

Remark 1: In the LKF (3), V1 is a completely quadratic LKF
which may be manipulate to discretizated and respect only to
the known delays , V2 is a simple LKF and relate to those
unknown or large delays.

For the LKF of (3), it is no difficult to induce the following
proposition by Theorem 3 in [6].

Proposition 2: Suppose the difference-integral equation
(DIE) of (2) is input-to-output stable. If there exist symmet-
ric positive definite matrix P , and continuous matrix func-
tions Qi(η), Si(η) on [−ri, 0) and Rij(ξ, η) = RTji(ξ, η) on
[−ri, 0) × [−rj , 0) (i,j=1,2,. . . ,N) and S̄i on [−rN+k, 0)(k =
1, 2, . . . ,M) such that the LKF of (3) satisfy

V (x(t), yt) ≥ ε||x(t)||2, (4)
V̇ (x(t), yt) ≤ −ε||x(t)||2 (5)

for some ε > 0, then the systems described by (1)-(2) is
asymptotically stable.

III. STABILITY CONDITION OF DIE

In Proposition 2, IOS of (2) is a necessary condition for
the stability of the whole systems (1)-(2). Moreover, It is well
known that IOS of (2) is equivalent to the stability of DIE
presented by

y(t) =
N+M∑
i=1

Diy(t− ri) +
N∑
i=1

Mi

∫ 0

−ri
y(t+ θ)dθ. (6)

If Mi = 0(i = 1, 2, . . . N) [9] gave a sufficient condition for
stability of the difference equations described by

y(t) =
N+M∑
i=1

Diy(t− ri). (7)

Namely, the difference equation (7) is delay-independent ex-
ponentially stable, if there exist symmetric positive definite
matrices Sk, i = 1, 2, ..., N +M such that

diag
(
S1 S2 · · · SN+M

)
−DT

(
N+M∑
k=1

Sk

)
D > 0,

(8)
where D =

(
D1 D2 · · · DN+M

)
.

For given any initial function φ ∈ PC, we denotes the unique
solution of (6) in y(t, φ) and yt(φ) = {y(t+θ, φ)|θ ∈ [−r, 0)}
stands for the partial trajectory of the system (6). For the expo-
nential stability of (6), we introduce the Lyapunov-Krasovskii
conditions from [13].

Proposition 3: Supposed the difference equation (7) is
delay-independent exponentially stable. If there a functional
v : PC → R such that t → v(yt(φ)) is differentiable and
the following conditions hold:

α1‖φ‖2L2
≤ v(φ) ≤ α2‖φ‖2L2

,

v̇(yt(φ)) ≤ −β‖yt(φ)‖2L2
,

for some α2 > α1 > 0 and β > 0, then the difference-integral
equation (6) is exponentially stable.

By Proposition 3, we will give a stability condition of (6)
based on LMI in the following lemma.

Lemma 4: DIE (6) is exponentially stable if there exist
positive definite matrices Xi ∈ Rm, i = 1, 2, . . . , N +M, and
Yj ∈ Rm, j = 1, 2, . . . , N, such that LMI X 0 DTG(X,Y )

0 Y MTG(X,Y )
G(X,Y )D G(X,Y )M G(X,Y )

 > 0 (9)

is satisfied, where

X = diag
(
X1 X2 · · · XN+M

)
,

Y = diag
(

Y1

r1
Y2

r2
· · · YN

rN

)
,

G(X,Y ) =
N+M∑
i=1

Xi +
N∑
j=1

rjYj ,

D =
(
D1 D2 · · · DN+M

)
,

M =
(
M1 M2 · · · MN

)
.
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Proof: In order to save space, we just write three steps of
the proof process. (i)Apply Schur’s compensation to (9). (ii)
Choose Lyapunov functional as

v(t, yt) =
N+M∑
i=1

∫ 0

−ri
yT (t+ θ)Xiy(t+ θ)dθ

+
N∑
j=1

∫ 0

−rj
dθ

∫ t

t+θ

yT (τ)Yjy(τ)dτ.

(iii)The above Lyapunov functional satisfies the first condition
of Proposition 3. Use the Jensen inequality in the derivative of
v to obtain the second condition.

Remark 5: Based on the characteristic function associated to
(6), [13] gave a exponentially stability condition

N+M∑
i=1

‖Di‖+ r max
1≤i≤N

‖Mi‖ < 1.

The example 2 in [13] showed that although above inequality
could be easily verity, it may be pretty conservative. The
example also can illustrated that (8) is less conservative than
the condition

∑N+M
i=1 ‖Di‖ < 1 for (7).

IV. STABILITY CONDITIONS OF THE SYSTEMS

A. Derivative of LKF

In this section, we consider the stability problem of the
systems (1)-(2) with the initial condition. In order to do a simple
denotation in the following, define a real number sequence

X (i) =

{
1, i = 1, 2, . . . , N ;
0, i = N + 1, N + 2, . . . , N +M.

and a matrix sequence

S̄(i) =

{
Si(−ri), i = 1, 2, . . . , N ;
S̄i, i = N + 1, N + 2, . . . , N +M.

Taking derivative to V along the system trajectory, we have

V̇ (x(t), yt) = −
N+M∑
i=0

N+M∑
j=0

zTi (t)∆̄ijzj(t)

+2

N∑
i=1

xT (t)

∫ 0

−ri
[Π0i(η)− Q̇i(η)]y(t+ η)dη

+2
N∑
i=1

N+M∑
j=1

zTj (t)

∫ 0

−ri
Πji(η)y(t+ η)dη

+
N∑
i=1

N∑
j=1

∫ 0

−ri

∫ 0

−rj
yT (t+ ξ)Λij(ξ, η)y(t+ η)dηdξ

−
N∑
i=1

∫ 0

−ri
yT (t+ η)Ṡi(η)y(t+ η)dη (10)

where

zi(t) =

{
x(t), i = 0;
y(t− ri), 1 ≤ i ≤ N +M ;

∆̄00 = −ATP − PA− CT S̄Σ(0)C

−Q̄Σ(0)C − CT Q̄TΣ(0),

∆̄0i = −PBi − Q̄Σ(0)Di

−CT S̄Σ(0)Di + X (i)Qi(−ri),
∆̄ii = S̄(i)−DT

i S̄Σ(0)Di,

1 ≤ i ≤ N +M ;

∆̄ij = −DT
i S̄Σ(0)Dj ,

1 ≤ i, j ≤ N +M (i 6= j),

Π0i = PHi +ATQi(η) + CTj S̄Σ(0)Mi

+ CT R̄TiΣ(η, 0) + Q̄Σ(0)Mi, 1 ≤ i ≤ N,
Πji(η) = BjQi(η) +DT

j R̄
T
iΣ(η, 0)

+DT
j S̄Σ(0)Mi −X (j)RTji(η,−rj),

1 ≤ j ≤ N +M, 1 ≤ i ≤ N ;

Λij(ξ, η) = HT
i Qj(η) +QTi (ξ)Hj +MT

i S̄Σ(0)Mj

+MT
i R̄

T
jΣ(η, 0) + R̄iΣ(ξ, 0)Mj

− ∂Rij(ξ, η)

∂ξ
− ∂Rij(ξ, η)

∂η
, 1 ≤ i, j ≤ N.

with

Q̄Σ(0) =
N∑
k=1

Qk(0), R̄iΣ(η, 0) =
N∑
k=1

Rik(η, 0),

S̄Σ(0) =
N∑
k=1

Sk(0) +
N+M∑
k=N+1

S̄k.

Using Proposition 2, we can conclude that the system is
asymptotically stable if (9) holds and the LKF and its derivative
satisfy (4) and (5) for some ε > 0.

B. Discretization of LKF

Similar to [8], in the following we will restrict the functions
Qi, Rij and Si to be piecewise linear. Specially, divide the
interval [−ri, 0], i = 1, 2, ..., N into Ni smaller intervals Iip =
[θip, θi,p−1] of equal length hi = ri/Ni, where θip = −phi.

Let

Q
(p)
i (α)

def
= Qi(θip + αhi) = (1− α)Qpi + αQp−1

i ; (11)

S
(p)
i (α)

def
= Si(θip + αhi) = (1− α)Spi + αSp−1

i ; (12)

R
(pq)
ij (α, β)

def
= Rij(θip + αhi, θjq + βhj)

=


(1− α)Rpqij + βRp−1,q−1

ij + (α− β)Rp−1,q
i,j

for α ≥ β;

(1− β)Rpqij + αRp−1,q−1
ij + (β − α)Rp,q−1

ij

for α < β;

(13)

for 0 ≤ α, β ≤ 1, p = 1, 2, ..., Ni, q = 1, 2, ..., Nj ; i =
1, 2, ..., N, j = 1, 2, ..., N .

This choice allows us to write the stability conditions (4)
and (5) in the form of LMIs. The idea is very similar to that
of [10].
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Remark 6: Note that the discretized approach above for
the system with multple delays is different to the one in
[8], where the corresponding discretization was carried out
in the delay-parameter space OrNrN . In this paper, however,
this discretization was derived in the delay-parameter space
Or1r2 · · · rN which is first presented in [12].

C. LKF Condition

The following lemma specifies the conditions for (4).
Lemma 7: The LKF V defined in (3), with piecewise linear

matrices Qi, Rij , and Si as defined in (11) to (13), satisfies (4)
if

Spi > 0, p = 1, 2, ..., Ni, i = 1, 2, ..., N,

S̄k ≥ 0, k = N + 1, N + 2, ...,M +N,

and (
P Q
QT R+ S

)
> 0 (14)

are satisfied, where

Q =
(
Q̃1 Q̃2 · · · Q̃N

)
,

Q̃i =
(
Q0
i Q1

i · · · QNi
i

)
,

R =
(
R̃ij

)j=1→N

i=1→N
(R̃Tij = R̃ji),

R̃ij =
(
Rpqij

)q=1→Nj

p=1→Ni
,

S = diag
(
S̃1 S̃2 · · · S̃N

)
,

S̃i = diag
(

1
hi
S0
i

1
hi
S1
i · · · 1

hi
SNi
i

)
.

Proof: Since V2 in (3) is positive semi-definite, we only
need to show that V1 is positive definite. This is similar to the
one discussed in [10].

D. Derivative Condition of LKF

The next lemma established the conditions for (5). For
simplicity of expression, define a matrix sequence

S(i) =

{
SNi
i , i = 1, 2, . . . , N ;
S̄i, i = N + 1, N + 2, . . . , N +M.

Let

Q̄0
Σ =

N∑
k=1

Q0
k, R̄p0iΣ =

N∑
k=1

Rp0ik ,

S̄0
Σ =

N∑
k=1

S0
k +

N+M∑
k=N+1

S̄k.

Lemma 8: The derivative V̇ of the LKF in (10), with Qi,
Si and Rij (i, j = 1, 2, ..., N) piecewise linear as expressed in
(11) to (13), satisfies (5) if there exists a real matrix W = WT

such that ∆̄ −Y s −Y a
−Y sT Γ−MTS0

ΣM −za
−Y aT −za 3(Sd −W )

 > 0 (15)

(
W Rda
RTda W

)
> 0, (16)

where
Γ = Rd + Sd −W − (zs + zsT ), (17)

∆̄ =
(
∆̄ij

)j=0→N+M

i=0→N+M
(∆̄T

ij = ∆̄ji),

∆̄00 = −ATP − PA− CTS0
ΣC − Q̄0

ΣC − CT Q̄0T
Σ ,

∆̄0i = −PBi − CTS0
ΣDi − Q̄0

ΣDi + X (i)QNi
i ,

1 ≤ i ≤ N +M ;

∆̄ij = −DT
i S

0
ΣDj (i 6= j), 1 ≤ i, j ≤M +N,

∆̄ii = S(i)−DT
i S

0
ΣDi, 1 ≤ i ≤ N +M ;

Sd = diag
(
Sd1 Sd2 · · · SdN

)
,

Sdi = diag
(
S1
di S2

di · · · SNi

di

)
,

Spdi =
1

h2
i

(
Sp−1
i − Spi

)
;

Rds = (Rdsij)
j=1→N
i=1→N , Rdsij = (Rpqdsij)

q=1→Nj

p=1→Ni
,

Rpqdsij =
1

2

(
1

hi
+

1

hj

)(
Rp−1,q−1
ij −Rpqij

)
+

1

2

(
1

hj
− 1

hi

)(
Rp,q−1
ij −Rp−1,q

ij

)
;

Rda = (Rdaij)
j=1→N
i=1→N , Rdaij = (Rpqdaij)

q=1→Nj

p=1→Ni
,

Rpqdaij =
1

2

(
1

hj
− 1

hi

)
(Rp−1,q−1

ij −Rp−1,q
ij −Rp,q−1

ij +Rpqij );

Y s =
(
Y sij
)j=1→N
i=0→N+M

,

Y sij =
(
Y s1ij Y s2ij · · · Y

sNj

ij

)
,

Y sp0i = PHi + Q̄0
ΣMi + CTS0

ΣMi −
1

hi
(Qp−1

i −Qpi )

+
1

2
AT (Qpi +Qp−1

i ) +
1

2
CT (R̄p,0TiΣ + R̄p−1,0T

iΣ ),

Y spji =
1

2
BTj (Qpi +Qp−1

i ) +
1

2
DT
j (R̄p,0TiΣ + R̄p−1,0T

iΣ )

− 1

2
X (j)(R

p,NjT
ji +R

p−1,NjT
ji ) +DT

j S
0
ΣMi,

1 ≤ i ≤ N, 1 ≤ j ≤ N +M ;

Y a = (Y aij)
j=1→N
i=0→N+M ,

Y aij = ( Y a1
ij Y a2

ij · · · Y
aNj

ij ),

Y ap0i =
1

2
AT (Qpi −Q

p−1
i ) +

1

2
CT (R̄p,0TiΣ − R̄p−1,0T

iΣ ),

Y apji =
1

2
BTj (Qpi −Q

p−1
i ) +

1

2
DT
j (R̄p,0TiΣ − R̄p−1,0T

iΣ )

−1

2
X (j)(R

p,NjT
ji −Rp−1,NjT

ji ),

1 ≤ j ≤ N +M, 1 ≤ i ≤ N ;

zs =
(
zsij
)j=1→N
i=1→N , zsij =

(
zspqij

)j=1→Nj

i=0→Ni
,
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zspqij =
1

2
HT
i (Qqj +Qq−1

j ) +
1

2
MT
i

N∑
k=1

(Rq,0Tjk +Rq−1,0T
jk ),

za =
(
zaij
)j=1→N
i=1→N , zaij =

(
zapqij

)j=1→Nj

i=0→Ni
,

zapqij =
1

2
HT
i (Qqj −Q

q−1
j ) +

1

2
MT
i (R̄q,0TjΣ − R̄q−1,0T

jΣ ). (18)

Proof: The proof is similar to that of Proposition 5 in [8].

Remark 9: It is noticed that (15) in Lemma 8 is evidently
different with (16) of Theorem 3 in [11] by the dimension of
4̄, Y s and Y a, the term S(i) in 4̄ii, the multiplier X (i) in
4̄0i, Y

sp
ji and Y apji .

V. STABILITY OF THE WHOLE SYSTEMS

Combining Lemma 4, 7 and 8 together and applying Schur’s
compensation we obtain the stability condition of the systems
(1)-(2) as follows.

Theorem 10: The system expressed by (1)-(2) is uniformly
asymptotically stable if there exist n by n matrix P = PT , n by
m matrices Qpi ,m by m matrices Rpqij , S

p
i , p = 1, 2, ..., Ni, q =

1, 2, ..., Nj , i = 1, 2, ..., N, j = 1, 2, ..., N ; and m by m matrix
W = WT , Xi, i = 1, 2, . . . , N + M, Yj , j = 1, 2, . . . , N,such
that (9) (14) (15) and

∆ −Y s −Y a ZTS0
Σ

−Y sT Γ −za MTS0
Σ

−Y aT −zaT 3(Rd −W ) 0
S0

ΣZ
T S0

ΣM 0 S0
Σ

 > 0 (19)

are satisfied, with the notation defined in (15) to (15), (18) to
(18) and

∆ = (∆ij)
j=0→N+M
i=0→N+M

∆00 = −ATP − PA−
N∑
k=1

(
Q0
kC + CTQ0T

k

)
,

∆0i = −PBi −
N∑
k=1

Q0
kDi + X (i)QNi

i , 1 ≤ i ≤ N +M ;

∆ij = 0 (i 6= j), 1 ≤ i, j ≤M +N,

∆ii = S(i), 1 ≤ i ≤M +N ;

and
Z =

(
C D1 D2 · · · DN+M

)
.

VI. NUMERICAL EXAMPLES

Example 1: Consider a system with two delays

ẋ(t) = Ax(t) +By2(t− r2) +H

∫ 0

−r1
y1(t+ θ)dθ,

y1(t) = C1x(t) +K1

∫ 0

−r1
y1(t+ θ)dθ,

y2(t) = C2x(t) +D1y1(t− r1) +D2y2(t− r2)

−K2

∫ 0

−r1
y1(t+ θ)dθ,

where

A =


0 0.5 0 0 0 0
−0.5 −1 0 0 0 0

1 1 −2 0 0 0
0 0 0 −0.9 0 0
0 0 1 0 −1 0
0 0 0 0 1 −1

 ,

B =


0 0
0 0
−2 0
−1 −1.45
0 0
0 0

 , H =


0.25
−0.5
2.5
0
−1
0

 ,

C1 =
(

0 1 0 0 0 0
)
,

C2 =

(
0.2 0 1 0 0 0
0 0 0 1 0 0

)
,

D1 =

(
0.2
0

)
, D2 = 0.5I2, K1 = 0.5, K2 =

(
−1
0

)
.

This system come from [10], where it is given that the
system is exponentially stable if and only if r1 ∈ [0, 2π) and
r2 ∈ [0, 4.7388). Although the above system and the example
in [10] have the same characteristic equations, their stability is
not equivalent. In fact, the additional dynamics

det(I +K1
1− e−r1s

s
) = 0

is introduced in the difference-integral equation that the stability
is a necessary condition for the whole systems, so that the stable
region of r1 is determined by both the above equation and the
characteristic equations. Noting that the additional dynamics is
the characteristic equation of the integral equation

y(t) + 0.5

∫ 0

−r1
y(t+ σ)dσ = 0. (20)

Using the condition of Example 1 in [13], we obtained that (20)
is exponentially stable if and only if r1 ∈ [0, 2). Connecting
the stable interval [0, 2π) of r1, we obtained that the whole
systems is exponentially stable if and only if r1 ∈ [0, 2) and
r2 ∈ [0, 4.7388).

Applied Theorem 10 of this paper, for four given ratios
1/
√

5, 1/
√

2,
√

2 and
√

5 of r1/r2, the upper bound of the
delay r2 are computed by using MATLAB program with a
bisection process, and the results are listed in the following
table.

r1/r2 1/
√

5 1/
√

2
√

2
√

5
(N1, N2) (1,2) (1,2) (2,1) (2,1)
r2max 4.4721 2.8284 1.4142 0.8944

From above table we are not difficult to find, when the ratios of
r1/r2 as 1/

√
5, 1/

√
2 ,
√

2 and
√

5, the supremum of r1 is 2. In
fact, if the ratios of r1/r2 is more than 2/4.7388, the maximum
estimate of r2 is completely restricted by the supremum 2 of
r1. However, for some fixed r1 ∈ [0, 2) or setting r1/r2 ∈
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[0, 2/4.7388), we can calculate that the maximum estimate of
r2 can approximate the analytical limit. In the following we
gave the results for r1 = 1.9999 and r1/r2 = 0.4.

r1=1.9999
(N1, N2) (1,2) (2,3) (2,4) Analytical
r2max 4.7354 4.7381 4.7385 4.7388

r1/r2=0.4
(N1, N2) (1,2) (1,3) (2,4) Analytical
r2max 4.7354 4.7381 4.7385 4.7388

Example 2: Consider a two-dimensional system

ẋ(t)−D0ẋ(t− r) = A0x(t) +B0x(t− r)

+C0

∫ 0

−τ
x(t+ s)ds (21)

with

A0 =

(
−a1 0

0 −a2

)
, B0 =

(
b1 b2
−b2 b1

)
,

C0 =

(
c1 c2
−c2 c2

)
.

[14] and [15] discussed the stability of system for all r and
allowable τ . For the different parameters, it is verified by three
cases.

C1: D0 = 0, a1 = a2 = 1.5, b1 = b2 = 1, c1 = 1, c2 = 0.5.
C2: D0 = 0, a1 = 2, a2 = 15, b1 = 1, b2 = 3, c1 = 1, c2 =

0.5.

C3: D0 =

(
−0.2 0
0.2 −0.1

)
, a1 = 2, a2 = 15, b1 = 1; b2 =

3, c1 = 1, c2 = 0.5.
The system may be transformed into a standard coupled

equation form as (1)-(2)

˙̃x(t) = Ax̃(t) +Bỹ(t− r) +M

∫ 0

−τ
ỹ(t+ s)ds,

ỹ(t) = x̃(t) +D0ỹ(t− r)− k
∫ 0

−τ
ỹ(t+ s)ds.

where k is a adjusting parameter and A = A0 + kI,B =
B0 + (A0 + kI)D0,M = C0 − (A0 + kI)k.

While k = 0, applying the theorem of this paper, the stability
of system are test for all r and allowable τ . For the above three
cases of parameters, the results are listed in the following table
with the results in [15] and [14] together.

τmax [14] [15] Theorem 1 for N = 2
C1 0.03 0.07 0.1138
C2 Not 1.1 1.2897
C3 Not 1 1.2303

For some fixed k(6= 0) satisfied the condition (9), and let
N = 2, the stability of system are test for all r and allowable
τ . For the case 1 and case 2 the results is same to the one with
k = 0 . For the case 3 the results are listed in the following
table.

k −0.5 −0.3 −0.1 0.1 0.3
C3 1.2299 1.2308 1.2306 1.2301 1.2298

The above data show, for the selection of suitable k, stability
of the systems can be improved at a certain level.

VII. CONCLUSION

The stability of a class of coupled differential-functional
equations with multiple discrete and distributed delays is stud-
ied via a LKF approach. The discretized LKF method is used
to render the problem into an LMI form that the dicretization
only involved to divide the known delay interval. The stability
condition presented is independent with unknown delays, is
dependent with known delays.
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