
A Technique for Smooth Switching from
Conventional Database to Big Data System

Peng ZeWu
Guangdong Gower Grid Company of China Southern Power

Grid, DongFeng East Road No. 757
Yuexiu District of Guangzhou Gity, Guangdong Province

China

Huang JianWen*
Guangdong Gower Grid Company of China Southern Power

Grid, DongFeng East Road No. 757
Yuexiu District of Guangzhou Gity, Guangdong Province

China
*952898435@qq.com

Abstract—In order to comprehensively analyze enterprise
data using big data techniques, data need to be transformed from
conventional database to unstructured database, where smooth
switching of database has a great significance for enterprises. In
this study, a technique for smooth switching from conventional
database to big data system is proposed based on a practical case
of conventional enterprise. We will also briefly introduce the
process of database switching technique and describe solutions to
the problems associated with traditional database switch
techniques in detail. Finally, the proposed technique is verified
using a practical case of enterprise application.

Keywords—Conventional database, Big data system, Switch,
Scheme

I. INTRODUCTION
With the development of cloud computing and internet

technologies, vast amount of data are generated every day.
Apart from structured data, there also exist numerous
unstructured data, such as video, audio, and text[1]. For
massive data, traditional database has the features of high
storage efficiency, but low query efficiency and lack of
extendibility[2]. Unstructured database can efficiently solve the
problems existing in the traditional structured database. For
massive data, unstructured database features excellent
read/write performance, easy extendibility, and instantaneous
storage of data in custom format[3]. In order to more
comprehensively analyze enterprise data using the big data
technologies, data storage requires transformation from
conventional database to unstructured database[4].

Up to now, few associated studies have paid attention to the
switching techniques from traditional relational database to
new unstructured database[5]. The following three challenges

are the major challenges: 1) Inability of retreat and data loss
caused by single-system stop switch. In case of single-system
stop, data loss during the process of write interface switch
would generate irrecoverable losses for enterprises. Existence
of problems in the write interface of new data can make it
impossible to go back to the original database state[6]. 2)
Unable to process dirty data produced in switching tests. Some
problems may occur when data are stored in a new database
through the new write interface, generating a great number of
dirty data with unsatisfying quality that are hard to repair. 3)
Big data system would cause excessive learning costs for
traditional developers and a great difficulty to switch the data
access layer. For data access of the new database, techniques of
big data system are necessary for developers, requiring a long-
term and high-cost learning. In addition, transplantation of
upper-level application would exhibit a high difficulty.

During the process of database switch, data loss would
cause huge economic losses for enterprises. Therefore, smooth
switching technique has a great significance for enterprises.
Based on a practical case of traditional enterprise, this research
proposed a technique for smooth switching from conventional
database to big data system. Section 2 briefly introduced the
detailed process of database switch. Section 3 described
solutions to the problems associated with the traditional
database switch technique in detail. Section 4 demonstrated a
practical case of database switch technique applied in
enterprise and Section 5 exhibited the conclusions of this paper.

II. SWITCH PROCESS
Database switching technique contains four stages with

fifteen steps in total.

2016 International Conference on Automatic Control and Information Engineering (ICACIE 2016)

© 2016. The authors – Published by Atlantis Press 0151

Fig. 1. Working stage division and specific steps of database switch

A. Analysis and Context Preparation
In the first stage, we need to analyze the switch-out

requirement, build a complete hardware and software
environment for data switch-out, and then import the historical
data to the big data system.

1) Big data cluster arrangement and switch-out
environment establishment

Design the architecture of big data cluster environment
according to the switch-out requirement, such as underlying
storage architecture, offline & online analysis architecture, and
query architecture. Determine the open-source tools to conduct
data management. In this way the hardware system planning of
big data will be established with consideration factors
including network throughput, data capacity, network
bandwidth between nodes, and environmental management
requirements. Apart from the testing environment, an
equivalent testing environment for manufacturing system needs
to be built as the basis of subsequent joint-test verification.

2) Offline historical data restoration

If it exists the situation of historical data detaching from the
production database due to the limitation of conventional
database, a backup environment of historical data (hardware &
software) should be built on the side of production system to
restore the historical data using assistive tools of the legacy
system.

3) Exporting historical data from original database

Export historical data from the offline historical database
into an intermediate storage in batches according to the
prescribed format. At the same time, export data of the
manufacturing system into this area.

4) Importing historical data into big data system

In order to conduct batch import of historical data, we need
to pay attention to the following issues: 1) Recording the
progress of import program to estimate the processing time; 2)
Developing the import program and designing the
corresponding batch-cleaning procedure for the sake of
backspacing; 3) Planning for a correctness verification after the
import. Import should be conducted using a scale-increase
incremental import method. Implement correctness verification
every time before the scale-increase incremental import. Pay

attention to all the error information shown in the import
process for the convenience of backspacing in time.

B. Write Interface Switch
Subsequent to the historical data import, we need to modify

the manufacturing system for the write interface switch and
real-time data access.

1) Write interface development of real-time data

Develop a write interface of real-time data according to the
architecture of production system, namely, an adapter interface
designed for the upper-level system based on practical
applications. Allocation methods need to be provided during
the developing process to meet the requirements of relocation
and update of big data cluster. Abnormal log is also required in
order to conduct fault diagnosis in case of failure. For
databases with distributed architecture, we need to consider the
issues of temporary downtime control and interface switch
strategy on the aspect of interface. To prevent data loss under
the action of impact load or long-term heavy load, a certain
buffer mechanism of temporary data has to be developed,
which could thereby improve the writing reliability.

2) Improvement of data entry testing system, iterative
joint-test verification

Joint-test verification must be carried out subsequent to the
write interface development. Regular machine for joint-test
verification can control the load for testing. Similar to the
import and export process of data, the testing process also
needs to be conducted following the idea of systematization.
That is, to implement the procedure in the order of correctness
test to performance test then to pressure test and fatigue test.
System improvement is completed once all of the work above
is fulfilled. On this basis, a detailed test report can be written
for the exhibition of system performance in the future
conclusions.

3) Data entry production system switch and double-
system parallel writing

The product can be released once the joint-test verification
is conducted. During this period, writer interface of the legacy
database system cannot be deleted due to the unfinished
modification of query interface for the production system at
this point of time. Moreover, in case of errors in the write
interface, data can be repaired through the backup system and
the original system can be switched back even under the worst

2016 International Conference on Automatic Control and Information Engineering (ICACIE 2016)

© 2016. The authors – Published by Atlantis Press 0152

conditions. Therefore, this process of double-system parallel
writing needs to be remained till the complete switch-out.

4) Bidirectional repairing of missing data

Various problems may occur during the entire process of
write interface switch in the production system, leading to
diverse data quality issues throughout the whole process of
switch. Therefore, bidirectional repairing is necessary, which
simultaneously export data from the backup database, delete
the existing data of this stage in the new database, and import
the backup data into the new database.

C. Query Interface Switch
The historical data will be totally transferred into the big

data system subsequent to the writer interface switch. Online
data will be imported into the system in real time. The
condition of business system switch is not satisfied until data
are in the system. The next step is to conduct query interface
switch.

1) Design and development of query interface

Determine the query interface form and design a matched
query interface according to the scheme. The adoption of early
development framework in upper-level applications, such as
JDBC, Hibernate, and JPA, makes a difficult compatibility
with the big data system during access. Hence, the big data
system can be reformed from the following aspects: providing
visual table interface in the database, shielding the learning
curves of traditional application developers, reducing the
modification of the system, and calling the query interface in a
conventional way using a certain type of matched interface.

2) Application system improvement and iterative joint-
test verification

Similar to the alteration of writer interface, query interface
must experience the joint-test verification as well as the
incremental test in a scale-increase manner, i.e., following the
order of correctness test to performance test and pressure test
then to fatigue test. In this way, the overall performance of
query interface can be obtained. For example, we can acquire
the QPS (queries per second) quantile out of 90. Meanwhile,
abnormal log of the query interface is also in a great
significance.

3) Online commissioning of application manufacturing
system

After all the query interfaces are modified, appropriate
practical case can be adopted to conduct online switch and
business verification of the production system.

D. Original Database Switch-out
The original historical database system can be switched out

only when the entire process of historical data import, writer
interface modification, query interface modification, and
database switch-out is completed and all the links are checked
without any problems. Generally, the switch-out operation
should not be carried out immediately. It usually requires three
to six months to conduct test run. The further operation can be
conducted only subsequent to double-check.

1) Improvement of data entry testing system, data entry
cut-off

Modify the manufacturing system of data entry, delete the
real-time written code, cease the data entry, and implementing
test to insure the total stop. This process demands a complete
modification strictly in this process. This can be explained by
the fact that unidentified legacy code in the system would
continue to write data into the original database, causing a
system halt or error if the problem is neglected.

2) Data entry production system release and single-
system data writing

Once there is no problem, the system can be released and
the data entry can be ceased.

3) Close all the interfaces associated with the old
database for a period of production system double-
check (3 – 6 months). Switch-out ends.

III. CORE ISSUES AND SOLUTIONS

A. Double-system Parallel Switch
Traditional database switching techniques could lead to no

backspacing and data loss due to the single-system halt switch,
causing irrecoverable losses for enterprises. Problems may
occur during the operation process in the newly-released
database because of the impossibility of returning to the
original database after the upper-level application modification.

Fig. 2. Conventional database switch technique

Solution: Data can be written into the new database through
the adapter interface developed according to the architecture of
the production system. After the iterative joint-test verification
on the interface, data can be written into the new and old
databases in parallel. Problems generated during the writing
process can be repaired till the data can be stored in the new
database in real time to fulfil the write interface switch. Upper-
level application can be modified till the new application is
released. Then the old database can be switched out. In the
database switching test, the old database is always in the state
of running and storing data. The entire system can return to the
old database storage state at least without data loss as shown in
Fig. 3.

Fig. 3. Technique process of double-system parallel database switch

2016 International Conference on Automatic Control and Information Engineering (ICACIE 2016)

© 2016. The authors – Published by Atlantis Press 0153

B. Repairing Technology of Lossless Data
Conventional database switching technique is unable to

process data loss generated in the test of database switch as
shown in Fig.4. There are mainly three types of data loss: 1)
Error loss caused by the ambiguity of database switch time.
Subsequent to a successful database switch, data need to be
imported into the new database from the original database of
switch. Ambiguity of the database switch time may lead to a
partial data loss during the importing process. 2) Stop loss
happened in the database switch process. Switch-out of the
original database may have a time delay during which
transmitted data may be lost. 3) Dirty data loss generated in the
database switching test. The new write interface may
experience some problems that produce a huge number of dirty
data in the new database. In this situation, data repair would be
hard to carry out.

Fig. 4. Data loss generated during the switch test

Fig. 5. Lossless data repairing

Solution: Choose two time points, starting point and ending
point that are before and after the release of the new data entry
interface, respectively. Delete all the data in the new database
from the starting point to the ending point. Import data
corresponding to this period from the original database to
realize the lossless data repair as shown in Fig. 5.

C. Application Transplantation of Friendly Data Access
Conventional database switching technique could cause

structural variation of the data access layer. Learning the big
data system would cost a great deal of money for traditional
developers and transformation has a high difficulty. Due to
upper-level applications usually adopt the early program-
development frameworks, such as JDBC and Hibernate;
variation of data access layer requires developer to learn a huge
amount of techniques associated with the big data, which
increases the learning costs.

Solution: By encapsulating the big data system using the
table function technique, we can realize the implantation of
from sentence during the storing process, combine the
advantages of structured data and unstructured data, and lower
the learning threshold for developers. By transparently
connecting the big data system with relational database using
special agent service, advantage integration of relational
database and big data system can be realized at the lowest cost,
helping legacy applications smoothly transit to the big data
platform.

IV. APPLICATION CASE
A certain traditional enterprise receives real-time data from

6000 machines every day, including working condition data
generated during the operating process of main engines,
working condition data generated by the electronic devices
installed on the main engines, and real-time location data sent
by the main engines in each location. The total number of daily
data is 50 million. The switching process of traditional
enterprise data from Oracle database to LAUD big data system
is realized using this technique. The structure of data collection
and processing platforms of this corporate is shown in Fig.6,
including a M2M platform for data collection and processing as
well as the upper-layer application system based on the M2M
platform.

Fig. 6. Structural diagram of the data collection and processing platforms in the corporate example

As shown in Fig. 6, the M2M platform is the distributed
processing cluster responsible for receiving and parsing the
working condition data from the operating devices in the
corporate. The M2M platform is composed of interface PCs
clusters, processor clusters, business databases and data
warehouses.

V. CONCLUSIONS
Traditional database cannot satisfy the increasing

requirement of data storage and the traditional database
switching technique could bring huge losses to enterprises due
to the data loss. This paper designs and implements a switching
technique for smooth switching from conventional database to
big data system. Advantages of this technique in the execution
process are listed below. 1) There is no data loss because data

2016 International Conference on Automatic Control and Information Engineering (ICACIE 2016)

© 2016. The authors – Published by Atlantis Press 0154

are written into the new database in parallel through the
double-system where the original database can fulfil data
backup. 2) Delete dirty data in the write interface test and
importing the data in the corresponding period from the
original database. 3) Learning costs are reduced for developers
by encapsulating the SQL-like language for data access of big
data system and decreasing the modification of upper-level
applications. The future work would focus on studying and
designing more high-efficiency database switch techniques.

REFERENCES
[1] Abouzied, A., Bajda-Pawlikowski, K., Huang, J., Abadi, D.J.,

Silberschatz, A.:Hadoop DB in action: building real world applications.
In: Proceedings of the ACMSIGMOD International Conference on
Management of Data, pp. 1111–1114 (2010)

[2] Baru, C., et al.: Discussion of bigbench: a proposed industry standard
performance benchmark for big data. In: Nambiar, R., Poess, M. (eds.)
TPCTC 2014. LNCS, pp. 44–63. Springer, Hiedelbeg (2015)

[3] Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Big data
benchmarking and the BigData top100 list. Big Data J. 1(1), 60–64
(2013)

[4] Chowdhury, B., Rabl, T., Saadatpanah, P., Du, J., Jacobsen, H.A.: A
BigBench implementation in the Hadoop ecosystem. In: Rabl, T.,
Raghunath, N., Poess, M., Bhandarkar, M., Jacobsen, H.A., Baru, C.
(eds.) WBDB 2013. LNCS, vol. 8585, pp. 3–18. Springer, Heidelberg
(2014)

[5] Transaction Processing Performance Council, TPCx-HS, February
2015.www.tpc.org/tpcx-hs/

[6] Floratou, A., Minhas, U.F., ¨ Ozcan, F.: SQL-on-hadoop: full circle back
to sharednothing database architectures. Proc. VLDB Endowment
(PVLDB) 7(12), 295–1306 (2014).

2016 International Conference on Automatic Control and Information Engineering (ICACIE 2016)

© 2016. The authors – Published by Atlantis Press 0155

	I. Introduction
	II. Switch Process
	A. Analysis and Context Preparation
	B. Write Interface Switch
	C. Query Interface Switch
	D. Original Database Switch-out

	III. Core Issues and Solutions
	A. Double-system Parallel Switch
	B. Repairing Technology of Lossless Data
	C. Application Transplantation of Friendly Data Access

	IV. Application Case
	V. Conclusions
	References

