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Abstract:In order to improve the accuracy and efficiency of flexible multibody system dynamics 

simulation and control, the research on  the  selection  of shape function in flexible multi- body 

system is needed.Under the specific floating coordinate system, deduce flexible multi-body system 

dynamics general equation based on Lagrange equation.Analysis and compare the coefficient matrix 

of dynamic equation In view of the three different types of shape function, the effect of shape function 

selection for dynamics calculation accuracy and efficiency is studied.Research shows that floating 

coordinate system  affect the degree of equation coupling , and The main factors influencing the 

calculation accuracy and efficiency is shape functionThe form of Dynamics equation  under  static 

deformation assumption  is the simplest and calculation efficiency is highest.Calculation efficiency 

of the  finite element model and vibration mode model increases as the number of units and the 

number of mode truncation decreases.Calculation efficiency and accuracy interact on each other and 

determine the shape function of the form. 

Introduction 

The flexible multi-body system dynamics focuses on the research on component elasticity in 

mechanical and structural systems, motion pair deformation and coupling dynamic characteristics of 

rigid motion, which has the same research purpose with the multi-rigid-body dynamics, namely, it 

aims to solve two problems of simulation and forward & inverse control of the dynamic system[1]. In 

the process of developing rigid system dynamics, the algorithm efficiency needed for real-time 

control and simulation calculation should be first concerned, thus various recursive algorithms[2-4] are 

established by analyzing multiple principles of mechanics[2-5]. With the progress in computer and 

chip technology, the efficiency of the algorithm is no longer the research focus, and the closed kinetic 

equation of the system in general form can be obtained by no matter what kind of principle according 

to the equivalence of mechanical principles[1,5]. In various fields such as robot [6], spacecraft[7], sport 

biomechanics[8] and gun mechanism[9-13], the needed dynamic model can be established with the 

theory and algorithm of rigid multi-body dynamics, which is used for the analysis of the system 

response or the design of dynamic control algorithm for the system.  

The further consideration of the deformation characteristic of member or hinge in the system 

based on rigid multi-body dynamics is the demand in the engineering, and the theory for the 

improvement of the accuracy of simulation and control algorithm. Zhou Qizhao indicates in the 

Article[13] that the system is stable if the panel of the spacecraft with the solar panel is considered as 

the rigid body, while the system may be instable when the elasticity of the panel is considered. In 

addition, at the early stage of the development of flexible body system dynamics, the important 

research problems of flexible multi-body system dynamics are pointed out[14]. The first problem is the 

selection of the floating coordinate system, which decides the coupling degree of the kinetic equation 

of the system[1,13,14,15]; The second is the description of the deformation of elastomer or hinge, which 

decides the computational efficiency and computational accuracy of the simulation and control 

algorithm[1,14]. These problems caused by shape function of floating coordinate system and the 

elastomer seem relatively perfect in theory; however, the problem in the engineering field is that how 

to select them aiming at simulation and control problems in certain field is not clear enough. In terms 

of simulation and control in various fields such as spacecraft and gun at present, the dynamics model 
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is generally established in a given way, and the correlation algorithm is designed after the simplified 

treatment. In fact, aiming at different application situations, the requirements for the establishment of 

floating coordinates as well as the deformation of the elastomer and its control are different, 

especially the selection of the shape function, and the requirements for the accuracy in different 

application fields decide the complexity of the assumed shape function and the computational 

efficiency. For example, it is unnecessary to select the shape function of the same computational 

accuracy for the deformation of the gun barrel and the solar panel of the spacecraft. These problems 

are not studied thoroughly now.  

In this paper, aiming at the problem that the shape function affects computational accuracy and 

efficiency of figures, and based on the analysis of the floating coordinate system established at the 

specified hinge, the kinetic equation of the flexible multi-body system in general form is first 

established; computational accuracy and computational efficiency of simulation and control of the 

flexible body system caused by different shape functions through the analysis of the coefficient 

matrix in the kinetic equation aiming at the shape functions in three forms. Finally, the simulation 

calculation is carried out for the kinetic equation using different types of deformation functions 

through an example of double connecting rod. 

Flexible Multi-body System Dynamics 
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Fig.1 Finged flexible body  

As shown in Figure 1, flexible bodies connected by any two hinges in the system are considered, and 

the coordinate system is established.The inertial coordinate system is located at O  point, and 

i i i iO x y z  is the floating coordinate system of the ith object. The origin iO  of the floating coordinate 

system is located at the hinge between the i-1th flexible body and the ith flexible body, and its 

position vector in the inertial coordinate system is OiR . The ith object is taken as the research object, 

and the displacement of any point P on the flexible body is the sum of rigid motion or  and elastic 

motion 
fu . In the moving coordinate system, setting Ou  to the undeformed position vector, 

fu
 
is the 

position vector caused by the arbitrary deformation; setting u  to the position vector of P  point 

relative to the moving coordinate system,
 O f u u u .  

When any P  point goes through the flexible point, the displacement of the flexible body forms a 

displacement field  , ,x y zΦ , and this displacement field is compatible and complete. In order to 

further describe the deformation mode of the object, setting the shape function matrix 

 1 2 nΦ Φ Φ Φ , the amount of deformation of each point on the elastomer 
fu  can be 

expressed as 
f fu Φq , in which 

fq  indicates the generalized coordinates corresponding to the 

deformation. In the inertial coordinate system, the position vector of P  point can be expressed as:  

( ) ( )p Oi Oi O f Oi O f       r R Au R A u u R A u Φq
                   

（1） 
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In the formula, A  indicates the rotation transformation matrix of the moving coordinate system 

relative to the inertial coordinate system. The derivative of Formula (1) is taken, to obtain the velocity 

vector of P  point:  

p Oi Oi f     r R Au Au R Au AΦq  

From the definition of Euler parameters[15], the rotation transformation matrix can be expressed as 

ˆˆ TA EG . ˆ2  Au AuGP BP  is set. The velocity vector of P  point can be expressed as the 

matrix form.  

 
Oi

p

f

 
 

  
 
 

R

r I B AΦ P

q
                                   

      （2） 

In Formula (2), the velocity vector of any point on any flexible body is determined, and it shows that 

the shape function affects velocity vector and kinetic energy of any point on the flexible body, and the 

selection of the shape function is crucial to the solution of the equation of the flexible body system 

dynamics.  

Basic Equations of Dynamics 

From the expression of velocity vector of any P  point, the kinetic energy of the flexible body i can be 

obtained:  

1 1

2 2

T T

p p
v

T dV  r r q Mq
                                                       

(3) 

Calculation of potential energy of flexible body .The virtual work of the internal force caused by the

 elastic deformation is: 
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In the formula,
 

* *

f f ε D u D Φq ;
*

f σ Eε ED Φq ; *
D  indicates the differential operator matrix; 

E  indicates the elastic modulus matrix.
 

T

e f Q q K  indicates the generalized force of the elastic 

force caused by the deformation of the elastomer; 
* *( ) dT

ff
v

V K D Φ ED Φ indicates the stiffness 

matrix of the elastomer corresponding to generalized coordinates
fq , which is the symmetric positive 

definite matrix. The strain energy of the elastomer is:  

1 1

2 2

T T

f ff fU  q K q q Kq
                                              （5） 

Calculation of generalized force. Setting the concentrated force to ( , )tF F q  acting on any point 

on the flexible body, the virtual work on the virtual displacement of its action point is: 

 

δ δ

δ δ δ

δ δ

Oi Oi

T T T T

FR F Ff

f f

W 

   
   

      
   
   

R R

F I B AΦ P Q Q Q P

q q
                

（6） 

The generalized force corresponding to the active force F  is: 
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 T T T T T

F FR F Ff
   Q Q Q Q F I B AΦ

                           
（7） 

From the Lagrange equation
d

d

T T U

t

   
   

   
Q

q q q
, the equation of flexible body dynamics can 

be deduced: 

0 0 0

0 0 0

0 0

RR R Rf Oi Oi FR vR

f F v

ff f ff f Ff vf



   

          
          

            
          

          

m m m R R Q Q

m m P P Q Q

m q K q Q Q
           

（8） 

In the formula,
1

2

T
T

v vR v vf

  
          

Q Q Q Q Mq q Mq
q

，The expression of each element of 

mass matrix is: 

d

RR R Rf

T T T

f
v

T T T T

ff

V


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   
   

    
     



m m m I B AΦ
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It shows from the deduction of the expressions of mass matrix M  and stiffness matrix K  the 

kinetic equation of the flexible body system that under the specified floating coordinate system, the 

form of the kinetic equation of the flexible body system and various coefficient matrix elements are 

same, thus the decoupling degree of the equation is same, which shows that the selection of the shape 

function has little to do with the decoupling degree of the equation. Different forms of shape function 

result in coefficient matrix of different complexity and different amount of generalized coordinates, 

thus the shape function affects computational accuracy and efficiency of the kinetic equation. 

According to the assumption method used at present, although the solution for the problem can be 

obtained, the estimation of its accuracy is very difficult, and the error is time-varying function, which 

is just the difficulty of the flexible body dynamics.  

Shape Function of  Flexible Body 

The configuration of the flexible body in the motion process is changing. By means of discretization, 

the relative deformation of the flexible body is expressed as N linear combinations of generalized 

coordinates ( 1, , )i i Nq , and the expression of the general displacement of the deformation is:  

1

N

f i i f

i

q


  u Φq

                                                   

（9） 

In the formula, Φ  indicates the shape function in general form, which is only related to the position. 

Assuming that the suitable shape function is the core problem of discretization, the selected shape 

function is expected to describe the actual deformation of the object as much as possible. Static 

deformation, finite element model and vibration modal are three main types of shape functions.  

Considering double-connecting rod mechanism shown in Figure 2, 1m
 
and 2m  indicate the 

lumped mass at the terminal, and two connecting rods are uniform Euler beams, whose mass is 1M  

and 2M , length is 1l  and 2l , and stiffness is 1EI  and 
2EI  respectively. The deformation of the 

connecting rod is described with three types of shape functions below.  
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Fig.2 Dual-link planar motion mechanism 

Case (1): The static deformation is taken as the shape function. The static deformation model is to 

take the static deformation of the object under the external force including the gravity as its assumed 

deformation mode. The connecting rod can be equivalent to the cantilever beam model, affected by 

the self-weight and the concentrated force at the terminal. From the knowledge of mechanics of 

material, the flexibility of connecting rod affected by the uniform load (self-weight) and the 

concentrated force at the terminal is respectively: 

 
2

1

1

3
6

x
l x

E I
         

2
2 2

2

1

( 4 6 )
24

x
x lx l

E Il
                             （10） 

The amounts of deformation of connecting rod 1 and connecting rod 2 are respectively expressed as: 

1 1 1 2 1fu m g M g          
2 1 2 2 2fu m g M g                             （11） 

The elastic deformation in the motion of the flexible body is described with the static deformation 

model, and the accuracy increases compared with the calculation with the rigid body model. The 

static deformation model is simple, the needed number of generalized coordinates is small, and the 

computational efficiency is high. However, if the elastic deformation of the flexible body is described 

by the static deformation instead of the dynamic deformation, the computational accuracy must have 

large error.  

Case (2): The finite element model is taken as the shape function. The finite element method is to 

break up the whole into parts of the object with complex shape, boundary condition and load, which is 

segmented to the elements of limited number, limited size and certain regular shape. The 

displacement vector 
ij

fu  at any point P  on the j  element of i  object can be expressed as: 

ij ij i

f fu N q
                                                             

（12） 

In the formula, 
ij

N  indicates the deformation mode or the assumed displacement field of j element, 

which is called the shape function of j  element, and i

fq  indicates the displacement vector of the 

node of this element. After assembly of all the elements, the displacement vector of all the nodes of 

the object constitute the elastic generalized coordinates of this object. In the model shown in Figure 2, 

the connecting rod is equivalent to the beam model and divided into i  elements, and the length of the 

element is l . The displacement of element node is deflection and rotation angle of the node.  

 1 1

i

f i i i iw w  q                                               （13） 

Through the polynomial fitting, the shape function expressed by the node displacement of the 

element can be obtained:  
2 3 2 3 2 3 2 31 3 2 ( 2 3 ) 3 2 ( )ij l l                 N          （14） 

The derivative of the above formula is taken, to obtain the geometric matrix of the beam element:  

 ''

2

1
( ) 6 12 ( 4 6 ) 6 12 ( 2 6 )ij ij l l

l
           B N                  （15） 

The expression of elastic potential energy of Bernoulli beam is: 

31



 

 
2

0 0

1 1 1
d

2 2 2

l l
ij iT T i iT ij i

ij f f f f fU EI u x EI   
   q B B q q K q                     （16） 

The stiffness matrix of the element can be obtained:  

2 2

30

2

12 6 12 6

4 6 2

12 6

4

l
ij T

l l

l l lEI
EI

ll

l

 
 


  
 
 
 

K B B                               （17） 

The consistent mass matrix of the element can be obtained according to the Literature[16]: 

2

2

156 22 54 13

4 13 3

156 22420

4

ij

l l

l l lAl

l

l



 
 


 
 
 
 

M                                   （18） 

After stiffness matrix and mass matrix of the beam element are obtained, stiffness matrix and mass 

matrix of the system can be assembled according to the initial condition, and the vibration analysis is 

carried out then. In the calculation of the finite element model, the selection of the deformation mode 
ij

N  of the element has multiple forms, which can be selected according to factors such as materials 

and shapes as well as computational accuracy and efficiency limitation of the flexible body as 

appropriate. If the number of divided elements is more, the number of generalized coordinates is 

more, and computational accuracy is higher; and the computational efficiency decreases 

subsequently.  

Case (3): The vibration modal is taken as the shape function. The vibration modal is a kind of 

method commonly used that describes the spatial deformation of the object in the structural dynamics. 

It describes the deformation of any point on the flexible body by introducing modal vector and mode 

coordinates, namely: 

f fu Φq
                                                          

（19） 

In the formula,  1 2 NΦ Φ Φ Φ indicates the modal vector matrix;  f f tq q indicates the 

mode coordinates; and N  indicates the number of mode truncations. In the model shown in Figure 2, 

the deformations of connecting rod 1 and connecting rod 2 are respectively: 

 1 1 1

1

( )
N

f i i

i

u q t x


 ，  2 2 2

1

( )
N

f i i

i

u q t x



                                

（20） 

In them, ( ) sini

i x
x

l


   indicates the i-order vibration mode of the beam, and  iq t  indicates the 

mode coordinates.  

The range of modal truncation can be considered according to transcendental response 

characteristics and accuracy requirement. In general, the response contribution of the low-order 

modal is large, and the response contribution of the high-order modal is relatively small. Under the 

premise that the solving accuracy is guaranteed, the modal with small contributions can be truncated, 

to reduce the solving scale to the utmost. 

Case Study 

Setting 1r  and 2r  to position vectors of point 1P 1 and 2P 2 on connecting rod 1 and connecting rod 2 in 

the inertial coordinate system, the kinetic energy of the system is:  

1 2
1 2 1 1 1 2 2 2

T T

l l
T T T dl dl     r r r r  

Calculation of the kinetic energy of connecting rod 1. 
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Fig.3 Icon of link 1 

The selection of the coordinate system is shown in Figure 3, and the position vector 1r  of any point 

1P  on connecting rod 1 can be obtained:  

 1 1 1 1O f r A u u
                                                        

（21）
 

The derivative of Formula (22) is taken to obtain the velocity vector 1r  of 1P : 

       1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

T

O f O f f O f f O f
            
   

r A u u A u u A u A A u u A u ω u u
        （22） 

In them, 
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The kinetic energy of connecting rod 1 is: 
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（23） 

In the formula, 1v  indicates the deflection of connecting rod 1 and the density of connecting rod 1 is: 

1
1 1 1 1 1

1

( ) ( )
M

x m x l
l

    . 

Calculation of kinetic energy of connecting rod 2. 
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Fig.4 Icon of link 2 

The selection of the coordinate system is shown in Figure 4, and the position vector 2r  of any point 

2P  of connecting rod 2: 

   2 1 2 2 2 1 1 2 2 2'O O f O O f     r R A u u A R A u u
                       

（24） 
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In the formula, 1'OR
 
indicates the position vector of the moving coordinate origin of connecting rod 2 

in the moving coordinate system of connecting rod 1. The derivative of Formula (24) is taken, to 

obtain velocity vector 2r  of 2P : 

   2 1 1 1 1 2 2 2 2 2' 'O O f O f
     
 

r A R ω R A u ω u u
                      

（25） 

In them,
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The kinetic energy of connecting rod 2 is: 
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In the formula, 2v  indicates the deflection of connecting rod 2, and the mass density of connecting rod 

2 is 2
2 2 2 2 2

2

( ) ( )
M

x m x l
l

    . 

Case (1): Deduced with the static correction model, Formula (12), Formula (24), and Formula (27) 

are substituted into Lagrange equation, to obtain the expression of the nonzero element in the mass 

matrix M : 
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Because the dynamic deformation of the rod is replaced by the static deformation, the generalized 

coordinates is not added in the system, and stiffness matrix  0K . The gravity potential energy of 

double connecting rod system is: 

1 2
1 2 2 1 1 2 2 2

3 3

1 1 1 1 2 2 2 2
1 2

1 2
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cos cos

40 40
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 
 

                    （27） 

The driving torques 1( )t  and 2 ( )t  of double connecting rod system are respectively active 

forces of connecting rod 1 and connecting rod 2, and the corresponding generalized force can be 

obtained with the principle of virtual work: 

1 1 2( ) ( ) ( )Q t t t  
       5 2( ) ( )Q t t  

Case (2): The mass matrix and stiffness matrix of the element in the finite element model are 

deduced with Formula (18) and Formula (19), and mass matrix M  and stiffness matrix K  of the 
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element are assembled, thus able to obtain mass matrix and stiffness matrix of the system, which is 

not described here.  

Case (3): Deduced with the vibration modal, setting the number of mode truncations 3n  , the 

function of the prior third-order vibration mode of the rod is:  

1( ) sin
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x
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2
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3
( ) sin

x
x

l


 

              （28） 
Formula (20), Formula (23), Formula (26) and Formula (28) are substituted into Lagrange equation, 

to obtain the expression of the nonzero element in the mass matrix M :  
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The nonzero element in stiffness matrix K  is: 
4

22 13

12
K EI

l


          

4

33 13

1

8
K EI

l


          

4

44 13

1

81

2
K EI

l


  

4

66 23

22
K EI

l


          

4

77 23

2

8
K EI

l


          

4

88 23

1

81

2
K EI

l


  

The gravity potential energy of double connecting rod system is: 
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（29） 

The driving torques 1( )t  and 2 ( )t  of double connecting rod system are respectively active 

forces of connecting rod 1 and connecting rod 2, and the corresponding generalized force can be 

obtained with the principle of virtual work: 
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The numerical simulation can be carried out with static deformation model, finite element model 

and vibration modal respectively, and the simulation parameter is below: 

1 2 0.75l l m        6 2

1 60 15 10A m       6 2

2 40 10 10A m  
     1 1.4M kg

           2 0.62M kg              
2

1 1220EI N m    2

2 218EI N m              1 5.5m kg                      2 0.62m kg  

   3

1 215sin 2 62t t N m                         3

2 75sin 2 15t t N m     

Assuming that two rods are in horizontal position at the initial moment, and the deformation is zero, 

the initial condition is  0  0q ，  0  0q  
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The prior third-order vibration modal is taken as reference, angular velocity and terminal 

displacement of the connecting rod as well as the error between them are calculated with static 

deformation model, first-order vibration mode, finite element model and rigid body model 

respectively, and the simulation result is below:  

 
Fig.5 Angular velocity deviation of link 1 

 
Fig.6 Angular velocity deviation of link 2   

Figure 5 and Figure 6 show the error of angular velocity of connecting rod in rigid body model and 

flexible body model under three types of shape function. It shows that because it is in the static 

deformation model, the static deformation is taken as the shape function of the flexible body instead 

of the dynamic deformation, thus static deformation and rigid body model have the same influencing 

degree on the angular velocity of the flexible body. The error between rigid body model and static 

deformation is large, reaching ±0.14rad/s, and the flexible deformation affects the rigid rotation angle 

of the rod. In the motion machinery with high accuracy requirement, the flexible deformation of the 

structure cannot be ignored. The calculation error of the first-order vibration mode is less than 

±0.05rad/s, and the computational accuracy increases significantly. For the general mechanical 

structure, under the premise that the solving accuracy is guaranteed, the high-order modal can be 

truncated, to reduce the solving scale to the utmost. The error of the finite element model is less than 

±0.02rad/s, and the computational accuracy is the maximum. However, because each element 

corresponds to multiple generalized coordinates, the coefficient matrix dimension of the kinetic 

equation of the system is high, and the computational efficiency is the minimum. 
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Fig.7 Displacement deviation of endpoint in X   

 
Fig.8 Displacement deviation of endpoint in Y 

Through the comparison of the error of terminal displacement in rigid body model and flexible 

body model under three types of shape function in Figure 7 and Figure 8, it shows that because of the 

existence of the flexibility of the rod, the terminal velocity of the rod has deviation with the terminal 

velocity calculated according to the rigidity, and the deviation in X  direction and Y  direction can 

reach ±0.07m/s. In the static deformation model, because the elastic deformation of the rod is 

considered, because the elastic deformation of the rod is considered, the error decreases compared 

with the rigid body model; however, the static deformation is taken as the shape function of the 

flexible body instead of the dynamic deformation, and the calculation error is still large relative to 

first-order vibration mode and finite element model. The error of first-order vibration mode and finite 

element model is small, and the computational accuracy increases as the number of mode truncations 

and the number of divided elements increase; however, the generalized coordinates increase too, and 

the computational efficiency decreases. In addition, it shows that except that the deformation effect of 

the connecting rod must be considered, the motion of the rod contains the vibration of the high 

frequency part, thus to result in the jitter of the rod, and increase the control difficulty of the rod. 

 Conclusions 

In this paper, aiming at the problem that the shape function affects computational accuracy and 

efficiency of figures, and based on the analysis of the floating coordinate system established at the 

specified hinge, the kinetic equation of the flexible multi-body system in general form is first 

established, three forms of the shape function are discussed respectively and the characteristics of 

three forms of shape functions are analyzed. The analysis and case show that:  

Under the specified floating coordinate system, the decoupling degree of kinetic equation of the 

flexible body system is the same, namely, mass matrix, stiffness matrix and damping matrix have the 

same element, showing that the selection of the shape function is not related to the decoupling degree 

of the equation. The computational accuracy of kinetic equation of the flexible body system has little 
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to do with the floating coordinate system and the coupling degree of the equation; the coupling degree 

mainly affects the complexity of the equation, while the shape function affects computational 

efficiency and accuracy of the equation greatly.  

The form of the equation of the static deformation model is simple, and the computational 

efficiency is the highest. When calculating the displacement of the rod terminal, the error decreases 

compared with the rigid body model, and the error at the calculation of the angular velocity is the 

same as that of the rigid body model. By comparison, the application of finite element model is 

flexible, which is suitable for the simulation calculation of the complex structure. Different number of 

mode truncations in the vibration modal model result in different calculation results. The number of 

generalized coordinates and computational accuracy in finite element model and vibration modal 

model increase as the number of divided elements and number of mode truncations increase, and the 

computational efficiency decreases too.  

Based on deduction and analysis of the above work from the theoretical formula, and different 

aspects of the case study, the change rule between the selection of the elastic deformation of the 

flexible body system and computational accuracy and efficiency of the equation is given in details, 

which can be used for the reference to simulation and control of the flexible body system dynamics 

according to different demands.  
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