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Abstract. This paper conducts revisions of the existing elastic-plastic contact models for a single 

asperity with the fractal surface topographies generated from W-M functions. The expressions of the 

critical parameters and the contact load-area relationship are deduced in the terms of fractal 

parameters, asperity’s base diameter and material properties. Numerical analysis suggest that the 

contact models’ critical parameters derived strictly in a convincing and easier way in this study are 

scale-dependent on the asperity’s base size and determined jointly by fractal parameters, asperity’s 

base diameter and material properties. The transformation condition for an asperity transfers from 

elastic to plastic contact and the contact load-area relationship are consistent with those in classical 

contact mechanics but contrary to the existing fractal contact models. 

Introduction 

Due to the existence of surface roughness, two surfaces’ real contact only occurs at the asperities 

occupying a very small proportion of the nominal contact area. Therefore, the contact mechanics of 

rough surfaces is very crucial for tribology study such as friction, adhesion, wear etc. During the last 

forty years, many researchers have dedicated to working out the problem of the contact between 

rough surfaces. Therefore, a large number of contact models based on statistical or fractal topography 

parameters have been developed [1-3]. Majumdar and Bhushan [3] developed the first fractal contact 

model, i.e. M-B model. For a signal elastically deformed asperity contact, there are two 

disagreements between the M-B model and the classical contact models, such as Hertz contact theory. 

Firstly, the relationship between the real contact area a, and the load F obtained from the M-B model 

is of the form: aF
(3-D)/2

 (1<D<2), while that from the Hertz model is aF
3/2

. Secondly, in the M-B 

model, when the contact area a<ac (ac is the critical contact area,), the contact mode is plastic, and 

transfers to be elastic when a>ac; whereas, the reversal is true for the situation in classical contact 

models. Soon after, Wang and Komvopoulos [4-6] modified the M-B model. Yan and Komvopoulos 

[7] further modified the M-B model using a 3-dimensional (3-D) isotropic fractal surface also 

generated from Weierstrass and Mandelbrot (W-M) function [8]. Then these fractal contact models 

have been used in various fields of applied physics [9-12] without any doubts about the 

above-mentioned disagreements.  

Until recently, Morag and Etsion [13] revised the M-B model of a single fractal asperity and found 

that the critical interference, the critical contact area and the critical load, are all scale-dependent. 

Their result also shows that the load and contact area increase a transition from elastic to plastic 

contact mode as takes place in the Hertz contact model and the relationship between the contact area 

and the load satisfies aF
3/2

. Morag and Etsion’s study has provided an insight into the different 

outcomes in the M-B model and patched up the disagreements between the M-B model and Hertz 

model. However, there still exists unconvincing arguments which also can be further simplified in 

their study. Take Eq. 18 in Ref. [13] as an example, they replaced the asperity’s critical height δc with 

asperity’s critical deformation ωc (0≤ω≤δ) directly without any convincing explanation.  

The main objective of this study is twofold. First, we intend to resolve the unconvincing aspects in 

Ref. [13] and then simplify its derivation process of the contact between a single asperity and a rigid 
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flat plane. Second, we extend this revised contact mechanics analysis to the cases of the contact 

between 3-D fractal rough surfaces.  

Fractal Surface Characterization 

2-D Fractal Surface Two rough surfaces’ contact is often simplified as an equivalent contact model 

consisting of a deformable rough surface with effective material properties and equivalent roughness 

in contact with a rigid plane [1]. In the M-B model, the rough surface is generated by 2-D W-M 

equation given in Eq. 1. 
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where D (1<D<2) and G are the fractal dimension and fractal roughness of the surface profile, 

respectively, both independent of the wavelength in the range where the surface exhibits fractal 

behaviors. γ
n
 (γ>1) controls the density of frequency of the surface roughness and γ=1.5 is a typical 

value for most surfaces. n is the spatial frequency index, which indicates the frequency level of the 

asperities, and the lowest level nl is related to the sampling length L=1/γ
nl

.  

3-D Fractal Surface 3-D fractal rough surface can be generated from 3-D W-M function [7], as 

illustrated in Eq. 2. 
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where D (2<D<3), G, γ, n and L are the same as those in Eq. 1. M is number of superposed ridges, 

and ϕm, n, restricted in the range of [0, 2π], is a random phase to prevent the coincidence of frequencies 

at point of the surface profile. Here, the lower limit of the frequency index n is zero, while its upper 

limit is given by nmax=int[log(L/Ls)/logγ], where Ls is the cut-off length normally on the order of the 

material’s inter-atomic distance. 

Contact Analysis 

Description of 2-D and 3-D Fractal Asperity The detailed description of the M-B model can be 

found in Ref. [3]. In this paper, only the most important and related parts of M-B model are listed. Fig. 

1 displays a contact model between a rigid flat plane and a fractal asperity of which the geometry z(x) 

is given in Eq. 3. 
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with the base diameter l and frequency level n=log(1/l)/logγ. The height of the asperity, δ, is 

defined as in Eq. 4. 
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and Eq. 5 shows the asperity’s radius of curvature R as below 
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It is worth noting that, in the M-B model, the contact spot is assumed to be a circle with the base 

diameter l while the contact area a is set to be equal to l
2
, i.e. a≡l

2
. Then, Eqs. 4 and 5 can be written as 

in Eq. 6.  
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According to Yan and Komvopoulos’s study [7], for an isotropic 3-D fractal surface, an asperity’s 

profile also with the base diameter l can be given in Eq. 7. 
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, -l/2<x<l/2                                                    (7)                                       

the asperity’s height δ  and asperity’s radius of curvature R are shown in Eq. 8. 
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It should be noticed that Eq. 9 is a little different from that in Ref. [7] in which R is obtained using 

equation l
2
≈2Rδ. This will be described in detail later in this paper.   

 
        

 

Figure 1: Schematic of a fractal asperity’s contact     Figure 2: Schematic of a micro-contact established between a fractal 

                 with a rigid flat plan in M-B model.                           asperity and a rigid flat plan of the revised contact model. 

                                                      

Revised Model of a 2-D Fractal Asperity Fig. 2 illustrates a truncated fractal asperity of scale l with 

its profile z(x), height δ, and radius of curvature R given by Eqs. 3~5, respectively. In the M-B model, 

the deformation ω is assumed to be identically equal to the asperity’s height δ, i.e. ω≡δ. In common 

with Ref. [13], the real deformation, ω, ranging from zero to full deformation, i.e. 0≤ω≤δ, is 

introduced as an additional parameter independent of δ. In addition, the deformation of any asperity 

in contact can be elastic or fully plastic in this study.  

Eq. 9 shows the geometric relationships obtained from Fig. 2 as below 

2 22 2a' r' r a    , and      
2 2 22 2/ 2R l R r' R                                (9) 

Due to the fact that R is much larger than δ, the part of δ
2
 can be omitted to obtain the following 

equations as demontrated in Eq. 10. 

2 2r' R , 2 / 4 2l R                                                           (10) 

Then, the relationship between ω and δ is obtained as given in Eq. 11a. 

 2 24 /r' l                                                                (11a) 

Substituting Eq. 4 into Eq. 11a results in Eq. 11b, which is shown below  

 1 24
D DG l r'
                                                               (11b) 

According to Ref. [1], the critical value of asperity interference (or deformation) ωc at the 

inception of plastic flow can be written as in Eq. 12. 

 
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where b is a constant independent of micro-contact size. The equivalent elastic modulus E and 

hardness H of the two contact surfaces are given as in Eq. 13. 
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where subscripts A and B refer to the two contacting surfaces, and E, ν, and H denote material’s 

Young’s elastic modulus, Poisson’s ratio, and hardness. According to Eqs. 9, 11b and 12, the 

relationship between the critical contact area ac and the critical interference ωc can be obtained in Eq. 

14. 
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According to Hertz contact theory, Eq. 15 shows the elastic and plastic load at signal 

micro-contact. 
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The normal force at a micro-contact is assumed to change continuously during the approach of the 

surfaces, thus, there exists ∆Fe(ac)=∆Fp(ac). Then, from Eqs. 5, 9, 15, ac can be expressed in Eq. 16. 
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Eq. 17 was obtained by substituting Eq. 16 into Eqs. 14 and 15. 
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Simultaneously, the value of constant b is 9/2 by comparing Eqs. 13 and 16. It is easy to obtain the 

relationship between the contacting elastic load and the contacting area is shown in Eq. 18. 
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Revised Model of a 3-D Fractal Asperity The interference of 3-D fractal asperity can be easily 

obtained by introducing Eq. 8 into Eq. 11a and result in Eq. 19. 
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Substituting Eqs. 8, 9, 15 into the equation ∆Fe(ac)=∆Fp(ac) is shown in Eq. 20. 
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and then ωc can be easily obtained as illustrated in Eq. 21. 
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with the value b is 9/8. In the same way, the relationship between the contacting elastic load and 

the contacting area of the 3-D fractal asperity is shown in Eq. 22. 
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Numerical Results and Discussion 

It is clear to see from the above equations that the critical parameters ωc and ac are all scale-dependent 

in this study. This finding is in disagreement with that in Refs. [3] and [7] in which the critical areas 

are scale-dependent, whish is shown in Eq. 23. 
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and Eq. 24 illustrates the further relationships between interference and contacting area. 
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The above four equations imply that an asperity with contact area a>ac is elastically deformed 

since its deformation δ<δc, whereas in contrary, an asperity with a<ac is plastically deformed since its 

deformation δ>δc. Namely, an increasing contact area leads to a transition from plastic to elastic 

contact mode, and the explanation given by Majumdar and Bhushan [3] is “due to the fact that smaller 

asperities have smaller radii of curvature and are therefore more likely to undergo plastic 

deformation”. This result is contrary to that in classical contact mechanics, i.e. Hertz theory or G-W 

model [1]. The reason for this discrepancy is due to the assumption of a≡l
2
 and ω≡δ in M-B model. 

This study, with the assumption of the asperity’s deformation 0≤ω≤δ and curvature radius R decided 

by its bases, is different from either the M-B model or the G-W model. The results of this study 

suggest that, the condition for an elastic contact transfers to a plastic contact is ω>ωc corresponding to 

the condition a>ac, which is consistent with that in classical contact mechanics but contrary to that in 

the M-B model. 

 

Table 1: Examples of contacting surfaces and their properties [11]. 

Contact system 
Properties 

Young’s elastic modulus E (Gpa) Poisson’s ratio ν Hardness H (Gpa) 

Al2O3/TiC 
307 0.25 27.6 

450 0.18 23.5 

Al2O3/CrN 
307 0.25 27.6 

103 0.30 14.8 

AISI 1095/AISI 1020 
200 0.29 6.08 

200 0.29 1.71 

 

         
                              (a) ωc vs. l                                              (b) ac vs. l                                           (c) ∆Fe(ac) vs. l 

Figure 3: Critical parameters versus the 3-D fractal asperity’s base diameter l for the surface properties listed in Table 1. 

 

      
                                          (a) ac & ωc vs. D                                                   (b) ac & ωc vs. G  

Figure 4: Critical parameters as functions of 3-D fractal parameters for Al2O3/ TiC contacting system listed in Table 1. 

 

Figs. 3 illustrates the effect of the asperity’s base diameter on the critical parameters, ωc, ac and 

∆Fe(ac) of 3-D fractal contact surfaces from three different contact systems listed in Table 1 guided 

from Ref. [11], from which we can see that critical parameters all tend to increase gradually with the 

asperity’s base size and the increasing amplitude of surfaces with different  material properties varies.  
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Figs. 4 displays that the critical parameters ac and ωc vary with the fractal parameters D and G of 

3-D fractal surfaces in Al2O3/TiC contacting system, from which it can be seen the increase and 

decrease in ac and ωc with increasing D and G respectively. The results of the above figures reveal 

strong dependence of critical parameters, ωc, ac on fractal parameters, the asperity’s base diameter 

and material properties, i.e. they are fractal but scale-dependent. 

The analysis in last section also suggests that the relationship between the contact area and the 

contact load of an elastically deformed fractal asperity satisfies a∆Fe
2/3

 as shown in Eqs. 18 and 22, 

in agreement with classical contact mechanics. However, load–area relationships given by Refs. [3] 

and [7] for 2-D and 3-D fractal surfaces respectively are shown in Eq. 25. 
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It is clear to see that the above area-load relationships all vary from aP to aP
2
. This difference 

between the presented revised fractal model and the existing fractal models is also due to the 

assumption that a always equals l
2
 and ω≡δ. 

In addition, although the transformation rule for a fractal asperity transfers from an elastic contact 

to a plastic contact and the power-law behavior between the contact load and the contact area 

obtained in this study is similar to that in Ref. [13], the equations derivation process in this study is 

more simple and acceptable. The critical deformation ωc (0≤ω≤δ) obtained just by setting equal to the 

asperity’s critical height δc in Ref. [13] is arbitrary and not acceptable. However, the expression of ωc 

in this study was deduced strictly and convincingly in an easier way. Moreover, in this paper, the 

analysis was expanded to the contact mechanics of 3-D fractal rough surfaces; also the numerical 

study was conducted to investigate the effect of material properties, the size of asperity’s base and 

fractal parameters on the critical parameters. 

Conclusions 

In this paper, the unconvincing aspects in Ref. [13] was resolved and the existing elastic-plastic 

contact models of a single asperity with fractal geometry were revised to investigate the 

scale-dependence of the critical parameters and relationships between the contact area and contact 

load. Numerical analysis was conducted to further study the influences of the asperity’s base diameter, 

material properties and fractal parameters on the critical parameters. Based on the presented analysis 

and discussion, the following main conclusions can be drawn from this study. 

(1) The asperity’s critical deformation ωc obtained in this study is objective and reasonable, and the 

analysis process is clearer and simpler. 

(2) Critical parameters, including critical deformation, critical contact area and critical contact load 

are all scale-dependent on the asperity’s base size, and determined jointly by the asperity’s base 

size, fractal parameters and material properties. 

(3) The condition for a fractal asperity transfers from elastic contact to plastic contact is consistent 

with that in classical contact mechanics but contrary to that in the M-B model. 

(4) The relationship between the contact load and the contact area of an elastically deformed fractal 

asperity satisfies a∆Fe
2/3

 as in agreement with classical contact mechanics but in disagreement 

with the existing fractal contact models. 
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