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Abstract.Considering bending stiffness,an finite element model is proposed to overhead transmission 

based on Euler beam.In this model,the displacement of the unit beam is represented by assumed mode 

method,and derived the mass matrix and stiffness matrixof unit beam by using assumed mode 

method,secondly,deduced Lagrange equation using d’Alembert principle and vibration differential 

equation of unit beam.And then the concept of global coordinates is proposed,which is used to 

represent the entire transmission line system composed of several unit beam.Taking the LGJ-400/95 as 

the research object,the inherent characteristics of natural frequencies and mode shapes of the 

transmission lines and the vibration response under the loads of the different forms can be obtained by 

using the finite element model to analysis the vibration characteristics of the overhead transmission 

lines. 

Introduction 

Overhead transmission line has the characteristic of long span crossing,big  flexible, low damping. 

Large displacement and small strain is normal in the working condition.It is senitive to the low 

frequency wind loads.Wind-induced vibration of transmission lines is a  complex non-linear dynamic 

problems. 

The paper establish a finite element model based on Euler beam for modal analysis and vibration 

response analysis of the transmission lines.The main feature of this model is to analysis the bending 

stiffness of the transmission lines,rather than simplify look the wire as flexible cable. Dividing the 

transmission line into a number of Euler beam,which is the basic idea to establish the model,and using 

the assumed mode to represent the displacement of each beam element nodes. derived the mass matrix 

and stiffness matrixof unit beam by using assumed mode method,secondly,deduced Lagrange equation 

using d’Alembert principle and vibration differential equation of unit beam. And then the concept of 

global coordinates is proposed,which is used to represent the entire transmission line system composed 

of several unit beam. 

The derivation of vibration equation of the unit beam 

The establishment of a unit beam vibration deflection curve equation 

Assuming Unit beam segment of length L under in literal node force,which the deflection curve shown 

in Figure 1. 
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Figure 1. Unit beam deflection curve 

Distributed load of beam set zero,the differential equation of the deflection of beam: 
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The form of the solution: 
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In which, ],,,1[)( 32 xxxxX  , ],,,[ 3210 aaaa  

The derivative of the formula (2): 
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Taking the deflection and corner of the beam element at the both ends as 4 generalied coordinates. 

 

C

ly

ly

y

y

y

y

y

y

y 





















































)('

)(

)0('

)0(

4

3

2

1

 (4) 

In which, 
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Which is obtained by the formula (4): 
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Substituting equation (5) into the formula (2) to obtain: 
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In which, 
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In the beam bending vibration,if it is still taking y as the generalized coordinates ,y will be a function of 

time,the deflection lines will not only be a function of the postion x,but also a function of t.  

The deflection curve equation of beamVibrations: 

 )()()()(),( tyxtxXtxy    (7) 

The calculation of unit beam quality matrix 

The lateral vibration speed at t of the beam at x is 
),( txyi 

,as shown in Figure 2: 

      
Figure 2.  The kinetic energy of the micro beam segment 

The kinetic energy of the micro beam segment: 
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The total kinetic energy of the beam: 
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The unit beam mass matrix is derived from unit beam kinetic energy:  
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Where m is the mass matrix of unit beam: 
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The calculation of unit beam stiffness matrix 

Bending deformation energy of mirco beam segment,as shown in Figure 3: 
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Figure 3. Bending deformation energy of the mirco beam segment 

The total bending deformation energy of the beam: 
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The unit beam stiffness matrix is derived from unit beam bending deformation energy: 
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Where k  is the stiffness matrix of unit beam: 
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The establishment of unit beam vibration differential equations 

Lagrange equation of the non-conservation system: 
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Where L called the momentum of the system is the difference of kinetic energy T and the potential 

energy U.i.e. L=T-U. 
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In which, 
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Thus launched: 
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The derivation of transmission line model vibration equation 

Looking the transmission line as a system composed of number of unit beam. We introduce the concept 

of local coordinates and global coordinates,the four generalized coordinates from unit beam perspective 

called local coorinate,which the number of local coordinates is 4n,and generalized coordinates defined 

from the whole system is called global coordinates,which the number of global coordinates is 2n+2. 

The corresponding generalized coordinates in the local coordinate is iy1 、 iy2 …… niy
( 4,3,2,1i );we 

define the mass matrix of each unit is 1m 、 2m …… nm
,stiffness maxtrix of each unit is 1k 、

2k …… nk
,the kinetic energy of each unit is 1T 、 2T …… nT

,and the potential energy of each unit is 

1U 、 2U …… nU
. 

We define the generalied coordinates in the global coordinates is 
T

nzzzzz ],......,,,[ 12321 
,and get the 

relations of local coordinate and global coordinate: 

zAy ii  ，（ i 1，2，……，n） 

Where i  is unit number, n is the number of units, iA
 is relationship matrix,and the transformation 

matrix: 
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Thus the relationship between the local coordinates and global coordinates can be obtained. 
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The potential energy of the system in local coordinates is  
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The kinetic energy of the system in local coordinates is  
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In which, 
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The relationship of M and Lm is  

 AmAM L

T  (22) 

The relationship of K and Lk  is  

 AkAK L

T  (23) 

Finally ,the vibration differential equation of transmission is  

 QKyyM   (24) 

Case Study 

The paper use a practial example to verify the validity of the model,the parameters of transmission line 

are shown in chart 1. 

Table 1. The parameters of LGJ－400/95 

Model LGJ－400/95 

Length 25.6 m 

Cross-sectional area 501.02 mm
2
 

Mass per unit length 1860kg/km 

Outside diameter 29.14 mm 

Coefficient of elasticity 7.8e10 N/mm
2
 

Tensile stress 5.788e7 N/m
2
 

Bending stiffness of the test
*
 1059.5N*m

2
 

*NOTE: the bending stiffness data in the table is obtaioned by experiment,  the specific method can be 

find in the References [4]. 

Modal analysis 

The model of first five modal based on the finite element model can be obtained by Matlab. 

Table 2. First five natural frequency 

Finite element model Theoretical value
[4]

 

0.3594299 0.3594295 

1.4377419 1.4377183 

3.2351340 3.2348662 

5.7523666 5.7508733 

8.9913810 8.9857396 
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Figure 4. First five mode shapes diagram 

Through modal analysis we find the differ of frequencies between theoretical values and the values 

calculated is less than 1%,and the mode shapes is similar to the theory. 

The vibration response analysis 

The response of different nodes at different load cases can be obtained by matlab.Now taking the 

reponse casued by unit and sinusoidal load as example. 
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Figure 5. The response of node 5 and node 8 caused by unit load 
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Figure 6. Amplitude of different nodes caused by unit load 
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Figure 7. The response of node 5 and node 8 caused by sinusoidal load 

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15
Amplitude of different nodes

Node

A
m

p
li
tu

d
e

 
Figure 8. Amplitude of different nodes caused by sinusoidal load 

Through analysis above, we find the amplitude along the guide path first increased and than decreases, 

which is consistent with the actual situation. 

Summary 

Considering bending stiffness of transmission and assumed mode method establish the finite element 

model. then we take analysis based on the model to a specific case study. The results obtained is 

consistent with the theoretical value. This research can be used to do response analysis and provide 

reference for the design of overhead transmission lines. 
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