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Abstract. Interferogram filtering is one of the most important and widely studied problems in InSAS 

image processing. Traditional approaches, such as median filter, mean filter and Gaussian filter, can 

remove noise, but they also smooth the edges. This paper proposed a new interferogram filtering 

algorithm via a coupled partial differential equation(PDE) method. The processing results including 

both simulated and trial data shows the noise can be removed effectively and the image edge and 

details can be preserved. 

Introduction 

Interferometric Synthetic Aperture Sonar (InSAS) provides a means of obtaining high resolution 

three-dimensional images of targets on the sea floor[1,2]. The interferogram obtained from InSAS 

always has much noise that disturbs the quality of the interferogram. Therefore, how to remove the 

phase noise and preserve the edge feature effectively is an important aspect in InSAS data processing. 

Traditional filtering methods, such as media filter and mean filter, always produce the problems of 

over-smoothing. Recently, many different PDE methods have been developed and widely used to 

remove the noise and preserve the edge[3-5]. Since it is not feasible to discuss all the methods here, 

we concentrate on a few methods which are related to our proposed method. 

In 1990, Perona and Malik [7] proposed the following nonlinear diffusion that had great influence 

in this field:  
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where u  denotes the gradient of image,  denotes the boundary of image domain  , n  

represents the direction normal to  , and  0 ,u x y is the original image. The diffusion coefficient 

function  g u  is a nonincreasing function with (0) 1g , ( ) 0g s ,and ( ) 0g s when s . 

The nonlinear diffusion can remove the noise and preserve the image edge effectively by choosing the 

appropriate diffusion function. However, it does not perform well for large noisy images because this 

will result in false edges and this model is ill-posed[8] if    u g u  is nonincreasing since it 

cannot ensure the existence and uniqueness of the solutions. To avoid this problem, Catte et al.[8] 

established the following regularized model: 
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where  G u  denotes a convolution of the image with a Guassian kernel, 
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G x y . Namely, it uses Gauss pre-filtering before nonlinear diffusion. 
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Although this change improves the original de-noising procedure, Guassian convolution is an 

isotropic diffusion, this leads not to preserve important edges, especially corners and junctions. 

Moreover, the variance of Gauss function must be set manually before iterations, which cannot 

satisfy the requirement of adaptability. To solve the problem mentioned above, Chen [9] gave a 

coupled PDE model based on the variational method. 
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where ,   are constant, I  represents the magnitude of original image gradient, v  is an 

edge-strength function, which plays a very important role in the quality of the recovered images. The 

Eq.4 is obtained by minimizing the following energy function which ensures that v  is not too far 

from u , 
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where ( )a t  is a monotonically decreasing function of time t , and b  is a constant. By reducing ( )a t  

as time increases, and by keeping b  fixed, we are effectively increasing the agreement between u  

and v  as time increases. 

This paper is organized as follow, In Section 2, a modified coupled PDE method is introduced 

based on the mentioned above, and we presents a numerical implementation of the proposed coupled 

PDE method. In Section 3, results of numerical simulations and real experimental data are presented 

respectively, which demonstrate the superiority of the proposed method. 

Formula Development And Numerical Implementation 

The main problem with Chen method is that too many parameters should be adjusted manually and 

it is computationally expensive. Based on the above statements, this paper utilizes a special coupled 

PDE model 
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where b is a constant, )(ta  is a monotonically decreasing function of time t , as the same as in Eq.4. 

In this paper, we chose the diffusivity function    2 2 21 1   c v v K , where K  is constant and 

is fixed by histogram of absolute value of gradient throughout the image[10]. The Eq.6 can be 

obtained by minimizing the energy function 
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p q
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where p , q  are constants and 0 2 p . Note that in the image edges, the value of v  is very large, 

the value of 
2

1



p

v in Eq.6 is very small, that is, the diffusivity is very small. Thus, the image edge 

can be efficiently preserved. On the contrary, in the flat area of the image, v  is very small, the 

diffusivity is very large, so this area is smoothed well. In fact, if 2p ，namely 2 0 p ，
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this will result in the diffusivity is large at the edges and the edge features can not be preserved, which 

is not wanted. Additionally, the image is more smoothing as the value of p  increasing. 

Let 
,i ju  denote  ,u i j , the images at times  nt n t  is  , , nu i j t ,denoted by ,

n

i ju . The time 

derivative tu  at  , , ni j t  is approximated by the forward difference 1
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term in this model can be discretized by forward and backward finite difference 
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The term v  in Eq.5 is approximated by the upwind scheme developed in [6],  
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The first term in the right side of Eq.6 can be approximated by 
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Since the proposed model consists of a coupled system of PDEs, the numerical solution 1

,
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discretization of Eq. (5) to obtain 1

,
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Experimental results and analysis 

Using this new coupled PDE model , we process simulated and real experimental data, 

respectively. The original noisy interferogram simulated by the computer is shown in Fig.1. The Chen 

method was run with 0.5, 0.0005   , 0.1b , 0.1 t , 1p , 2q ,  0 1a  for 30 iterations 

and the result is shown in Fig.2. The proposed method was run with the parameter values for 0.1b , 

0.1 t , 1p , 2q ,  0 1a . Fig.3 and Fig.4 are the results images after 5 and 10 iterations, 

respectively. In this paper, residue numbers and phase mean square deviation (MSD) are chosen as 

the evaluation criterions, which is given in Table 1. From table 1, it is shown that comparing with 

Chen method, the proposed method can reach satisfied result with little time elapse. 
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Fig. 1 Original noise image                           Fig. 2 Chen method (30 iterations) 
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Fig. 3 the proposed method(5 iterations)       Fig. 4 the proposed method(10 iterations) 

Table 1 Results of the simulated experiment 

 Residue numbers Phase MSD Elapse time 

Original image 21594 3.4772 — 

Chen method(30 iterations) 8846 2.7854 131.3s 

The proposed method(5 iterations) 8868 2.8387 23.5s 

The proposed method (10 iterations) 888 2.7307 46.3s 

 The real experimental data is generated from InSAS images of Qiandao lake in Zhejiang Province. 

The original noisy interferogram with 1000×4000 pixels is shown in Fig.5. The result of Chen 

method with 15 iterations is shown in Fig.6, Fig.7 is the result of the proposed method in this paper 

after 10 iterations. Table 2 gives the results data of real experiment. From Table 2, it can be seen that 

the residue numbers reduced from 167581 to 4151, after 10 iterations. 
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Fig. 5 Original noise image             Fig.6 Chen method(15 iterations)    Fig.7 the proposed method(10 iterations) 

Table 2 Results of the real experiment 

 Residue numbers Elapse time 

Original image 167581  

Chen method(15 iterations) 21140 199.43s 

The proposed method (10 iterations) 4151 107.7s 

The simulation and real experimental results indicate that the image is smoothed as the iteration 

increasing. The data analysis of the simulation and real experimental results show that this new 

coupled PDE method can remove noise and preserve the edge details effectively. Compared with the 

Chen coupled PDE model, the processing time of this model and the number of residues are less. 

Conclusions 

In this paper, a new coupled PDE method for InSAS interferogram filtering was presented. This 

model can satisfy the requirement of the adaptability which avoids the Gauss pre-filtering. Numerical 

experiment results and analysis indicate that this method is able to remove the noise effectively and 

preserve the image edge details much better. This new coupled PDE model is very important for the 

InSAS real time processing. 

 

386



 

References 

[1] Griffiths, H.D. Rafik, T.A, Interferometric synthetic aperture sonar for high resolution 3-D 

mapping of the seabed, IEE proceedings. Radar, sonar and navigation, 144 (1997) 96-103. 

[2] LIU Jing feng，LI Yanqiu, LIU Ke, The Application of Partial Differential Euqation in 

Interferogram Denoising, Proc. of SPIE, 6623 (2008) 1-25 . 

[3] H. G. Luo, L. M. Zhu, H. Ding, Coupled anisotropic diffusion for image selective smoothing, 

Signal Processing, 86 (2006) 1728-1736. 

[4] R. C. Gonzalez, P. Wintz, Digital Image Proeessing, Massachusetts, Addison-Wesley Publishing 

Company, 1987. 

[5] J. Weickert, Application of nonlinear diffusion in image processing and computer vision, Acta. 

Math,1 (2001) 33-50. 

[6] Osher, J. Sethian, Fronts propagating with curvature dependent speed algorithms based on the 

Hamilton–Jacobi Formulation, J. Comput. Phys. 79 (1988) 12–49. 

[7] P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE TPAMI, 

12 (1990) 629-639. 

[8] F. Catte, T. Coll, P. L. Lions, J. M. Morel, Image selective smoothing and edge detection by 

nonlinear diffusion, SIAM J. Numer. Anal, 29 (1992) 182-193. 

[9] Y. Chen, C. A. Z. Barcelos, B. A. Mair, Smoothing and edge detection by time-varying coupled 

nonlinear diffusion equations, Computer Vision and Image Understand, 82 (2001) 85-100. 

[10]  J.Canny, A Computational Approach to Edge Detection, IEEE Trans. Pattern Anal. Machine 

Intell, 8 (1986) 679-698. 

387




