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Abstract. Nb-Al alloy compounds are expected to be high temperature structural materials. 
However, the low toughness and poor oxidation resistance are the main obstacles to hinder Nb-Al 
intermetallics from applications. In this paper, a new monoclinic phase of NbAl3 was proposed by 
particle swarm optimization. Structural and mechanical properties of monoclinic phase were 
investigated using the first-principles method. The calculated enthalpies suggested that the known 
tetragonal structure was more stable than monoclinic structure from 0 to 200 GPa, but the ductility 
of monoclinic phase was better than that of tetragonal phase. 

Introduction 
With the development of high temperature structural materials, Nb-Al intermetallic compounds 
attract our attention because of their high melt point, low density and excellent high temperature 
strength [1-3]. Nb-Al intermetallics mainly include Nb3Al, Nb2Al and NbAl3 [4]. Among them, 
NbAl3 has a tetragonal structure [5]. Based on the Gibbs energy of formation, George et al. [6] 
found that NbAl3 was the most stable compound in the Nb-Al system. To the best of our knowledge, 
many investigations have been carried out on NbAl3 [7-12]. Xu et al. [10] found that the stability of 
NbAl3 compound was depended on the covalent interactions between Al-p and transition-metal 
Nb-d states. Diffusion study [13] found that NbAl3 had two intermediate phases: TiAl3 type and 
cubic type. However, the low room temperature ductility and toughness due to complex crystal 
structure and less slip band, and the poor oxidation resistance of Nb-Al intermetallics lead to brittle 
fracture [14, 15]. Hence, many works have been performed to solve these problems. 

Although NbAl3 has the lowest oxidation rate among the Nb-Al system, the protective Al2O3 
scales can’t be formed on its surfaces [16]. Hebsur et al. [17] improved the high-temperature 
oxidation resistance of NbAl3 by macroalloying with Cr, Y and Si. However, the fracture toughness 
of NbAl3 was only 2.5±0.5 MPa√m [18]. The improvement of strength and low-temperature 
toughness of NbAl3 is limited because of the large coefficient of thermal expansion (CTE) 
mismatch and chemical incompatibility between WHfC filaments and matrix [19]. Ray et al. [20] 
enhanced the strength of NbAl3 by mixing 1% TiB2. The oxidation resistance, high-temperature 
strength and brittle-to-ductile transition temperature (BDTT) could be controlled by changing the 
content of NbAl3, NiAl and NbNiAl [21]. The high-temperature strength and BDTT decreased with 
the increase of Ni content, but the fracture toughness and oxidation resistance increased [22]. 
Although macroalloying, rapid solidification, grain refining and fabrication of composites can 
improve ductility and oxidation resistance for NbAl3, these methods seem to be insufficient for 
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industrial applications [23]. Hence, we expect to find a new structure with excellent performance 
for NbAl3 by using CALYPSO code [24]. 

Computational Methods 
Firstly, the local optimizations to predict stable or metastable phases were carried out using the 
Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) [24]. Secondly, the 
CASTEP package [25] was used to calculate the physical properties within generalized gradient 
approximation (GGA) and PW91 functional [26]. The energy cutoff 400 eV and the 
Monkhorst-Pack mesh [27] with 10×5×20 and 12×12×6 for monoclinic and tetragonal phases were 
used.  

Results and Discussion 
Two phases of NbAl3 have been predicted: one is tetragonal and the other is monoclinic. Fig. 1 
shows the crystal structures of tetragonal I4/mmm phase and monoclinic Cm phase. As far as we 
know, the most stable structure is I4/mmm phase. In order to compare with each other, the structural 
parameters of two phases are calculated [28], which are shown in Table 1. It can be seen that our 
calculated lattice constants of I4/mmm structure agree well with the published data. The ratio V/V0 
as a function of external pressure is plotted in Fig. 2, where V0 is volume at T=0 and P=0. As the 
pressure increases from 0 to 200 GPa, the ratio of I4/mmm decreases more slowly than that of Cm. 
Moreover, the curves are smooth. Fig. 3 shows the enthalpies of monoclinic and tetragonal 
structures under pressure. In order to clearly distinguish whether there is a phase change, the 
enthalpy difference is drawn in subgraph. It is noted that the I4/mmm structure is more stable from 
0-200 GPa. That is to say, no phase transition occurs at the pressure up to 200 GPa.  
 

 
Fig. 1. The crystal structures of NbAl3: (a) Cm, (b) I4/mmm. 

 
Fig. 2. The ratio of V/V0 for NbAl3. 
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Fig. 3. The enthalpies of monoclinic structure and tetragonal structure NbAl3 under pressure, and 

the relationship of enthalpy difference under pressure. 

Table 1 Structural parameters of NbAl3 under zero pressure 
Space group Structural parameters  

a (Å)             b (Å)           c (Å)             β (°) 
Cm 
I4/mmm 
 

5.648            9.321 
3.805 
3.844a 
3.841b 
3.841±0.001c 
3.845d 
3.83e 
3.801f 
3.803g 

2.852            120.367 
8.590 
8.605a 
8.614b 
8.609±0.002c 
8.601d 
8.57e 
8.538f 
8.602g 

a Ref. [4]. b Ref. [7]. c Ref. [8]. d Ref. [9]. e Ref. [10]. f Ref. [11]. g Ref. [12]. 

Table 2 Elastic constants and bulk modulus in GPa of I4/mmm and Cm under zero pressure. 

 C11 C12 C13 C15 C22 C23 C25 C33 C35 C44 C46 C55 C66 

I4/mmm 270 98 49     285  105   140 

[11] 260.2 96.7 46.5     280.3  109.9   142.5 

[12] 255.6 101.4 51.2     274.8  104   140.5 

Cm 219 79 69 -25 250 52 5.9 261 4 58 3 85 70 

 

 B B′ 

I4/mmm 137.9 3.9 

[12] 136 4 

Cm 120.3 4 

 
The independent elastic constants, bulk modulus and first pressure derivative of bulk modulus 
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from Birch-Murnaghan EOS [29] are given in Table 2. It can be seen that our calculated elastic 
constants and bulk modulus of I4/mmm structure are in good compliance with the data [11,12]. The 
bulk modulus of I4/mmm structure is larger than that of Cm structure.  

The Born stability criteria for tetragonal and monoclinic crystals are given in these equations 
[30-32]: 

Tetragonal phase: 11 0C > , 33 0C > , 44 0C > , 66 0C > , 11 12( ) 0C C− > , 11 33 13( 2 ) 0C C C+ − > ,  

11 33 12 13(2 2 4 ) 0C C C C+ + + > , 
Monoclinic phase: 11 0C > , 22 0C > , 33 0C > , 44 0C > , 55 0C > , 66 0C > ,

11 22 33 12 13 23( 2 2 2 ) 0C C C C C C+ + + + + > ,  2
33 55 35( ) 0− >C C C , 2

44 66 46( ) 0− >C C C , 

22 33 23( 2 ) 0C C C+ − > , 2 2 2
22 33 55 35 23 25 35 23 55 25 33[ ( ) 2 ] 0− + − − >C C C C C C C C C C C , 

15 25 33 12 13 23 15 35 22 13 12 23
2 2

25 35 11 23 12 13 15 22 33 23
2 2 2 2
25 11 33 13 35 11 22 12

2 2 2
55 11 22 33 11 23 22 13 33 12 12 13 23

{2[ ( ) ( )

( )] [ ( )

( ) ( )]

( 2 )} 0

− + −

+ − − −

+ − + −

+ − − − + >

C C C C C C C C C C C C
C C C C C C C C C C
C C C C C C C C
C C C C C C C C C C C C C

. 

It is evident that the elastic constants of two phases satisfy the mechanical stability criteria, 
meaning that two structures are mechanically stable at zero pressure. 

The Pugh’s ratio [33] (G/B) and Possion’s ratio (ν) are used to determine the ductile/brittle 
behavior of intermetallics. The G/B ratio is greater than 0.57 or the ν is less than 0.26 [34], meaning 
that the material behaves in a brittle behavior. The calculated values of G/B ratio and ν of tetragonal 
structure are 0.82 and 0.177, suggesting that the tetragonal phase shows a brittle behavior. The 
values of G/B ratio and ν of monoclinic phase are 0.60 and 0.248, respectively. Although the 
monoclinic phase also shows a brittle behavior, this behavior is obvious weaker than that of 
tetragonal phase. 

Conclusions 
In summary, the paper has conducted a study of the structure, enthalpy, elastic and mechanical 
properties of NbAl3 compound by combining first-principles calculations with particle swarm 
optimization. The pressure dependence of the enthalpy of NbAl3 suggests that monoclinic (Cm) 
structure is less stable than tetragonal (I4/mmm) structure from 0 to 200 GPa. Besides, two 
structures are stable under zero pressure. Two phases all show brittle behavior at zero pressure. This 
provides a basis for subsequent work. 
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