Solution-Processed VO₂@Ag Nanoparticles for Modifying the Color of VO₂ Smart Films Xuan-Ming LU^{1,2,a}, Xiu-Di XIAO^{1,b,*}, Zi-Yi CAO^{1,3,c}, Yong-Jun ZHAN^{1,d}, Hao-Liang CHENG^{1,e}, Gang XU^{1,f} ¹Key Laboratory of Renewable Energy, Chinese Academy of Sciences; Guangdong Key Laboratory of New and Renewable Energy Research and Development; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China. ²University of Chinese Academy of Sciences, Beijing 100049, China. ³Nano Science and Technology Institute, University of Science & Technology of China, Suzhou 215123, China. ^aluxuanming@foxmail.com, ^bxiaoxd@ms.giec.ac.cn, ^c237809861@qq.com, ^dzyj04dz@163.com, ^echenghl@ms.giec.ac.cn, ^fxugang@ms.giec.ac.cn *Corresponding author. E-mail address: xiaoxd@ms.giec.ac.cn **Keywords:** Vanadium dioxide, Surface plasmon resonance, Spectrum modulation **Abstract.** Recently, researchers focus on how to prepare practical VO₂ films with varied colors. Herein, we developed a facile solution process to modify the spectrum of VO₂ so that the color of VO₂ film could be tuned. The VO₂ nanoparticles were functionalized by the 3-aminopropyltrimethoxysilane(APTMS), and the reaction condition of APTMS functionalization was investigated. The VO₂@Ag was obtained by a two-step method. The UV-vis spectrum of VO₂@Ag exhibited an absorption band at 451 nm, which meant the visible spectrum of VO₂ could be modified by the Ag coating. Therefore, the VO₂@Ag films can display a corresponding complementary color. This technique will play an important role in practical application of VO₂ smart films. ### Introduction Vanadium dioxide (VO_2) has been demonstrated to be a promising candidate material for the thermochromic smart films due to their reversible phase transition [1]. It can be transformed from monoclinic type VO_2 (M) (space group: $P2_1/c$) to tetragonal rutile type VO_2 (R) (space group: $P4_2/mnm$) at a critical temperature (68 °C for bulk VO_2), which results in an abrupt change in optical properties from transparent to translucent at the infrared spectral region. However, the VO_2 -based smart films have not been popular because of the high phase transition temperature, low visible transmittance, poor solar energy modulation ability, and undesirable color. The color of intrinsic VO_2 film is not pleasant because it is brown. In a real application, we can find that the color of windows most used in the modern building is the blue color or other similar, which is more likely accepted by people. In this work, we focus on the color modulation of the VO_2 -based films. Surface plasmon resonance (SPR) is a signature optical property of noble metal nanoparticles such as Au, Ag and Cu. The wavelength at absorption maximum (λ_{SPR}) and the absorption intensity are sensitive to many factors, including not only the properties of the metal particle but also the surrounding dielectric environment. Xu *et al.* utilized radio frequency magnetron sputtering to deposit Ag [2]or Au [3] nanoparticles on the VO₂films surface. Binions*et al.* prepared VO₂/Au composite films with different color via chemical vapor deposition (CVD) [4, 5]. The absorption band of the VO₂ film had been changed with the sizes of metal nanoparticles varied. Thus, the film with different colors. However, whether magnetron sputtering or CVD needs harsh conditions, which is not conducive to practical production of large-scale and cost-effective smart films. So far until now, there is few report involved in synthesis VO_2 @metal nanoparticles via solution process. In this work, we proposed a solution processing method to modify the spectrum of the VO_2 , by coating VO₂ with Ag nanoparticles. The VO₂@Ag exhibited an absorption peak at 451 nm. It demonstrated that this method could modify the spectrum of the VO₂ and tune the color of the VO₂ films. This technique will play a role in practical application of vanadium dioxide smart windows. ### **Experiment** 0.2M NH₄HCO₃ aqueous solution was dropped into 0.1M VOSO₄ aqueous solution. The greywhite precipitation was recovered by filtration and washed with copious amounts of water. For attaining VO₂ (M), the greywhite precursor was redispersed in water and then transferred to a 100-mL autoclave. The autoclave was maintained at 280 °Cfor 24h and then cooled to room temperature naturally. Dark blue black precipitates were obtained and washed with deionized water and ethanol several times, and dried at 60°C for 8h. 0.166g VO₂ (M) above mentioned was dispersed in 200mL absolute ethanol by ultrasonic for 30 min. Then, excess of 3-aminopropyltrimethoxysilane (APTMS) was added to VO_2 nanoparticlesaqueous solution under vigorously stirred and the mixture was allowed to react for 12h at the room temperature. The solution was gently refluxed for 1 additional hour in 80° C to enhance covalent bonding between the APTMS and the VO_2 nanoparticles. The APTMS-functionalized VO_2 nanoparticles were washed by ethanol at least 5 times to remove the unattached APTMS. The ultrafine Ag nanoparticles as Ag seeds was produced by reduction of silver nitrate. Tannin acid was used as reductant. 0.01g functionalized VO_2 was added into 100 ml deionized water and dispersed by ultrasonic for 30 min. After adjusting the pH, the solution was transferred into a flaskcontained Ag seeds, then stirred for 1 h, and allowed standing for another 2 h. The resulting was washed by water for several times until there was no free Ag nanoparticle. Finally, the $VO_2@Ag$ seeds particles were dispersed in $AgNO_3$ aqueous solution, then the sodium borohydride as reductant was added into for growth of Ag seed and preparation of $VO_2@Ag$ nanoparticles. #### **Results** #### **Reaction Condition of the Functionalization with APTMS.** The functionalization was carried out by mixing the solution of nanoparticles with a certain amount of APTMS (sufficient to provide five monolayer coatings of the silica nanoparticles). The area on the nanoparticles surface covered by each APTMS molecule was assumed to be nominally 0.6 nm²[6]. Fourier transform infrared (FT-IR) spectra was used to detect the organic functional groups. Fig. 1 (black line) shows FT-IR spectra of intrinsic APTMS. The stretch mode of –NH₂ and N-H groups of APTMS are observed at approximately 3356 cm⁻¹ and 3284 cm⁻¹, respectively. And the bands at 1595 cm⁻¹ and 1471 cm⁻¹ are due to the symmetric and asymmetric deformation mode of the hydrogen bonded amine group, respectively. However, there is no any band in in the spectrum (Fig.1 blue line) of Sample I (Table 1) near 3356 cm⁻¹ or 3284 cm⁻¹. It indicates that the functionalization was failed. Fig. 1 FT-IR spectra of VO₂ nanoparticles functionalized by APTMS with different concentration and time. There may be two reasons for the failure of functionalization. First, the concentration of APTMS was too low. In the initial case, the addition amount of APTMS was the theoretical value above mentioned. In fact, considering the hydrolysis of APTMS and the surface activity of VO_2 , these factors make the amount of APTMS less than the amount actually required. Second, the reaction time is inadequate. It may need more energy or more time to bond. Thus, the reaction condition had been investigated. (Table 1) | Sample | Amount of APTMS | Stirring time | Refluxed time | Functionalization | |--------|-----------------|---------------|---------------|-------------------| | I | 1 aliquot | 12 h | 1 h | × | | II | 5 aliquot | 12 h | 1 h | | | III | 1 aliquot | 24 h | 1 h | | Table 1. The reaction condition of APTMS functionalization. The pink line and red line in Fig. 1are the FT-IR spectra of the results of increasing amount (Sample II) and extending time (Sample III), respectively. There are obviously difference from Sample I. The bands at 3427 cm⁻¹, 1599 cm⁻¹ (pink line) and 3454 cm⁻¹, 1627 cm⁻¹ (red line) prove that the APTMS was bonding on the VO₂ surface. The band of -NH₂ have shifted to higher wavenumbers from 3356 cm⁻¹ to 3454 cm⁻¹ (red line) and 3427cm⁻¹ (pink line). This shift is probably result from the existence of the V-O bond. These results indicated that both the increasing the amount of APTMS and extending the reaction time could functionalized VO₂ with APTMS successfully. ## The UV-vis spectra of VO₂@Ag seeds and VO₂@Ag. UV-vis spectra is an efficient and precise method of characterization of noble metal nanoparticles because of the SPR. Based on Mie theory, the SPR frequency (λ_{SPR}) is associated with the size, shape, dielectric constant of metal nanoparticle, and the dielectric constant of material around metal particles[7]. In order to prove the Ag seeds had already deposited on the VO₂ surface, the UV-vis spectra of functionalized VO₂, silver colloids and VO₂@Ag seeds at different temperature was measured, respectively (Fig.2). It can be found that there is no absorption peak in the curve of VO₂, whether low or high temperature. And the λ_{SPR} of Ag seeds (λ_{SPR} =407 nm) at low temperature is consistent with it at high temperature. Because the test process was completed within 5 minutes, the coagulation Fig. 2 Absorption spectra of Ag, VO₂, VO₂@Ag seeds particles at low and high temperature. Fig. 3 Absorption spectra of Ag, VO₂, VO₂@Ag seeds, and VO₂@Ag particles. cause by heating could be ignored. However, the λ_{SPR} of VO₂@Ag seeds at low temperature is 436 nm, and 424 nm at high temperature. Because the Fermi level of VO₂ is lower than the Fermi level of Ag, the free electrons on the Ag nanoparticle surfaces will remove to the VO₂ surfaces [8]. That results in decrease of electron density on the Ag nanoparticle surfaces. According the Mie theory, the λ_{SPR} is inversely proportional to the square root of electron density. Therefore, the λ_{SPR} shifted from 407 nm to 436 nm when the Ag particles attached the VO₂. Additionally, the dielectric of VO₂ (M) (low-temperature phase) is lower than VO₂(R) (high-temperature phase). On the basis of Mie theory mentioned above, the λ_{SPR} has a blue shift ($\Delta\lambda_{SPR}$ =12 nm) due to the change of the dielectric constant of VO₂. All the phenomena can be ascribed to that Ag nanoparticles deposited on the VO₂ surfaces. After the growth of Ag nanoparticles on VO_2 surface, the λ_{SPR} was shifted from 436 nm to 451 nm due to the size of Ag particles increase(Fig. 3). It implied that the λ_{SPR} of the VO_2 @Ag could be easily controlled by the size of Ag particles, which was according to the centration of AgNO₃. Therefore, the VO_2 -based smart films with varied colors could be prepared by our method. ### Conclusion In this work, we developed a facile method to tailor the undesired color of VO_2 -based smart film. $VO_2@Ag$ core-shell nanoparticles were synthesized via solution process. The UV-vis spectrum of $VO_2@Ag$ shows that there is an absorption at 451 nm, which means the visible spectrum of VO₂ could be modified by the Ag coating. Therefore, the VO₂@Ag films may display a corresponding complementary color. This work paves the way to the scale-up and fast production of VO₂-based smart film with varied colors. # Acknowledgement This work was supported by the Major Science and Technology Projects of Guangdong Province (No. 2013A011401011), Science and Technology Project of Guangdong Province (No. 2014A010106018), Pearl River Star of Science and Technology (No. 2014J2200078), CAS Key Laboratory of Renewable Energy Fund of GIEC (No. y507j41001), National Natural Science Foundation of China (No. 51506205), Guangdong Joint Innovation Project in Guangdong Province (No. 2014B050505015), Construction Project of Guangdong Solar Thermal and Solar Thermal Advanced Materials Engineering Technology Research Center (No. 2014B090904071). #### References - [1] F.j. Morin, Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett. 3 (1959) 34-36. - [2]G. Xu, C.M. Huang, P. Jin, M. Tazawa, D.M. Chen, Nano-Ag on vanadium dioxide. I. localized spectrum tailoring, J. Appl. Phys. 104 (2008) 053101-053101-6 - [3] G. Xu, C.M. Huang, M. Tazawa, P. Jin, L.H. Chen, Tunable optical properties of nano-Au on vanadium dioxide, Opt. Commun. 282 (2009) 896-902. - [4] R. Binions, C. Piccirillo, R.G. Palgrave, I.P. Parkin, Hybrid aerosol assisted and atmospheric pressure CVD of gold-doped vanadium dioxide, Chem. Vapor Depos. 14 (2008) 33-39. - [5] M. Saeli, C. Piccirillo, I.P. Parkin, I. Ridley, R. Binions, Nano-composite thermochromic thin films and their application in energy-efficient glazing, Sol. Energ. Mat. Sol. C. 94 (2010) 141-151. - [6] T.G. Waddell, D.E. Leyden, M.T. DeBello, The nature of organosilane to silica-surface bonding, J. Am. Chem. Soc. 103 (1981) 5303-5307. - [7] G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Ann. der Phys. 330 (1908) 377-445. - [8] G. Xu, C.M. Huang, M. Tazawa, P. Jin, D. M. Chen, L. Miao, Electron Injection Assisted Phase Transition in a Nano-Au-VO₂ Junction, Appl. Phys. Lett. 93 (2008) 1911.