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Abstract

Soft set theory is a new mathematical tool to deal with uncertain problems. Since soft sets are defined
by mappings and they lack “points”, managing them is not convenient. In this paper, the concept of
soft points is introduced and the relationship between soft points and soft sets is investigated. We prove
that soft sets can be translated into soft point sets and may be expediently handled like ordinary sets.
Moreover, we propose s-relations on soft sets. By means of soft points and these results, a pair of soft
rough approximate operations is defined. Serial, reflexive, symmetric, transitive and Euclidean s-relations
are characterized by using soft rough approximate operations. In addition, we research soft topologies
induced by a reflexive s-relation on a special soft set and gives their structure.

Keywords: Soft sets; Soft points; Soft point sets; s-relations; Soft rough approximate operations; Soft
topologies.

1. Introduction

Most of traditional methods for formal modeling,
reasoning and computing are crisp, deterministic
and precise in character. However, many practical
problems within fields such as economics, engineer-
ing, environmental science, medical science and so-
cial sciences involve data that contain uncertainties.
We cannot use traditional methods because of vari-
ous types of uncertainties present in these problems.

There are several theories: probability theory,
fuzzy set theory 27, interval mathematics, and rough
set theory 22, which we can consider as mathemat-
ical tools for dealing with uncertainties. But all
these theories have their own difficulties (see 21).
For example, probability theory can deal only with
stochastically stable phenomena. To overcome these

kinds of difficulties, Molodtsov 21 proposed a com-
pletely new approach, which is called soft set theory,
for modeling uncertainty.

Presently, works on soft set theory are progress-
ing rapidly. Maji et al. 18,20,19 further studied soft
set theory, used this theory to solve decision making
problems and devoted fuzzy soft sets combining soft
sets with fuzzy sets. Roy et al. 24 presented a fuzzy
soft set theoretic approach towards decision making
problems. Li et al. 12 investigated decision making
based on intuitionistic fuzzy soft sets. Jiang et al. 10

extended soft sets with description logics. Aktas et
al. 2 defined soft groups. Li et al. 16 proposed L-
fuzzy soft sets based on complete Boolean lattices.
Feng et al. 6,7 investigated the relationship among
soft sets, rough sets and fuzzy sets. Ge et al. 8 dis-
cussed relationships between soft sets and topologi-
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cal spaces. Shabir et al. 25 proposed soft topological
spaces which are defined on the universe with a fixed
set of parameters. Babitha et al. 5 introduced rela-
tions on soft sets. Li et al. 13,14 considered rough-
ness of fuzzy soft sets and obtained the relationship
among soft sets, soft rough sets and topologies. Li et
al. 15 studied parameter reductions of soft coverings.

Rough set theory was proposed by Pawlak 22.
It is an extension of set theory for the study of in-
telligent systems characterized by insufficient and
incomplete information. The foundation of its ob-
ject classification is an equivalence relation. The
upper and lower approximation operations are two
core notions in rough set theory. They can also be
seen as a closure operator and an interior operator of
the topology induced by an equivalence relation on
a universe. We may relax equivalence relations so
that rough set theory is able to solve more compli-
cated problems in practice. Pawlak rough set theory
has been extended to tolerance relations, similarity
relations, binary relations 17,26,30.

Since soft sets are defined by mappings and then
lack “points”, managing them is not convenient.
Thus, we try to attempt introducing the concept of
“soft points” and deal with them as same as ordinary
sets.

Feng et al. 7 proposed soft rough approximate
operations. But the introduction of these operations
seemed suddenly and disposing them is not conve-
nient as soft sets lacks “points” and “soft points” are
not proposed. In this paper, we introduce the con-
cept of soft points, prove that soft sets can be trans-
late into soft point sets and then it is convenient to
deal with soft sets as same as ordinary sets. We pro-
pose s-relations on soft sets. By means of soft points
and these results, soft rough approximate operations
are defined. And because we do the above work, it
is very convenient to deal with the operations intro-
duced by us.

The organization of this paper is as follows:
In Section 2,we briefly recall basic concepts about
rough sets, soft sets and soft topological spaces. In
Section 3, we introduce the concept of soft points
and investigate the relationship between soft points
and soft sets. In Section 4, we introduce the con-
cepts of serial, reflexive, symmetric, transitive and

Euclidean s-relations on soft sets, and investigate
the relationships between these s-relations and soft
point sets. In Section 5, we propose two soft rough
approximate operations. In Section 6, we investi-
gate soft topologies induced by a reflexive s-relation
on a special soft set and give their structure. Section
7 concludes this paper and highlights the prospects
for potential future development.

2. Overview of rough sets, soft sets and soft
topological spaces

In this section, we briefly recall basic concepts about
rough sets, soft sets and soft topological spaces.

Throughout this paper, U refers to an initial uni-
verse, E refers to the set of parameters and 2U de-
notes the power set of U . We only consider the case
where both U and E are nonempty finite sets.

2.1. Rough sets

Let R be an equivalence relation on U . The pair
(U,R) is called a Pawlak approximation space. Us-
ing the equivalence relation R, one can define the
following rough approximations:

R∗(X) = {x ∈U : [x]R ⊆ X},
R∗(X) = {x ∈U : [x]R ∩X ̸= /0}.

Then R∗(X) and R∗(X) called the Pawlak lower ap-
proximation and the Pawlak upper approximation of
X , respectively.

The Pawlak boundary region of X , defined by the
difference between these Pawlak rough approxima-
tions, that is BndR(X) = R∗(X)−R∗(X). It can eas-
ily be seen that R∗(X)⊆ X ⊆ R∗(X).

A set is Pawlak rough if its boundary region is
not empty. Otherwise, the set is crisp. Thus X is
Pawlak rough if R∗(X) ̸= R∗(X).

We may relax equivalence relations so that rough
set theory is able to solve more complicated prob-
lems in practice. Pawlak rough set theory has been
extended to binary relations 17,26,30.

Definition 2.1 (30) Let R be a binary relation on U.
The pair (U,R) is called a approximation space.
Based on the approximation space (U,R), we define
a pair of operations R, R: 2U −→ 2U as follows:
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R(X) = {x ∈U : R(x)⊆ X},
R(X) = {x ∈U : R(x)∩X ̸= /0},

where X ∈ 2U and R(x) = {y ∈U : xRy} is the suc-
cessor neighborhood of x. Then R(X) and R(X) are
called the lower approximation and the upper ap-
proximation of X, respectively.

X is called a definable set if R(X) = R(X); X is
called a rough set if R(X) ̸= R(X).

2.2. Soft sets

Definition 2.2 (21) Let A ⊆ E. A pair ( f ,A) is
called a soft set over U, if f is a mapping given by
f : A → 2U . We denote ( f ,A) by fA.

In other words, a soft set over U is the parameter-
ized family of subsets of the universe U . For ε ∈ A,
f (ε) may be considered as the set of ε-approximate
elements of the soft set fA. Obviously, a soft set is
not a ordinary set.

Denote S(U,E) = { fE : fE is a soft set over U}.

Definition 2.3 (18) Let A,B ⊆ E, fA ∈ S(U,A) and
gB ∈ S(U,B).

(1) fA is called a soft subset of gB, if A ⊆ B and
∀ ε ∈ A, f (ε)⊆ g(ε). We write fA ⊂̃ gB.

(2) fA is called a soft super set of gB, if gB ⊂̃ fA.
We write fA ⊃̃ gB.

(3) fA and gB are called soft equal, if A = B and
∀ ε ∈ A, f (ε) = g(ε). We write fA = gB.

Obviously, fA = gB if and only if fA ⊂̃ gB and
fA ⊃̃ gB.

Definition 2.4 (3, 18) Let A,B ⊆ E, fA ∈ S(U,A)
and gB ∈ S(U,B).
(1) hA∪B is called the union of fA and gB, if

h(ε) =


f (ε), if ε ∈ A−B,
g(ε), if ε ∈ B−A,
f (ε)∪g(ε), if ε ∈ A∩B.

We write fA ∪̃ gB = hA∪B.
(2) hA∩B is called the soft intersection of fA and
gB, if ∀ ε ∈ A ∩ B, h(ε) = f (ε)∩ g(ε). We write
fA ∩̃ gB = hA∩B.

Remark 2.5 Let A,B,C ⊆ E, fA ∈ S(U,A), gB ∈
S(U,B) and hC ∈ S(U,C). Then

(1) fA ∩̃ gB ⊂̃ fA ( or gB) ⊂̃ fA ∪̃ gB.
(2) If hC ⊂̃ fA and hC ⊂̃ gB, then hC ⊂̃ fA ∩̃ gB.
(3) If hC ⊃̃ fA and hC ⊃̃ gB, then hC ⊃̃ fA ∪̃ gB.

Definition 2.6 (25) Let A ⊆ E, fA,gA,hA ∈ S(U,A).
hA is called the difference of fA and gA, if ∀ ε ∈ A,
h(ε) = f (ε)−g(ε). We write hA = fA −gA.

Definition 2.7 (3) Let A ⊆ E, fA,gA ∈ S(U,A). gA
is called the relative complement of fA, if ∀ ε ∈ A,
g(ε) =U − f (ε). We write gA = f ′A or ( fA)

′.

Proposition 2.8 (3) Let A ⊆ E, fA,gA ∈ S(U,A).
Then

(1) ( fA ∪̃ gA)
′ = f ′A ∩̃ g′A.

(2) ( fA ∩̃ gA)
′ = f ′A ∪̃ g′A.

Remark 2.9 Let A ⊆ E, fA,gA ∈ S(U,A). Then
(1) ( f ′A)

′ = fA.
(2) fA ⊂̃ gA ⇐⇒ ( fA)

′ ⊃̃ (gA)
′.

Definition 2.10 (25) Let X ∈ 2U . The soft set XE
over U is defined by ∀ ε ∈ E, X(ε) = X.

In this paper, UE and /0E are also denoted by Ũ
and /̃0, respectively.

Remark 2.11 Let fA,gA ∈ S(U,A). Then
(1) UA − fA = f ′A,
(2) fA ∩̃ gA = /0A ⇐⇒ fA ⊂̃ g′A,
(3) fA −gA = fA ∩̃ g′A.

2.3. Soft topological spaces

In what follows we consider problems on the uni-
verse U and the fixed set E of parameters.

Definition 2.12 (25) τ ⊆ S(U,E) is called a soft
topology over U, if (i) /̃0, Ũ ∈ τ; (ii) the union of
any number of soft sets in τ belongs to τ; (iii) the
intersection of any two soft sets in τ belongs to τ .

The triplet (U,τ,E) is called a soft topological
space over U. Every element of τ is called a soft
open set in U and its relative complement is called a
soft closed set in U.
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In this paper, the family of all soft closed sets is
denoted by τ ′.

Definition 2.13 (25) Let (U,τ ,E) be a soft topolog-
ical space over U. ∀ fE ∈ S(U,E), the soft closure
of fE is defined by

cl( fE) = ∩̃ {gE : fE ⊂̃ gE and gE ∈ τ ′}.

Definition 2.14 (9) Let (U,τ,E) be a soft topologi-
cal space over U. ∀ fE ∈ S(U,E), the soft interior
of fE is defined by

int( fE) = ∪̃ {gE : gE ⊂̃ fE and gE ∈ τ}.

Proposition 2.15 (9) Let (U,τ,E) be a soft topolog-
ical space over U. Then ∀ fE ∈ S(U,E), int( fE) =

Ũ − cl(Ũ − fE).

3. Soft points

In this section, we will introduce the concept of soft
points and investigate the relationship between soft
points and soft sets.

3.1. The concept of soft points

In this subsection we define soft points, which orig-
inate from the concept of fuzzy points (see 11,23).

Definition 3.1 Let f ∗E ∈ S(U,E). f ∗E is called a soft
point over U, if there exist e ∈ E and x ∈U such that

f ∗(ε) =

{
{x}, if ε = e,
/0, if ε ∈ E −{e}.

We denote f ∗E by (xe)E .
In this case, x is called the support point of (xe)E ,

{x} is called the support point set of (xe)E and e is
called the expressive parameter of (xe)E .

Example 3.2 Let U = {x1,x2,x3,x4,x5} and E =
{e1,e2,e3,e4}. We define f ∗(e1) = /0, f ∗(e2) =
/0, f ∗(e3) = {x5}, f ∗(e4) = /0.

Then f ∗E is a soft point over U. We denote f ∗E by
((x5)e3)E , where x5 is the support point of ((x5)e3)E ,
{x5} is the support point set of ((x5)e3)E and e3 is
the expressive parameter of ((x5)e3)E .

For fE ∈ S(U,E), denote
F (E) = {(xe)E : x ∈ f (e) and e ∈ E},

P(U,E) = {(xe)E :
(xe)E is a soft points over U}.

Remark 3.3 (1) (xe)E ∈ F (E) ⇐⇒ x ∈
f (e) and e ∈ E.

(2) | F (E) |= ∑
e∈E

| f (e) |.

(3) If fE = (xe)E , then F (E) = {(xe)E}.

Example 3.4 Let U = {x1,x2,x3,x4,x5} and E =
{e1,e2,e3,e4}. We define f (e1) = {x1,x4}, f (e2) =
U, f (e3) = {x5}, f (e4) = /0. Then

F (E)= {((x1)e1)E ,((x4)e1)E ,((x1)e2)E ,((x2)e2)E ,
((x3)e2)E ,((x4)e2)E ,((x5)e2)E ,((x5)e3)E} and

P(U,E) = {((xi)e j)E : 1 6 i 6 5,1 6 j 6 4}.

To illustrate the fact that the soft contain relation,
the soft intersection operation, the soft union oper-
ation and the soft difference operation on two soft
sets can be be translated into the contain relation, the
intersection operation, the union operation and the
difference operation on two soft point sets (i.e., two
ordinary sets), respectively, we give the following
Proposition 3.5.

Proposition 3.5 Let fE ,gE ,hE ∈ S(U,E).
(1) If gE ⊂̃ fE , then G (E)⊆ F (E).
(2) If fE = gE ∩̃ hE , then F (E) = G (E) ∩

H (E).
(3) If fE = gE ∪̃ hE , then F (E) = G (E) ∪

H (E).
(4) If fE = gE − hE , then F (E) = G (E) −

H (E).

Proof. (1) This is obvious.
(2) Let (xe)E ∈ F (E). Then x ∈ f (e). Since

fE = gE ∩̃ hE , we have x ∈ g(e) and x ∈ h(e). Thus
(xe)E ∈ G (E) and (xe)E ∈ F (E). Hence (xe)E ∈
G (E)∩H (E). Conversely, the proof is similar.

(3) The proof is similar to (2).
(4) The proof is similar to (2).

Proposition 3.6 (1) If fE = UE , then P(U,E) =
F (E).

(2) P(U,E) = ∪ {F (E) : fE ∈ S(U,E)}.
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Proof. (1) This is obvious.
(2) Let fE ∈ S(U,E). Since fE ⊂̃ UE , by Propo-

sition 3.5 and (1), F (E)⊆P(U,E). Thus P(U,E)⊇
∪{F (E) : fE ∈ S(U,E)}.

Conversely, since UE ∈ S(U,E), by (1), we have
P(U,E)⊆ ∪{F (E) : fE ∈ S(U,E)}.

Hence F (E) = ∪{F (E) : fE ∈ S(U,E)}.

3.2. Soft points and soft sets

In this subsection, we will investigate the relation-
ship between soft points and soft sets.

Definition 3.7 Let fE ∈ S(U,E) and (xe)E ∈
P(U,E). We define (xe)E ∈̃ fE by (xe)E ⊂̃ fE .

Note that (xe)E ˜̸∈ fE , if (xe)E ˜̸⊂ fE .

Remark 3.8 (1) (xe)E = (x′e′)E ⇔ x = x′ and
e = e′.

(2) (xe)E ∈̃ fE ⇔ x ∈ f (e) and e ∈ E ⇔
(xe)E ∈ F (E).

(3) (xe)E ∈̃ fE and fE ⊂̃ gE ⇒ (xe)E ∈̃ gE .
(4) (xe)E ∈̃ (xe)E .
(5) (xe)E ∈̃ fE ⇔ (xe)E ˜̸∈ f ′E .

Theorem 3.9 Let fE ∈ S(U,E). Then fE =
∪̃ F (E).

Proof. Denote hE = ∪̃ F (E). Then hE =
∪̃ {(xe)E : x ∈ f (e) and e ∈ E}. Thus

hE =
∪̃
e∈E

∪̃
x∈ f (e)

(xe)E .

∀ ε ∈ E,
h(ε) =

∪
e∈E

∪
x∈ f (e)

xe(ε) = (
∪

x∈ f (ε)
xε(ε))∪

(
∪

e∈E−{ε}

∪
x∈ f (e)

xe(ε)) = (
∪

x∈ f (ε)
{x})

∪
/0 = f (ε).

This shows hE = fE . Hence fE = ∪̃ F (E).

Remark 3.10 Theorem 3.9 reveals the fact that a
soft set can be translated into a soft point set and
vice versa.

Theorem 3.11 Let fE ,gE ∈ S(U,E). Then
(1) fE ⊂̃ gE ⇔ F (E)⊆ G (E).
(2) fE = gE ⇔ F (E) = G (E).

Proof. These hold by Proposition 3.5 and Theorem
3.9.

Remark 3.12 Theorem 3.11 illustrates that the soft
contain relation and the soft equal relation can be
respectively translated into the contain relation and
the equal relation on two soft point sets (i.e., two or-
dinary sets) and vice versa.

When we study some problems of soft sets by
using soft points in this paper, we will abide by the
following logic thinking: firstly, the soft contain re-
lation, the soft intersection operation, the soft union
operation and the soft difference operation on soft
sets are translated into the contain relation, the inter-
section operation, the union operation and the differ-
ence operation on soft point sets by Proposition 3.5,
respectively; secondly, the relations and operations
on ordinary sets (i.e., soft point sets) are realized;
thirdly, the results of the relations and operations on
ordinary sets are translated into the results on soft
sets by Theorem 3.9.

4. s-relations on soft sets

In this section, we introduce the concepts of se-
rial, reflexive, symmetric, transitive and Euclidean
s-relations on soft sets, and investigate the relation-
ships between these s-relations and soft point sets.

Definition 4.1 (5) Let A,B ⊆ E, fA ∈ S(U,A) and
gB ∈ S(U,B). hA×B is called the cartesian product of
fA and gB, if ∀ (a,b) ∈ A×B, h(a,b) = f (a)×g(b).
We write hA×B = fA ×gB.

Definition 4.2 (5) Let A,B ⊆ E, fA ∈ S(U,A) and
gB ∈ S(U,B).

(1) R is called a relation from fA to gB, if
R ⊂̃ fA ×gB.

(2) R is called a relation on fA, if R ⊂̃ fA × fA.

In other words, a relation R from fA to gB is
of the form lP, where P ⊆ A×B and ∀ (a,b) ∈ P,
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l(a,b)⊆ f (a)×g(b).

Definition 4.3 Let fE ∈ S(U,E). R is called a sur-
jective relation (brief. s-relation) on fE , if there
exists a soft set lE×E over U ×U such that R =
lE×E ⊂̃ fE × fE .

Remark 4.4 R is a s-relation on fE ⇒ R is a rela-
tion on fE .

Example 4.5 Let U = {x1,x2,x3,x4,x5} and E =
{e1,e2}. We define f (e1) = {x1,x3,x5}, f (e2) =
{x2,x4}. Then fE ∈ S(U,E) and E × E =
{(e1,e1),(e1,e2),(e2,e1),(e2,e2)}.

Let hE×E = fE × fE . Then

h(e1,e1)= f (e1)× f (e1), h(e1,e2)= f (e1)× f (e2),

h(e2,e1)= f (e2)× f (e1) and h(e2,e2)= f (e2)× f (e2).

(1) Define l : E ×E → 2U×U by

l(e1,e1) = {(x1,x1),(x1,x3),(x1,x5),(x3,x3),

(x3,x5),(x5,x5)},

l(e1,e2) = f (e1)× f (e2),

l(e2,e1)= {(x2,x1),(x2,x3),(x2,x5),(x4,x3),(x4,x5)}

and
l(e2,e2) = f (e2)× f (e2).

Then

l(e1,e1)⊆ h(e1,e1), l(e1,e2)⊆ h(e1,e2),

l(e2,e1)⊆ h(e2,e1) and l(e2,e2)⊆ h(e2,e2).

So lE×E ⊂̃ fE × fE
Put R1 = lE×E . Then R1 is a s-relation on fE .
(2) Put P = {(e1,e1),(e1,e2)}. Then P ( E ×E.

Define k : P → 2U×U by

k(e1,e1)= f (e1)× f (e1) and k(e1,e2)= f (e1)× f (e2).

Put R2 = kP. Since R2 ⊂̃ fE × fE , R2 is a relation on
fE . But R2 is not a s-relation on fE .

Since soft sets can be translated into soft point
sets, every relation on a soft set can be translated
into a relation on a soft point set. We introduce the
following Definition 4.6 for this reason.

Definition 4.6 Let R be a s-relation on fE ∈
S(U,E). Define a relation R∗ on F (E) as follows:
for any (xe)E ,(x′e′)E ∈ F (E),

(xe)ER∗(x′e′)E ⇔ (xe)E × (x′e′)E ⊂̃ R.
Then R∗ is called the relation induced by R.

Remark 4.7 (1) (xe)E × (x′e′)E ⊂̃ fE × fE ⇔ x ∈
f (e) and x′ ∈ f (e′).

(2) Let R = lE×E⊂̃ fE × fE . Then

(xe)ER∗(x′e′)E ⇔ (x,x′) ∈ l(e,e′)

=⇒ x ∈ f (e), x′ ∈ f (e′).

Definition 4.8 Let R be a s-relation on fE . R is
called serial (resp. reflexive, symmetric, transitive,
Euclidean), if R∗ is serial (resp. reflexive, symmet-
ric, transitive, Euclidean).

Let fE ∈ S(U,E). Denote S f (U,E) = {gE ∈
S(U,E) : gE ⊂̃ fE}.

Let R be a s-relation on fE and R∗ the relation
induced by R. ∀ (xe)E ∈ F (E), gE ∈ S f (X ,E), put

R∗((xe)E) = {(x′e′)E ∈ F (E) : (xe)ER∗(x′e′)E},

Pg( fE ,R) = {(xe)E ∈ F (E) : R∗((xe)E)⊆ G (E)},

Pg( fE ,R)= {(xe)E ∈F (E) : R∗((xe)E)∩G (E) ̸= /0}.

Remark 4.9 Let R be a s-relation on fE ∈ S(U,E)
and R∗ the relation induced by R. Then

(1) R is serial ⇔∀ (xe)E ∈F (E), R∗((xe)E) ̸= /0.
(2) R is reflexive ⇔ ∀ (xe)E ∈ F (E), (xe)E ∈

R∗((xe)E).
(3) R is symmetric ⇔ ∀ (xe)E ,(x′e′)E ∈ F (E),

(x′e′)E ∈ R∗((xe)E) implies (xe)E ∈ R∗((x′e′)E).
(4) R is transitive ⇔ ∀ (xe)E ,(x′e′)E ,(x′′e′′)E ∈

F (E), (xe)E ∈ R∗((x′e′)E) and (x′e′)E ∈ R∗((x′′e′′)E)
implies (xe)E ∈ R∗((x′′e′′)E)

⇔ ∀ (xe)E ,(x′e′)E ∈ F (E), (x′e′)E ∈ R∗((xe)E)
implies R∗((x′e′)E)⊆ R∗((xe)E).

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 90–103
___________________________________________________________________________________________________________

95



(5) R is Euclidean ⇔ ∀ (xe)E ,(x′e′)E ,(x′′e′′)E ∈
F (E), (x′e′)E ∈ R∗((xe)E) and (x′′e′′)E ∈ R∗((xe)E)
implies R∗((x′′e′′)⊆ R∗((x′e′)E)

⇔ ∀ (xe)E ,(x′e′)E ∈ F (E), (x′e′)E ∈ R∗((xe)E)
implies R∗((xe)E)⊆ R∗((x′e′)E).

Lemma 4.10 Let R be a s-relation on fE ∈ S(U,E).
Then ∀ gE ,hE ∈ S f (U,E),

(1) Pf ( fE ,R) = F (E).
(2) a) R is serial ⇒ Pg( fE ,R)⊆ Pg( fE ,R).

b) R is reflexive ⇒ Pg( fE ,R) ⊆ G (E) ⊆
Pg( fE ,R).

(3) a) gE ⊂̃ hE ⇒ Pg( fE ,R)⊆ Ph( fE ,R);
b) gE ⊂̃ hE ⇒ Pg( fE ,R)⊆ Ph( fE ,R).

(4) a) Pl( fE ,R) = Pg( fE ,R)∪ Ph( fE ,R) where
lE = gE ∪̃ hE;

b) Pl( fE ,R) = Pg( fE ,R)∩Ph( fE ,R) where
lE = gE ∩̃ hE .

Proof. (1) This is obvious.
(2) a) Let (xe)E ∈ Pg( fE ,R). Thus R∗((xe)E) ⊆

G (E). Since R is serial, by Remark 4.9, R∗((xe)E) ̸=
/0. This implies R∗((xe)E)∩G (E) ̸= /0. So (xe)E ∈
Pg( fE ,R). Thus Pg( fE ,R)⊆ Pg( fE ,R).

b) Let (xe)E ∈ Pg( fE ,R). Then R∗((xe)E) ⊆
G (E). Since R is reflexive, by Remark 4.9, we
have (xe)E ∈ R∗((xe)E) ⊆ G (E). Thus Pg( fE ,R) ⊆
G (E). Since (xe)E ∈ R∗((xe)E) and (xe)E ∈ G (E),
R∗((xe)E)∩G (E) ̸= /0. Thus G (E)⊆ Pg( fE ,R).

(3) a) Let (xe)E ∈ Pg( fE ,R). Then R∗((xe)E) ⊆
G (E). Since gE ⊂̃ hE , G (E) ⊆ H (E) and
R∗((xe)E)⊆ H (E). Thus (xe)E ∈ Ph( fE ,R). Hence
Pg( fE ,R)⊆ Ph( fE ,R).

b) The proof is similar to a).
(4) a) Let (xe)E ∈ Pl( fE ,R). Then R∗((xe)E)∩

L (E) ̸= /0. Since lE = gE ∪̃ hE , by Proposition
3.5, R∗((xe)E)∩G (E) ̸= /0 and R∗((xe)E)∩H (E) ̸=
/0. Thus (xe)E ∈ Pg( fE ,R) and (xe)E ∈ Ph( fE ,R).
Hence Pl( fE ,R)⊆ Pg( fE ,R)∪Ph( fE ,R).

Conversely, this is obvious.
b) The proof is similar to a).

5. Soft rough approximate operations

In this section, we propose two soft rough approxi-
mate operations. Serial, reflexive, symmetric, tran-

sitive and Euclidean s-relations are characterized by
using them.

Definition 5.1 Let R be a s-relation on fE ∈
S(U,E). Then the pair P = ( fE ,R) is called a soft
approximation space. Based on P, we define the fol-
lowing operations apr

P
,aprP : S f (U,E)→ S f (U,E)

by

apr
P
(gE) = ∪̃ Pg( fE ,R), aprP(gE) = ∪̃ Pg( fE ,R),

where gE ∈ S f (U,E). Then, apr
P

and aprP are
called the soft P-lower approximation operator and
the soft P-upper approximation operator on fE , re-
spectively; apr

P
(gE) and aprP(gE) are called the

soft P-lower approximation of gE and the soft P-
upper approximation of gE , respectively.

gE is called a soft P-definable set if apr
P
(gE) =

aprP(gE); gE is called a soft P-rough set if
apr

P
(gE) ̸= aprP(gE).

Remark 5.2 In 7, Feng et al. proposed two opera-
tions apr

P
,aprP : 2U → 2U by

apr
P
(X) = {u ∈U : ∃ e ∈ E, s.t. u ∈ f (e)⊆ X},

aprP(X) = {u ∈U : ∃ e ∈ E, s.t. u ∈ f (e)

and f (e)∩X ̸= /0}.

where X ∈ 2U , P = (U, fE) and fE ∈ S(U,E).

Lemma 5.3 Let R be a s-relation on fE ∈ S(U,E).
Then ∀ gE ,hE ∈ S f (U,E), we have

(1) hE = apr
P
(gE) ⇔ HE = Pg( fE ,R).

(2) hE = aprP(gE) ⇔ HE = Pg( fE ,R).

Proof. (1) Sufficiency. This holds by Theorem
3.11.

Necessity. Denote Pg( fE ,R) = {(ya)E : y ∈
X and a ∈ A} where X ⊆U and A ⊆ E.

Let (xe)E ∈ HE . Then x ∈ h(e) = ∪ {ya(e) : y ∈
X and a ∈ A}.

We claim that e ∈ A. Otherwise, ya(e) = /0 ∀ y ∈
X and a ∈ A. Then h(e) = ∪ {ya(e) : y ∈ X and a ∈
A}= /0, a contradiction.
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Thus h(e) = ∪ {ye(e) : y ∈ X} = ∪ {{y} : y ∈
X}= X . This implies x ∈ X . So (xe)E ∈ Pg( fE ,R).

Conversely, (xe)E ∈ Pg( fE ,R). Then x ∈ X and
e ∈ A. Note that h(e) = ∪ {ya(e) : y ∈ X and a ∈
A} = ∪ {ye(e) : y ∈ X} = ∪ {{y} : y ∈ X} = X . So
x ∈ h(e). This implies (xe)E ∈ HE .

Hence HE = Pg( fE ,R).
(2) The proof is similar to (1).

Lemma 5.4 Let ( fα)E ∈ S(U,E) for α ∈ A ∪ B.
Then

∪̃ {( fα)E : α ∈ A ∪ B} = (∪̃ {( fα)E : α ∈
A}) ∪̃ (∪̃ {( fα)E : α ∈ B}).

Proof. Denote C = A∪B, f C
E = ∪̃ {( fα)E : α ∈C},

f A
E = ∪̃ {( fα)E : α ∈ A}, f B

E = ∪̃ {( fα)E : α ∈ B}
and gE = f A

E ∪̃ f B
E .

Then f C(e) = ∪ { fα(e) : α ∈ C} ∀ e ∈ E
and g(e) = f A(e) ∪ f B(e) ∀ e ∈ E. Thus g(e) =
(∪ { fα(e) : α ∈ A}) ∪ (∪ { fα(e) : α ∈ B}) =
∪ { fα(e) : α ∈ A∪B}=∪ { fα(e) : α ∈C}= f C(e).

Lemma 5.5 Let R be a s-relation on fE , (xe)E ∈
S f (U,E). Denote hE = aprP((xe)E). Then H (E) =
{(yε)E ∈ F (E) : (xe)E ∈ R∗((yε)E)}.

Proof. Denote gE = (xe)E . Then hE = aprP(gE).
Let (yε)E ∈ H (E). By Lemma 5.3, (yε)E ∈

Pg( fE ,R). This implies R∗((yε)E)∩G (E) ̸= /0. By
Remark 3.3, G (E)= {(xe)E}. So (xe)E ∈R∗((yε)E).
Thus (yε)E ∈ {(yε)E ∈ F (E) : (xe)E ∈ R∗((yε)E)}.

Conversely, let (yε)E ∈ {(yε)E ∈ F (E) : (xe)E ∈
R∗((yε)E)}. Then (xe)E ∈ R∗((yε)E). So {(xe)E}=
R∗((yε)E) ∩ G (E) ̸= /0. This implies (yε)E ∈
Pg( fE ,R). By Lemma 5.3, (yε)E ∈ H (E).

Therefore, H (E) = {(yε)E ∈ F (E) : (xe)E ∈
R∗((yε)E)}.

Proposition 5.6 Let R be a s-relation on fE ∈
S(U,E). Then ∀ gE ,hE ∈ S f (U,E),

(1) If gE ⊂̃ hE , then
a) apr

P
(gE) ⊂̃ apr

P
(hE);

b) aprP(gE) ⊂̃ aprP(hE).
(2) a) apr

P
(gE ∩̃ hE) = apr

P
(gE) ∩̃ apr

P
(hE);

b) aprP(gE ∪̃ hE) = aprP(gE) ∪̃ aprP(hE).

Proof. (1) These hold by Lemma 4.10 and Theo-
rem 3.11.

(2) a) Denote qE = apr
P
(gE), pE = apr

P
(hE),

kE = qE ∩̃ pE , lE = gE ∩̃ hE and wE = apr
P
(lE). By

Proposition 3.5 and Lemma 4.10, K (E) = Q(E)∩
P(E) and Pl( fE ,R) = Pg( fE ,R)∩Ph( fE ,R).

Let (xe)E ∈ K (E). Then (xe)E ∈ Q(E) and
(xe)E ∈ P(E). By Lemma 5.3, (xe)E ∈ Pg( fE ,R)
and (xe)E ∈ Ph( fE ,R). Thus (xe)E ∈ Pl( fE ,R). By
Lemma 5.3, (xe)E ∈ W (E). By Theorem 3.11,
apr

P
(gE) ∩̃ apr

P
(hE) ⊂̃ apr

P
(gE ∩̃ hE).

Conversely, apr
P
(gE ∩̃ hE) ⊂̃ apr

P
(gE) ∩̃ apr

P
(hE)

is obvious.
b) This holds by Lemma 4.10 and Lemma 5.4.

Proposition 5.7 Let R be a s-relation on fE . Then
the following are equivalent.

(1) R is serial;
(2) ∀ gE ∈ S f (U,E), apr

P
(gE) ⊂̃ aprP(gE).

Proof. (1)⇒ (2) holds by Lemma 4.10 and Theo-
rem 3.11.

(2)⇒ (1). Let gE ∈ S f (U,E).
Denote hE = apr

P
(gE) and lE = aprP(gE).

Suppose ∀ (xe)E ∈ F (E), R∗((xe)E) = /0. Then
R∗((xe)E) ⊆ G (E) ∀ gE ∈ S f (U,E). This implies
(xe)E ∈ Pg( fE ,R). By Lemma 5.3, (xe)E ∈ H (E).
Since hE ⊂̃ lE , H (E) ⊆ L (E) and (xe)E ∈ L (E).
But R∗((xe)E)∩G (E) = /0. Thus (xe)E ̸∈ Pg( fE ,R).
By Lemma 5.3, (xe)E ̸∈ L (E), a contradiction.
Hence R∗((xe)E) ̸= /0.

Proposition 5.8 Let R be a s-relation on fE . Then
the following are equivalent.

(1) R is reflexive;
(2) ∀ gE ∈ S f (U,E),
apr

P
(gE) ⊂̃ gE ⊂̃ aprP(gE).

Proof. (1)⇒ (2) holds by Lemma 4.10 and Theo-
rem 3.11.

(2) ⇒ (1). Let gE ∈ S f (U,E). Denote gE =
(xe)E and hE = aprP(gE).

By (2), gE ⊂̃ hE . Then G (E) ⊆ H (E).
This implies (xe)E ∈ H (E). By Lemma 5.3,
(xe)E ∈ Pg( fE ,R). Thus R∗((xe)E) ∩ G (E) ̸= /0.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 90–103
___________________________________________________________________________________________________________

97



So R∗((xe)E) ∩ G (E) = (xe)E . Hence (xe)E ∈
R∗((xe)E).

Proposition 5.9 Let R be reflexive on fE ∈ S(U,E).
Then

(1) apr
P
( fE) = aprP( fE) = fE .

(2) apr
P
( /̃0) = aprP( /̃0) = /̃0.

Proof. (1) By Lemma 4.10, apr
P
( fE) ⊂̃ aprP( fE).

Conversely, since P f ( fE ,R) ⊆ F (E), then
aprP( fE) ⊂̃ fE . By Lemma 4.10, fE = apr

P
( fE).

Thus aprP( fE) ⊂̃ apr
P
( fE). Therefore, apr

P
( fE) =

aprP( fE) = fE .
(2) This is obvious.

Proposition 5.10 Let R be a s-relation on fE . Then
the following are equivalent.

(1) R is symmetric;
(2) ∀ gE ∈ S f (U,E),
aprP(apr

P
(gE)) ⊂̃ gE ⊂̃ apr

P
(aprP(gE)).

Proof. (1)⇒ (2). Let gE ∈ S f (U,E). Denote
kE = apr

P
(gE), wE = aprP(kE), hE =

aprP(gE) and lE = apr
P
(hE).

Suppose W (E) − G (E) ̸= /0. Pick (xe)E ∈
W (E)− G (E). Then (xe)E ̸∈ G (E) and (xe)E ∈
W (E). By Lemma 5.3, (xe)E ∈ Pk( fE ,R). This
implies R∗((xe)E) ∩ K (E) ̸= /0. Pick (x′e′)E ∈
R∗((xe)E) ∩ K (E). Then (x′e′)E ∈ K (E). By
Lemma 5.3, (xe)E ∈ Pg( fE ,R). This implies
R∗((x′e′)E ⊆ G (E). Since R is symmetric, (xe)E ∈
R∗((x′e′)E). Thus (xe)E ∈ G (E), a contradiction.
Hence W (E)⊆ G (E). By Theorem 3.11, wE ⊂̃ gE .

Therefore, aprP(apr
P
(gE)) ⊂̃ gE .

Suppose G (E) − L (E) ̸= /0. Pick (xe)E ∈
G (E)− L (E). Then (xe)E ∈ G (E) and (xe)E ̸∈
L (E). By Lemma 5.3, (xe)E ̸∈ Ph( fE ,R). This
implies R∗((xe)E) ̸⊆ H (E). Thus R∗((xe)E) −
H (E) ̸= /0. Pick (x′e′)E ∈ R∗((xe)E)−H (E). Then
(x′e′)E ̸∈ H (E). By Lemma 5.3, (x′e′)E ̸∈ Pg( fE ,R).
This implies R∗((x′e′)E)∩G (E) = /0. Since (x′e′)E ∈
R∗((xe)E), by R is symmetric, we have (xe)E ∈
R∗((x′e′)E). Thus G (E) = /0, a contradiction. Hence
G (E)⊆ L (E). By Theorem 3.11, gE ⊂̃ lE .

Therefore, gE ⊂̃ apr
P
(aprP(gE)).

(2) ⇒ (1). Let (xe)E ,(x′e′)E ∈ F (E) with
(x′e′)E ∈ R∗((xe)E). Denote

gE = (xe)E , hE = aprP(gE) and lE = apr
P
(hE).

By Lemma 5.3 and Lemma 5.5, LE = Ph( fE ,R) and

H (E) = {(yε)E ∈ F (E) : (xe)E ∈ R∗((yε)E)}.
Then gE ⊂̃ lE ⊂̃ hE . This implies (xe)E ∈ L (E) ⊆
H (E). So (xe)E ∈ Pg( fE ,R). Thus R∗((xe)E) ⊆
G (E). Since (x′e′)E ∈ R∗((xe)E), (x′e′)E ∈ G (E).
Then (x′e′)E = (xe)E . Hence (x′e′)E ∈ H (E). By
Lemma 5.5, (xe)E ∈ R∗((x′e′)E).

Therefore, R is symmetric.

Lemma 5.11 Let R be reflexive on fE ∈ S(U,E) and
let gE ,hE ∈ S f (U,E).

(1) If hE = apr
P
(gE) and R is transitive, then

Pg( fE ,R) = Ph( fE ,R)⊆ Ph( fE ,R)⊆ Pg( fE ,R);
(2) If hE = aprP(gE) and R is Euclidean, then

Pg( fE ,R)⊆ Pg( fE ,R)⊆ Ph( fE ,R)⊆ Ph( fE ,R).

Proof. (1) Let hE = apr
P
(gE). Since

apr
P
(gE) ⊂̃ gE , hE ⊂̃ gE . By Lemma 4.10,

Pg( fE ,R) ⊇ Ph( fE ,R) ⊆ Ph( fE ,R) ⊆ Pg( fE ,R). It
suffices to show that Pg( fE ,R)⊆ Ph( fE ,R).

Suppose Pg( fE ,R)−Ph( fE ,R) ̸= /0. Pick (xe)E ∈
Pg( fE ,R)−Ph( fE ,R). Then R∗((xe)E) ⊆ G (E) and
R∗((xe)E) ̸⊆ H (E), and so R∗((xe)E)−H (E) ̸=
/0. Pick (x′e′)E ∈ R∗((xe)E)−H (E). Since R is
transitive, R∗((x′e′)E) ⊆ R∗((xe)E) ⊆ G (E). Thus
(x′e′)E ∈ Pg( fE ,R). By Lemma 5.3, (x′e′)E ∈ H (E).
But (x′e′)E ̸∈ H (E), a contradiction. Therefore,
Pg( fE ,R)⊆ Ph( fE ,R).

(2) Let hE = aprP(gE). Since gE ⊂̃ aprP(gE),
gE ⊂̃ hE . By Lemma 4.10, Pg( fE ,R) ⊆ Pg( fE ,R)
and Ph( fE ,R) ⊆ Ph( fE ,R). It suffices to show that
Pg( fE ,R)⊆ Ph( fE ,R).

Suppose Pg( fE ,R)−Ph( fE ,R) ̸= /0. Pick (xe)E ∈
Pg( fE ,R)−Ph( fE ,R). Then R∗((xe)E)∩G (E) ̸= /0
and R∗((xe)E) ̸⊆ H (E). Pick (x′′e′′)E ∈ R∗((xe)E)∩
G (E) and (x′e′)E ∈ R∗((xe)E) − H (E). Then
(x′e′)E ̸∈ H (E). Since R is Euclidean, (x′′e′′)E ∈
R∗((x′e′)E). That implies R∗((x′e′)E) ∩ G (E) ̸= /0.
Thus (x′e′)E ∈ Pg( fE ,R). By Lemma 5.3, (x′e′)E ∈
H (E), a contradiction. Therefore, Pg( fE ,R) ⊆
Ph( fE ,R).
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Proposition 5.12 Let R be reflexive on fE ∈
S(U,E). Then the following are equivalent.

(1) R is transitive;
(2) ∀ gE ∈ S f (U,E),
apr

P
(gE) ⊂̃ apr

P
(apr

P
(gE)) ⊂̃ aprP(aprP(gE))

⊂̃ aprP(gE).

Proof. (1)⇒ (2). Let gE ∈ S f (U,E). Denote

hE = apr
P
(gE), kE = aprP(gE) and lE = aprP(kE).

We will prove hE ⊂̃ apr
P
(hE). We can suppose

Pg( fE ,R) ̸= /0. ∀ (xe)E ∈ Pg( fE ,R), by Lemma 5.11,
Pg( fE ,R)=Ph( fE ,R), then (xe)E ∈Ph( fE ,R). Hence
apr

P
(gE) ⊂̃ apr

P
(apr

P
(gE)). By Proposition 5.7,

apr
P
(apr

P
(gE)) ⊂̃ aprP(aprP(gE)).

Suppose that L (E)−K (E) ̸= /0. Pick (xe)E ∈
L (E)−K (E). Then (xe)E ∈ L (E). By Lemma
5.3, (xe)E ∈ Pk( fE ,R). This implies R∗((xe)E) ∩
K (E) ̸= /0. Pick (x′e′)E ∈ R∗((xe)E)∩K (E). Then
(x′e′)E ∈ K (E). By Lemma 5.3, (xe)E ∈ Pg( fE ,R).
This implies R∗((x′e′)E ∩G (E) ̸= /0. Thus G (E) ̸=
/0. Since (xe)E ̸∈ K (E), by Lemma 5.3, we have
(xe)E ̸∈ Pg( fE ,R). So R∗((xe)E)∩G (E) = /0. since
R is reflexive, (xe)E ∈ R∗((xe)E). Thus G (E) = /0, a
contradiction. Hence L (E)⊆ K (E). By Theorem
3.11, lE ⊂̃ kE .

Therefore, aprP(aprP(gE)) ⊂̃ aprP(gE).
(2)⇒ (1). Let (xe)E ,(x′e′)E ,(x′′e′′)E ∈ F (E) with

(xe)E ∈ R∗((x′e′)E) and (x′e′)E ∈ R∗((x′′e′′)E). Denote

gE = (xe)E , hE = aprP(gE) and lE = aprP(hE).

By Lemma 5.3 and Lemma 5.5, LE = Ph( fE ,R) and

H (E) = {(yε)E ∈ F (E) : (xe)E ∈ R∗((yε)E)}.

(xe)E ∈ R∗((x′e′)E) implies (xe)E ∈H (E). Note that
(x′e′)E ∈ R∗((x′′e′′)E). Then R∗((x′′e′′)E)∩H (E) ̸= /0.
So (x′′e′′)E ∈ Ph( fE ,R) = L (E).

Since aprP(aprP((xe)E)) ⊂̃ aprP((xe)E),
L (E)⊆ H (E). Thus (x′′e′′)E ∈ H (E). By Lemma
5.5, (xe)E ∈ R∗((x′′e′′)E).

Therefore, R is transitive.

Proposition 5.13 Let R be reflexive on fE ∈
S(U,E). Then the following are equivalent.

(1) R is Euclidean;
(2) ∀ gE ∈ S f (U,E),
aprP(apr

P
(gE)) ⊂̃ apr

P
(gE) ⊂̃ aprP(gE)

⊂̃ apr
P
(aprP(gE)).

Proof. (1)⇒ (2). Let gE ∈ S f (U,E). Denote

kE = apr
P
(gE), lE = aprP(kE) and hE = aprP(gE).

Suppose L (E) − K (E) ̸= /0. Pick (xe)E ∈
L (E)−K (E). Then (xe)E ̸∈ K (E) and (xe)E ∈
L (E). By Lemma 5.3, (xe)E ∈ Pk( fE ,R).
This implies R∗((xe)E) ∩ K (E) ̸= /0. Pick
(x′e′)E ∈ R∗((xe)E)∩K (E). Then (x′e′)E ∈ K (E).
By Lemma 5.3, (xe)E ∈ Pg( fE ,R). This im-
plies R∗((x′e′)E ⊆ G (E). Since R is Euclidean,
R∗((xe)E) ⊆ R∗((x′e′)E). Thus R∗((xe)E) ⊆ G (E).
Since (xe)E ̸∈ K (E), by Lemma 5.3, (xe)E ̸∈
Pg( fE ,R). So R∗((xe)E) ̸⊆ G (E), a contradiction.
Hence L (E)⊆ K (E). By Theorem 3.11, lE ⊂̃ kE .

Therefore, aprP(apr
P
(gE)) ⊂̃ apr

P
(gE).

By Proposition 5.7, apr
P
(gE) ⊂̃ aprP(gE).

We will prove hE ⊂̃ apr
P
(hE). Suppose

Pg( fE ,R) ̸= /0. ∀ (xe)E ∈ Pg( fE ,R), by Lemma
5.11, Pg( fE ,R)⊆ Ph( fE ,R). Then (xe)E ∈ Ph( fE ,R).
Hence aprP(gE) ⊂̃ apr

P
(aprP(gE)).

(2)⇒ (1) Let (xe)E ,(x′e′)E ,(x′′e′′)E ∈ F (E) with
(xe)E ∈ R∗((x′′e′′)E) and (x′e′)E ∈ R∗((x′′e′′)E). Denote

gE = (xe)E , hE = aprP(gE) and lE = apr
P
(hE).

By Lemma 5.3 and Lemma 5.5, LE = Ph( fE ,R) and

H (E) = {(yε)E ∈ F (E) : (xe)E ∈ R∗((yε)E)}.

(xe)E ∈ R∗((x′′e′′)E) implies (x′′e′′)E ∈ H (E). Since
aprP(gE) ⊂̃ apr

P
(aprP(gE))), H (E) ⊆ L (E). So

(x′′e′′)E ∈ L (E) = Ph( fE ,R). Thus R∗((x′′e′′)E) ⊆
H (E). Note that (x′e′)E ∈ R∗((x′′e′′)E). Then (x′e′)E ∈
H (E). By Lemma 5.5, (xe)E ∈ R∗((x′e′)E).

Therefore, R is Euclidean.

6. Soft topologies induced by s-relations on
special soft sets

In this section, we investigate soft topologies in-
duced by a reflexive s-relation on a special soft set
and give their structure.
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6.1. s-relations on Ũ

Proposition 6.1 Let R be a s-relation on Ũ. Then
∀ gE ∈ S(U,E), we have

(1) apr
P
(gE) = Ũ −aprP(Ũ −gE);

(2) aprP(gE) = Ũ −apr
P
(Ũ −gE).

Proof. (1) Denote hE = Ũ − gE , qE = aprP(hE),
lE = Ũ −qE and kE = apr

P
(gE).

To prove lE ⊂̃ kE , by Theorem 3.11, it suffices to
show L (E)⊆ K (E).

Suppose L (E) − K (E) ̸= /0. Pick (xe)E ∈
L (E)−K (E). Then (xe)E ̸∈ K (E). By Lemma
5.3, (xe)E ̸∈ Pg( fE ,R). Thus R∗((xe)E) ̸⊆ G (E).
Pick (x′e′)E ∈ R∗((xe)E) − G (E). Then (x′e′)E ̸∈
G (E). This implies x′ ̸∈ g(e′). So x′ ∈ U − g(e′) =
h(e′).

Since (xe)E ∈ L (E), (xe)E ∈ U (E)− Q(E).
Then (xe)E ̸∈ Q(E). By Lemma 5.3, (xe)E ̸∈
Ph( fE ,R). So R∗((xe)E) ∩ H (E) = /0. Since
(x′e′)E ∈ R∗((xe)E), (x′e′)E ̸∈ H (E). This implies
x′ ̸∈ h(e′), a contradiction. Hence L (E)⊆ K (E).

Therefore, Ũ −aprP(Ũ −gE) ⊂̃ apr
P
(gE).

Conversely, to prove kE ⊂̃ lE = Ũ − qE , by Re-
mark 2.11, it suffices to show kE ∩̃ qE = /̃0.

Suppose wE = kE ∩̃ qE ̸= /̃0. By Proposi-
tion 3.5, W (E) = K (E) ∩ Q(E). Pick (xe)E ∈
W (E). Then (xe)E ∈ K (E) and (xe)E ∈ Q(E). By
Lemma 5.3, (xe)E ∈Pg( fE ,R) and (xe)E ∈Ph( fE ,R).
Thus R∗((xe)E)⊆G (E) and R∗((xe)E)∩H (E) ̸= /0.
Pick (x′e′)E ∈ R∗((xe)E) ∩ H (E). Then (x′e′)E ∈
H (E). Thus x′ ∈ h(e′) = U − g(e′) and so x′ ̸∈
g(e′). But (x′e′)E ∈ R∗((xe)E). This implies (x′e′)E ∈
G (E). Thus x′ ∈ g(e′), a contradiction. Hence
apr

P
(gE) ⊂̃ Ũ −aprP(Ũ −gE).

Therefore, apr
P
(gE) = Ũ −aprP(Ũ −gE).

(2) Denote hE = Ũ − gE , qE = apr
P
(hE), lE =

Ũ −qE and kE = aprP(gE).
To prove lE ⊂̃ kE , by Theorem 3.11, it suffices to

show L (E)⊆ K (E).
Suppose L (E) − K (E) ̸= /0. Pick (xe)E ∈

L (E)−K (E). Then (xe)E ̸∈ K (E). By Lemma
5.3, (xe)E ̸∈ Pg( fE ,R). Then R∗((xe)E)∩G (E) = /0.

Since (xe)E ∈ L (E), (xe)E ∈ U (E)− Q(E).
Then (xe)E ̸∈ Q(E). By Lemma 5.3, (xe)E ̸∈

Ph( fE ,R). Then R∗((xe)E) ̸⊆ H (E) and so
R∗((xe)E)−H (E) ̸= /0. Pick (x′e′)E ∈ R∗((xe)E)−
H (E). Then (x′e′)E ̸∈ H (E). Thus x′ ̸∈ h(e′) =
g′(e′) =U −g(e′) and so x′ ∈ g(e′).

Since (x′e′)E ∈ R∗((xe)E), (x′e′)E ̸∈ G (E). Thus
x′ ̸∈ g(e′), a contradiction. Hence L (E)⊆ K (E).

Therefore, Ũ −apr
P
(Ũ −gE) ⊂̃ aprP(gE).

Conversely, to prove kE ⊂̃ lE = Ũ − qE , by Re-
mark 2.11, it suffices to show kE ∩̃ qE = /̃0.

Suppose wE = kE ∩̃ qE ̸= /̃0. By Proposition
3.5, W (E) = K (E)∩Q(E). Pick (xe)E ∈ W (E).
Then (xe)E ∈ K (E) and (xe)E ∈ Q(E). By Lemma
5.3, (xe)E ∈ Pg( fE ,R) and (xe)E ∈ Ph( fE ,R). Thus
R∗((xe)E)∩G (E) ̸= /0 and R∗((xe)E)⊆H (E). Pick
(x′e′)E ∈ R∗((xe)E) ∩ G (E). Then (x′e′)E ∈ G (E).
Thus x′ ∈ g(e′). But (x′e′)E ∈R∗((xe)E). This implies
(x′e′)E ∈ H (E). Thus x′ ∈ h(e′) =U −g(e′) and so
x′ ̸∈ g(e′), a contradiction. Hence aprP(gE) ⊂̃ Ũ −
apr

P
(Ũ −gE).

Therefore, aprP(gE) = Ũ −apr
P
(Ũ −gE).

Corollary 6.2 Let R be a s-relation on Ũ. Then the
following are equivalent.

(1) R is serial;
(2) ∀ gE ∈ S(U,E), apr

P
(gE) ⊂̃ aprP(gE);

(3) apr
P
( /̃0) = /̃0;

(4) aprP(Ũ) = Ũ .

Proof. This follows from Proposition 5.7 and
Proposition 6.1.

Corollary 6.3 Let R be a s-relation on Ũ. Then the
following are equivalent.

(1) R is reflexive;
(2) ∀ gE ∈ S(U,E), apr

P
(gE) ⊂̃ gE;

(3) ∀ gE ∈ S(U,E), gE ⊂̃ aprP(gE).

Proof. This follows from Proposition 5.8 and
Proposition 6.1.

Corollary 6.4 Let R be a s-relation on Ũ. Then the
following are equivalent.

(1) R is symmetric;
(2) ∀ gE ∈ S f (U,E), gE ⊂̃ apr

P
(aprP(gE));

(3) ∀ gE ∈ S f (U,E), aprP(apr
P
(gE)) ⊂̃ gE .
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Proof. This follows from Proposition 5.10 and
Proposition 6.1.

Corollary 6.5 Let R be a s-relation on Ũ. Then the
following are equivalent.

(1) R is transitive;
(2) apr

P
(gE) ⊂̃ apr

P
(apr

P
(gE)) ∀ gE ∈

S f (U,E);
(3) aprP(aprP(gE)) ⊂̃ aprP(gE) ∀ gE ∈

S f (U,E).

Proof. This follows from Proposition 5.12 and
Proposition 6.1.

Corollary 6.6 Let R be a s-relation on Ũ. Then the
following are equivalent.

(1) R is Euclidean;
(2) ∀ gE ∈ S f (U,E), aprP(gE) ⊂̃ apr

P
(aprP(gE));

(3) ∀ gE ∈ S f (U,E), aprP(apr
P
(gE)) ⊂̃ apr

P
(gE).

Proof. This follows from Proposition 5.13 and
Proposition 6.1.

6.2. Soft topologies induced by relations on Ũ

Theorem 6.7 Let R be reflexive on Ũ. Then τR =
{gE ∈ S(U,E) : apr

P
(gE) = gE} is a soft topology

over U.

Proof. (1) By Proposition 5.9, /̃0, Ũ ∈ τR.
(2) Let gE , hE ∈ τR. Since gE = apr

P
(gE) and

hE = apr
P
(hE), by Proposition 5.6, gE ∩̃ hE =

apr
P
(gE) ∩̃ apr

P
(hE) = apr

P
(gE ∩̃ hE).

(3) Let (gα)E ∈ τR ∀ α ∈
∧

, we will
show that ∪̃ {(gα)E : α ∈

∧
} = apr

P
(∪̃ {(gα)E :

α ∈
∧
}). Since R is reflexive, by Proposition 5.8,

apr
P
(∪̃ {(gα)E : α ∈

∧
}) ⊂̃ ∪̃ {(gα)E : α ∈

∧
}.

Conversely, since (gα)E = apr
P
((gα)E), by

Proposition 5.6, we have ∪̃ {(gα)E : α ∈
∧
} =

∪̃ {apr
P
((gα)E) : α ∈

∧
} ⊂̃ apr

P
(∪̃ {(gα)E :

α ∈
∧
}).

Therefore, τR = {gE ∈ S f (U,E) : apr
P
(gE) =

gE} is a soft topology on fE .

Definition 6.8 Let R be reflexive on Ũ. Then τR is
called the soft topology induced by R on Ũ.

The following Theorem 6.9 gives the structure
of the soft topology induced by a reflexive s-relation
on Ũ .

Theorem 6.9 Let R be reflexive on Ũ and τR the soft
topology induced by R on U. Then

(1) a) τR = {apr
P
(gE) : gE ∈ S(U,E)} whenever

R is transitive.
b) {aprP(gE) : gE ∈ S(U,E)} ⊆ τR whenever

R is Euclidean.
(2) apr

P
is a soft interior operator of τR.

(3) aprP is a soft closure operator of τR.

Proof. (1) a) Let gE ∈ S(U,E). By Corol-
lary 6.5, apr

P
(apr

P
(gE)) = apr

P
(gE). This im-

plies apr
P
(gE) ∈ τR. Thus τR ⊇ {apr

P
(gE) : gE ∈

S(U,E)}. Hence τR = {apr
P
(gE) : gE ∈ S(U,E)}.

b) By Corollary 6.6, {aprP(gE) : gE ∈
S(U,E)} ⊆ τR.

(2) It suffices to show apr
P
(gE) =

int(gE) for any gE ∈ S(U,E).
By (1), apr

P
(gE) ∈ τR. By Corollary 6.3,

apr
P
(gE) ⊂̃ gE . Thus apr

P
(gE) ⊂̃ int(gE).

Conversely, suppose hE ∈ τR and hE ⊂̃ gE , by
Proposition 5.6, hE = apr

P
(hE) ⊂̃ apr

P
(gE). By

Remark 2.5,

int(gE)= ∪̃ {hE : hE ∈ τR and hE ⊂̃ gE} ⊂̃ apr
P
(gE).

Thus apr
P
(gE) = int(gE).

(3) By Proposition 2.17 and Proposition 6.1,
aprP(gE) = Ũ − apr

P
(Ũ − gE) = Ũ − int(Ũ −

gE) = cl(gE).

Theorem 6.10 Let R be reflexive and transitive on
Ũ and τR the soft topology induced by R on Ũ. Then
∀ gE ∈ S(U,E), gE ∈ τR ⇔ gE ∈ τ ′

R.

Proof. Necessity. Let gE ∈ τR. Then apr
P
(gE) =

gE . By Proposition 6.1 and Remark 2.9, aprP(g
′
E) =

Ũ − apr
P
((g′E)

′) = Ũ − apr
P
(gE) = Ũ − gE = g′E .

By Theorem 6.9, g′E = aprP(g
′
E)∈ τR. Thus gE ∈ τ ′

R.
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Sufficiency. Let gE ∈ τ ′
R. Then g′E ∈ τR and

apr
P
(g′E) = g′E . By Proposition 6.1 and Remark 2.9,

aprP(gE) = Ũ − apr
P
(g′E) = gE . By Theorem 6.5,

gE = aprP(gE) ∈ τR.

Definition 6.11 Let τ be a topology on U. τ is
called a pseudo-discrete topology on U, if A ⊆ U
is open in U if and only if A is closed in U.

Theorem 6.12 Let R be reflexive and transitive on
Ũ. Then τR is a pseudo-discrete topology over U.

Proof. This holds by Theorem 6.7 and Theorem
6.10.

7. Conclusions

In this paper, the fact that soft sets can be trans-
lated into soft point sets has been proved. Thus,
we may expediently handled soft set like ordinary
sets. We have proposed s-relations on soft sets. By
means of soft points and s-relations, a pair of soft
rough approximate operations has been defined. Se-
rial, reflexive, symmetric, transitive and Euclidean
s-relations have been characterized by using soft
rough approximate operations. In addition, we have
investigated soft topologies induced by a reflexive
s-relation on a special soft set and given their struc-
ture. In the future, we will investigate the axioma-
tization of the proposed soft rough approximate op-
erations and consider some concrete applications of
our proposed notions.
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