
An Improved “Black Box” Measure for Evaluating
Collision Resistance

Qi Wu
Department of Computer Science & Technology, School of Information Technology, Jiangxi University of Finance & Economics,

Nanchang, China

Abstract—Collision resistance is one of the most desired
properties for a cryptographic hash function. However, in the
literature, there’re some insufficient “black box” measures for
evaluating collision resistance, which couldn’t even distinguish
some simple hash functions. In this paper, an improved “black
box” measure is proposed based on reducing the probability with
which a trivial Turing machine might find collision points. It
works much better than the measures in the literature.

Keywords-cryptographic hash function; collision resistance;
black box; Turing machine

I. INTRODUCTION

Nowadays, design and analysis of cryptographic hash
functions have attracted much attention of researchers, due to
their significant roles in data integrity, digital signature, and
authentication protocols [1]. There are several requirements for
cryptographic hash functions, such as pre-image resistance
(also known as one-wayness), second pre-image resistance, and
collision resistance, in which collision resistance is the most
concerned one [2-11].

Informally speaking, there’re two different approaches for
evaluating collision resistance for cryptographic hash functions:
“white box” [2-5] and “black box” [6-11]. The “white box”
approach examines the inner structure of cryptographic hash
functions in detail, and outputs collision points through
differential cryptanalysis. Basically, this approach is the
mainstream of collision resistance evaluation. Meanwhile,
there’s some work adopting the “black box” approach, which
totally neglects the internal structure of cryptographic hash
functions and calculates solely based on the input and output of
cryptographic hash functions. However, we find their work is
far from sufficient for collision resistance evaluation. Hereby,
we propose our “black box” measure for evaluating collision
resistance. Albeit our measure still seems to be naïve and
heuristic, it may make more sense than the previous work did.

The paper is organized as follows. Section 2 reviews the
“black box” approach in the literature and points out its
insufficiency. Section 3 gives our “black box” measure. Section
4 concludes.

II. THE “BLACK BOX” APPROACH IN THE LITERATURE

In the literature, researchers confine both the domain and
range of cryptographic hash functions to 8 bits, namely,
integers ranging from 0 to 255. Let the number of points in the

range owning exactly k preimages be ()n k , some researchers

focus on (0)n , and their measure [6-8] is:

256 (0)

256

n
L


 . (1)

They deem the closer L is to 1, the less possibly collisions
occur.

Some other researchers focus on (1)n , and their measure
[9-11] is:

(1)

256

n
T  . (2)

They deem the larger T is, the less possibly collisions
occur.

Intuitively, both their measures exactly comply with
common sense: the less (0)n is, the larger (1)n is, the less
possibly collisions occur. However, we could find many
counterexamples easily, such as:

Assume

 1()
255

x
H x     

, (3)

 2 ()
128

x
H x     

. (4)

We could see, intuitively, finding collision points of 1H is

much easier than those of 2H , because it’s quite likely that

both random inputs fall in the interval [0,254] while it’s much
less likely that both random inputs fall in the interval [0,127] or
[128,255]. Nevertheless, both (0)n of the two hash functions

equal 254, which means L couldn’t distinguish them at all.

Suppose

2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE2016)

Copyright © 2016, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 133

470

 3() mod 4H x x , (5)

 4

0, 252
()

, 252

x
H x

x x


  

. (6)

We could know, intuitively, finding collision points of 3H

is much more difficult than those of 4H , because it’s

improbable that both random inputs are congruent with
modulus 4, while it’s much more likely that both random inputs
fall in the interval [0,252]. Nonetheless, both (0)n of the two

hash functions equal 252, which illustrates that L couldn’t tell
them apart at all.

Let

 5()
4

x
H x     

, (7)

 6

, 62
()

63, 62

x x
H x

x


  

. (8)

We could see, intuitively, finding collision points of 5H is

much more difficult than those of 6H , because it’s not likely

that both random inputs fall exactly in the interval [0,3] or [4,7]
or … or [252,255], whereas it’s much more likely that both
random inputs fall in the interval [63,255]. However, both

(0)n of the two hash functions equal 192, which illustrates

that L couldn’t tell them apart at all.

Assume

 7 () 0H x  , (9)

 8()
2

x
H x     

. (10)

We could know, intuitively, finding collision points of 7H

is much easier than those of 8H , because collisons occur

everywhere in 7H such that each pair of random inputs will be

its collision points whereas it’s improbable that both random
inputs fall exactly in the interval [0,1] or [2,3] or … or
[254,255]. Nonetheless, both (1)n of the two hash functions

equal 0, which means T can’t tell them apart at all.

Suppose

 9

mod 64, 127
()

, 127

x x
H x

x x


  

, (11)

 10

, 127
()

128, 127

x x
H x

x


  

. (12)

We could see, intuitively, finding collision points of 9H is

much harder than those of 10H , because it’s unlikely that both

random inputs are less than 128 and congruent with modulus
64 whereas it’s quite probable that both random inputs fall in
the interval [128,255]. Nonetheless, both (1)n of the two hash

functions equal 128, which means T can’t tell them apart at
all.

Let

 11

, 191
() 8

, 191

x
x

H x

x x

     
 

, (13)

 12

, 63
()

64, 63

x x
H x

x


  

. (14)

We could know, intuitively, finding collision points of 11H

is much harder than those of 12H , because it’s unlikely that

both random inputs fall exactly in the interval [0,7] or [8,15]
or … or [184,191] while it’s quite probable that both random
inputs fall in the interval [64,255]. Nevertheless, both (1)n of

the two hash functions equal 64, which means T can’t tell
them apart at all.

Next, let’s give our measure for evaluating collision
resistance.

III. THE PROPOSED MEASURE FOR COLLISION RESISTANCE

EVALUATION

As a cryptographic hash function, it should make the
success rate of every Turing machine trying to find its collision
points as low as possible, of course including the trivial one.
Assume there’s a Turing machine M working as follows:

First, M randomly selects a point 1x in the domain. Then,

M randomly selects a point 2x other than 1x in the domain.

At last, M outputs 1x and 2x as the collision points.

Let the points in the range owning exactly k preimages
form a set ()N k , then the success rate of M could be

Advances in Intelligent Systems Research, volume 133

471

calculated as follows:

1 2

1

2 1 1

256

1

2 1 1 1 1

0

() [() ()]

[(()) { }]

[(()) { } | () ()] [() ()]
k

Succ M Pr H x H x

Pr x H H x x

Pr x H H x x H x N k Pr H x N k







 

  

    

Apparently, the term in the summation equals 0 when

0k  or 1 , because 1()H x couldn’t belong to (0)N (it

already has a preimage 1x) and when 1() (1)H x N ,
1

1 1(()) { }H H x x    , which couldn’t contain 2x at all.

Then, ()Succ M could be calculated as:

256

1

2 1 1 1 1

2

256

1

1

2

256

2

256

2

()

[(()) { } | () ()] [() ()]

1
[(())]

255

1 ()

255 256

1
(1) ()

65280

k

k

k

k

Succ M

Pr x H H x x H x N k Pr H x N k

k
Pr x H N k

k kn k

k kn k













    


 


 

 









To be brief, ()Succ M is abbreviated as S hereafter. The

smaller S is, the less collisions occur. Next, let’s see how S

works on 1 2 12, ,...,H H H .

For 1H , in which (0) 254n  , (1) (255) 1n n  and

all other () 0(k {0,1,255})n k   , we have
127

128
S  . For

2H , in which (0) 254n  , (128) 2n  , all other

() 0(k {0,128})n k   , we have
127

255
S  . We could see,

S has easily differentiated 1H and 2H , pointing out that 2H

is better than 1H .

For 3H , in which (0) 252n  , (64) 4n  and all other

() 0(k {0,64})n k   , we have
63

255
S  . For 4H , in

which (0) 252n  , (1) 3n  , (253) 1n  , all other

() 0(k {0,1,253})n k   , we have
5313

5440
S  . We could

know, S has easily distinguished 3H and 4H , showing that

3H outperforms 4H .

For 5H , in which (0) 192n  , (4) 64n  and all other

() 0(k {0,4})n k   , we have
1

85
S  . For 6H , in which

(0) 192n  , (1) 63n  , (193) 1n  , all other

() 0(k {0,1,193})n k   , we have
193

340
S  . We could

see, S has easily differentiated 5H and 6H , indicating that

5H overwhelms 6H .

For 7H , in which (0) 255n  , (256) 1n  and all

other () 0(k {0,256})n k   , we have 1S  . For 8H , in

which (0) n(2) 128n   and all other

() 0(k {0,2})n k   , we have
1

255
S  . Clearly, S has

distinguished 7H from 8H , pointing out that 8H is much

better than 7H .

For 9H , in which (0) 64n  , (1) 128n  , (2) 64n  ,

all other () 0(k {0,1,2})n k   , we have
1

510
S  . For

10H , in which (0) 127n  , (1) 128n  , (128) 1n  , all

other () 0(k {0,1,128})n k   , we have
127

510
S  .

Obviously, S has differentiated 9H from 10H , pinpointing

that 9H outperforms 10H .

For 11H , in which (0) 168n  , (1) 64n  , (8) 24n  ,

all other () 0(k {0,1,8})n k   , we have
7

340
S  . For

12H , in which (0) 191n  , (1) 64n  , (192) 1n  , all

other (k) 0(k {0,1,192})n   , we have
191

340
S  .

Apparently, S has distinguished 11H from 12H , indicating

that 11H overwhelms 12H .

IV. CONCLUSION

In this paper, a novel “black box” measure for evaluating
collision resistance is proposed. Different from those measures
in the literature, the proposed measure indicates that

()(2 256)n k k  should be paid attention to instead of

(0)n or (1)n . The larger k is, the more ()n k affects the

Advances in Intelligent Systems Research, volume 133

472

extent of collision. Using the proposed measure, some hash
functions could be told apart, indicating its excellent capability
of collision resistance evaluation.

At last, we have to note that collision resistance is just one
of the requirements for cryptographic hash functions, and small
S doesn’t necessarily make a good cryptographic hash

function. For example, let 13()H x x , then its 0S  , but

13H is never a candidate for cryptographic hash function as it

totally abandons the ability of compression.

ACKNOWLEDGMENT

This work is partially supported by the Natural Science
Foundation of China under Grant No. 61462033. Thanks to my
supervisors Changxuan Wan & Zuowen Tan.

REFERENCES
[1] S. Bakhtiari, R. Safavi-Naini and J. Pieprzyk, “Cryptographic Hash

Functions: A Survey,” TechReport, 1995.

[2] D. Zhang, “Cryptanalysis and Research on the Collision of Hash
Functions in Cryptography,” Xidian University, 2009.

[3] D. Zhang, M. Li and W. Shen, “Near-collision of MD4 Hash Function,”
Computer Engineering and Applications, vol. 45, April 2009, pp. 89-92.

[4] Y. Ge, “The Influence on the Security of Challenge-Response
Authentication by Collision of Hash,” Shanghai Jiao Tong University,
2010.

[5] B. Ma and B. Li, “Collision and Second Preimage Attacks on the HTBC
Hash Function,” Journal of Computer Research and Development, vol.
51, Nov. 2014, pp. 2513-2517.

[6] F. Peng, S. Qiu and M. Long, “One-way Hash Function Construction
Based on Two-Dimensional Hyper-Chaotic Maps,” Acta Physica Sinica,
vol. 54, Oct. 2005, pp. 4562-4568.

[7] P. Wei, W. Zhang, X. Liao and H. Yang, “Design Keyed Hash Function
Based on Couple Chaotic System,” Journal on Communications, vol. 27,
Sept. 2006, pp. 27-33.

[8] P. Li, L. Gu, Y. Sui and H. Yang, “Design of Chaotic One-Way Hash
Function Based on Orbit Perturbation,” Optics and Precision
Engineering, vol. 18, Sept. 2010, pp. 2101-2108.

[9] G. Liu, L. Shan, Y. Dai, J. Sun and Z. Wang, “One-Way Hash Function
Based on Chaotic Neural Network,” Acta Physica Sinica, vol. 55, Nov.
2006, pp. 5688-5693.

[10] H. Ren and Y. Zhuang, “One-Way Hash Function Construction Based
on Chen-Type Hyper-Chaotic System and Key-Stream,” Journal on
Communications, vol. 30, Oct. 2009, pp. 100-106.

[11] T. He, X. Luo, Z. Liao and Z. Wei, “A New Chaos Map Hash Function
Structural Method and its Application,” Acta Physica Sinica, vol. 61,
Nov. 2012, pp. 110506

Advances in Intelligent Systems Research, volume 133

473

