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Abstract—Collision resistance is one of the most desired 
properties for a cryptographic hash function. However, in the 
literature, there’re some insufficient “black box” measures for 
evaluating collision resistance, which couldn’t even distinguish 
some simple hash functions. In this paper, an improved “black 
box” measure is proposed based on reducing the probability with 
which a trivial Turing machine might find collision points. It 
works much better than the measures in the literature. 
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I.  INTRODUCTION 

Nowadays, design and analysis of cryptographic hash 
functions have attracted much attention of researchers, due to 
their significant roles in data integrity, digital signature, and 
authentication protocols [1]. There are several requirements for 
cryptographic hash functions, such as pre-image resistance 
(also known as one-wayness), second pre-image resistance, and 
collision resistance, in which collision resistance is the most 
concerned one [2-11]. 

Informally speaking, there’re two different approaches for 
evaluating collision resistance for cryptographic hash functions: 
“white box” [2-5] and “black box” [6-11]. The “white box” 
approach examines the inner structure of cryptographic hash 
functions in detail, and outputs collision points through 
differential cryptanalysis. Basically, this approach is the 
mainstream of collision resistance evaluation. Meanwhile, 
there’s some work adopting the “black box” approach, which 
totally neglects the internal structure of cryptographic hash 
functions and calculates solely based on the input and output of 
cryptographic hash functions. However, we find their work is 
far from sufficient for collision resistance evaluation. Hereby, 
we propose our “black box” measure for evaluating collision 
resistance. Albeit our measure still seems to be naïve and 
heuristic, it may make more sense than the previous work did. 

The paper is organized as follows. Section 2 reviews the 
“black box” approach in the literature and points out its 
insufficiency. Section 3 gives our “black box” measure. Section 
4 concludes. 

II. THE “BLACK BOX” APPROACH IN THE LITERATURE 

In the literature, researchers confine both the domain and 
range of cryptographic hash functions to 8 bits, namely, 
integers ranging from 0 to 255. Let the number of points in the 

range owning exactly k  preimages be ( )n k , some researchers 

focus on (0)n , and their measure [6-8] is: 

 
256 (0)

256

n
L


 . (1) 

They deem the closer L  is to 1, the less possibly collisions 
occur. 

Some other researchers focus on (1)n , and their measure 
[9-11] is: 

 
(1)

256

n
T  . (2) 

They deem the larger T  is, the less possibly collisions 
occur. 

Intuitively, both their measures exactly comply with 
common sense: the less (0)n  is, the larger (1)n  is, the less 
possibly collisions occur. However, we could find many 
counterexamples easily, such as: 

Assume 

 1( )
255

x
H x     

, (3) 

 2 ( )
128

x
H x     

. (4) 

We could see, intuitively, finding collision points of 1H  is 

much easier than those of 2H , because it’s quite likely that 

both random inputs fall in the interval [0,254] while it’s much 
less likely that both random inputs fall in the interval [0,127] or 
[128,255]. Nevertheless, both (0)n  of the two hash functions 

equal 254, which means L  couldn’t distinguish them at all. 

Suppose 
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 3( ) mod 4H x x , (5) 

 4

0, 252
( )

, 252

x
H x

x x


  

. (6) 

We could know, intuitively, finding collision points of 3H  

is much more difficult than those of 4H , because it’s 

improbable that both random inputs are congruent with 
modulus 4, while it’s much more likely that both random inputs 
fall in the interval [0,252]. Nonetheless, both (0)n  of the two 

hash functions equal 252, which illustrates that L  couldn’t tell 
them apart at all. 

Let 

 5( )
4

x
H x     

, (7) 

 6

, 62
( )

63, 62

x x
H x

x


  

. (8) 

We could see, intuitively, finding collision points of 5H  is 

much more difficult than those of 6H , because it’s not likely 

that both random inputs fall exactly in the interval [0,3] or [4,7] 
or … or [252,255], whereas it’s much more likely that both 
random inputs fall in the interval [63,255]. However, both 

(0)n  of the two hash functions equal 192, which illustrates 

that L  couldn’t tell them apart at all. 

Assume 

 7 ( ) 0H x  , (9) 

 8( )
2

x
H x     

. (10) 

We could know, intuitively, finding collision points of 7H  

is much easier than those of 8H , because collisons occur 

everywhere in 7H  such that each pair of random inputs will be 

its collision points whereas it’s improbable that both random 
inputs fall exactly in the interval [0,1] or [2,3] or … or 
[254,255]. Nonetheless, both (1)n of the two hash functions 

equal 0, which means T  can’t tell them apart at all. 

Suppose 

 9

mod 64, 127
( )

, 127

x x
H x

x x


  

, (11) 

 10

, 127
( )

128, 127

x x
H x

x


  

. (12) 

We could see, intuitively, finding collision points of 9H  is 

much harder than those of 10H , because it’s unlikely that both 

random inputs are less than 128 and congruent with modulus 
64 whereas it’s quite probable that both random inputs fall in 
the interval [128,255]. Nonetheless, both (1)n of the two hash 

functions equal 128, which means T  can’t tell them apart at 
all. 

Let 

 11

, 191
( ) 8

, 191

x
x

H x

x x

     
 

, (13) 

 12

, 63
( )

64, 63

x x
H x

x


  

. (14) 

We could know, intuitively, finding collision points of 11H  

is much harder than those of 12H , because it’s unlikely that 

both random inputs fall exactly in the interval [0,7] or [8,15] 
or … or [184,191] while it’s quite probable that both random 
inputs fall in the interval [64,255]. Nevertheless, both (1)n of 

the two hash functions equal 64, which means T  can’t tell 
them apart at all. 

Next, let’s give our measure for evaluating collision 
resistance. 

III. THE PROPOSED MEASURE FOR COLLISION RESISTANCE 

EVALUATION 

As a cryptographic hash function, it should make the 
success rate of every Turing machine trying to find its collision 
points as low as possible, of course including the trivial one. 
Assume there’s a Turing machine M  working as follows:  

First, M  randomly selects a point 1x  in the domain. Then, 

M  randomly selects a point 2x  other than 1x  in the domain. 

At last, M  outputs 1x  and 2x  as the collision points.  

Let the points in the range owning exactly k  preimages 
form a set ( )N k , then the success rate of M  could be 
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calculated as follows: 

1 2

1

2 1 1
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1

2 1 1 1 1

0

( ) [ ( ) ( )]
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[ ( ( )) { } | ( ) ( )] [ ( ) ( )]
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Pr x H H x x

Pr x H H x x H x N k Pr H x N k


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
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    

 

Apparently, the term in the summation equals 0 when 

0k   or 1 , because 1( )H x  couldn’t belong to (0)N  (it 

already has a preimage 1x ) and when 1( ) (1)H x N , 
1

1 1( ( )) { }H H x x    , which couldn’t contain 2x  at all. 

Then, ( )Succ M  could be calculated as: 
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To be brief, ( )Succ M  is abbreviated as S  hereafter. The 

smaller S  is, the less collisions occur. Next, let’s see how S  

works on 1 2 12, ,...,H H H . 

For 1H , in which (0) 254n  , (1) (255) 1n n   and 

all other ( ) 0(k {0,1,255})n k   , we have 
127

128
S  . For 

2H , in which (0) 254n  , (128) 2n  , all other 

( ) 0(k {0,128})n k   , we have 
127

255
S  . We could see, 

S  has easily differentiated 1H  and 2H , pointing out that 2H  

is better than 1H . 

For 3H , in which (0) 252n  , (64) 4n   and all other 

( ) 0(k {0,64})n k   , we have 
63

255
S  . For 4H , in 

which (0) 252n  , (1) 3n  , (253) 1n  , all other 

( ) 0(k {0,1,253})n k   , we have 
5313

5440
S  . We could 

know, S  has easily distinguished 3H  and 4H , showing that 

3H  outperforms 4H . 

For 5H , in which (0) 192n  , (4) 64n   and all other 

( ) 0(k {0,4})n k   , we have 
1

85
S  . For 6H , in which 

(0) 192n  , (1) 63n  , (193) 1n  , all other 

( ) 0(k {0,1,193})n k   , we have 
193

340
S  . We could 

see, S  has easily differentiated 5H  and 6H , indicating that 

5H  overwhelms 6H . 

For 7H , in which (0) 255n  , (256) 1n   and all 

other ( ) 0(k {0,256})n k   , we have 1S  . For 8H , in 

which (0) n(2) 128n    and all other 

( ) 0(k {0,2})n k   , we have 
1

255
S  . Clearly, S  has 

distinguished 7H  from 8H , pointing out that 8H  is much 

better than 7H . 

For 9H , in which (0) 64n  , (1) 128n  , (2) 64n  , 

all other ( ) 0(k {0,1,2})n k   , we have 
1

510
S  . For 

10H , in which (0) 127n  , (1) 128n  , (128) 1n  , all 

other ( ) 0(k {0,1,128})n k   , we have 
127

510
S  . 

Obviously, S  has differentiated 9H  from 10H , pinpointing 

that 9H  outperforms 10H . 

For 11H , in which (0) 168n  , (1) 64n  , (8) 24n  , 

all other ( ) 0(k {0,1,8})n k   , we have 
7

340
S  . For 

12H , in which (0) 191n  , (1) 64n  , (192) 1n  , all 

other (k) 0(k {0,1,192})n   , we have 
191

340
S  . 

Apparently, S  has distinguished 11H  from 12H , indicating 

that 11H  overwhelms 12H . 

IV. CONCLUSION 

In this paper, a novel “black box” measure for evaluating 
collision resistance is proposed. Different from those measures 
in the literature, the proposed measure indicates that 

( )(2 256)n k k   should be paid attention to instead of 

(0)n  or (1)n . The larger k  is, the more ( )n k  affects the 
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extent of collision. Using the proposed measure, some hash 
functions could be told apart, indicating its excellent capability 
of collision resistance evaluation.  

At last, we have to note that collision resistance is just one 
of the requirements for cryptographic hash functions, and small 
S  doesn’t necessarily make a good cryptographic hash 

function. For example, let 13( )H x x , then its 0S  , but 

13H  is never a candidate for cryptographic hash function as it 

totally abandons the ability of compression. 
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