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Abstract—Efficient location of medical services is an issue of 
paramount importance in healthcare strategic planning. In this 
research, a mathematical model is developed for the location of 
multi-service health centers assuming probabilistic demand and 
service time. Since patients may be shifted to another service 
after receiving a service by doctors' order, health system is 
considered a Jackson queue network. The primary factor 
contributing to patients' choice of one center over another is their 
proximity to the center. The proposed model seeks to minimize 
the demand weighted total distance traveled by patients between 
their residential areas and health centers and also between health 
centers on the one hand, and the weighted sum of undesired 
deviations from standard arrival rates at service stations on the 
other hand. The location of health centers as well as the type of 
services they offer and the number of servers at each service 
station are the main determinants of the proposed model. A GA-
based heuristic is developed to solve medium and large instances 
of the proposed model. For evaluation of the suggested heuristic, 
computational experiments are performed on a number of test 
problems. 

Keywords-healthcare system; multi-service health centers; 
location problem; queuing theory; utility theory 

I. INTRODUCTION 
The design of medical infrastructures directly bears on the 

community's health and medical costs. In every society, many 
basic and specialized treatment centers provide services. 
Among them, polyclinics increase patients' accessibility and 
speed up service delivery by providing a set of related medical 
services in a centralized location. These places offer a wide 
range of services such as a variety of medical and dental 
specialties, outpatient surgeries, emergency and preventive 
services as well as paraclinical services.  

Because of the multifaceted nature of most diseases, 
patients should be simultaneously observed by different 
specialists. As a case in point, a diabetic needs the attention and 
care of an endocrinologist, a nutritionist and an 
ophthalmologist all at once. It inevitably follows that by 
concentrating different related services in one place, not only 
can we obviate the need for patients' transfer to different parts 
of a city, but we can also create an opportunity for doctors with 
diverse specialties to work as a team.  

In this research, a model is proposed to determine (1) the 
location of multi-service health centers, (2) the type of services 

provided in every center and (3) the number of servers at each 
service station.  

This research introduces a probabilistic model for the 
location of multi-service health centers assuming the transfer of 
patients between services and the creation of queue networks in 
the health system for the first time. In addition, we classify 
medical services into two groups (normal and emergency) and 
assume different choice behaviors by patients for these services.  

The remainder of the article is organized as follows: the 
next section reviews the related literature on healthcare 
network design, customers' choice behavior and congestion 
modeling in service centers. Section 3 introduces the proposed 
model. Section 4 explains the proposed solution method for 
solving the model. In section 5, the performance of the 
proposed heuristic is tested by several numerical examples. 
Lastly, the main points of the article are summed up and 
suggestions for future research are offered.  

II. RELATED LITERATURE 
Healthcare location models can be classified into three 

broad areas, namely accessibility, adaptability and availability 
models. Accessibility models try to provide affordable and 
right healthcare resources in the right place at the right time. 
Adaptability models consider different future conditions and 
attempt to find solutions that perform well across a range of 
future scenarios. And availability models, which are more 
applicable for ambulance location problems, attempt to 
compensate for the short-term unavailability of vehicles [1]. 
The proposed model straddles both the accessibility and 
availability models as it tries to offer services in right areas in 
an attempt to reduce the time traveled by patients and to 
allocate the right number of servers to service stations in order 
to reduce the waiting time at the stations. 

Before taking any decisions, we should recognize effective 
factors in the location of health centers. Patients' demand, the 
current state of health centers, the type and trend of diseases, 
birth and death rates, geographic setting (urban or rural), 
transportation infrastructure, patients' income, budget 
constraint, patients' functional and cultural needs and 
affiliations to other medical centers like hospitals often feature 
prominently when it comes to making decisions about health 
centers [2]. In our model, we have accounted for the impact of 
patients' demand on each type of service and the number of 
servers offering each type of service. 
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The most important goals of healthcare location problems 
are (1) maximizing patients' coverage, (2) minimizing costs 
including fixed and variable costs (3), minimizing the sum of 
weighted distances traveled by patients, and (4) minimizing the 
sum of travel time, waiting time in the queues and service time 
[3]. 

In addition, multi-objective models, which combine two or 
more of the mentioned goals are used in healthcare location 
problems. Our proposed model is not multi-objective, but 
simultaneously seeks to minimize the demand weighted total 
distance traveled by patients between their residential areas and 
health centers as well as between health centers and sum of 
undesired deviations from the standard arrival rates at the 
medical stations. 

The most widely used constraints in these models are (1) 
system cost constraint, (2) the allowed number of health centers 
to establish, (3) minimum workload required to establish a 
center, (4) capacity constraint, (5) critical service distance, and 
(6) congestion constraints [3]. The most important constraints 
in our proposed model are congestion constraints, constraints 
relating to patients' choice behavior including the calculation of 
patients' utilities with logit utility function, allocating patients 
to the nearest health centers and transfer of patients between 
medical services, capacity constraints and minimum workload 
required to offer services. 

In addition, there are four types of uncertainties in these 
problems, namely (1) uncertainty in demand due to changing 
birth and death rates, migration and seasonal conditions, (2) 
uncertainty in travel time due to changing traffic load and 
unpredictable conditions of transportation routes, (3) 
uncertainty in service time because of different patients' 
conditions, and (4) uncertainty in capacity. Multi-period 
models, queuing theory, stochastic and dynamic programming 
are the most prevalent methods used in the literature to address 
the mentioned uncertainties [3]. Using probability distributions 
and queuing theory, we have addressed uncertainty in demand 
and service time. 

We usually face queues in health centers. The high 
congestion of these centers adversely affects clients' 
satisfaction, and in emergency cases, it may lead to irreparable 
damages. To guarantee service quality, we usually deal with 
one of these factors: (1) average queue length, (2) average 
waiting time in queues, or (3) the probability of receiving 
service in a standard time [4], [5]. These factors can be a part of 
constrains that are called "constraint-oriented" approaches [6], 
[7]. If the factors form a part of the objective function, the 
resulting models are called "objective-oriented" models [8].  In 
our proposed model, standard values are determined by experts 
for average waiting time at medical stations and the objective 
function seeks to minimize the sum of undesired deviations 
from these values.  

In most of the reviewed articles, patients are assigned to 
health centers by a model called "system choice models". In 
contrast, in "user choice models", each individual has the right 
to choose a center rather than being assigned to one by the 
model. In the user-choice environment, patients' utility to 
choose health centers is calculated by a probability distribution 
based on centers' attractiveness. These models are categorized 

into "optimal choice" and "probabilistic choice" models. In 
optimal choice models, patients choose the center with the 
maximum utility. For instance, patients choose to go to the 
nearest health center [9]. In probabilistic choice models, 
patients choose every center according to the probability 
calculated for it [5], [10]. Huff used the probabilistic choice 
model to calculate the choice probability of shopping centers in 
1963 for the first time [11]. Our model is based on user choice 
behavior and is a combination of optimal and probabilistic 
choice models. Referral of patients to the nearest health centers 
and choosing health centers using the multinomial Logit 
function shows optimal and probabilistic choice behavior 
respectively. This will be explained in much more detail in the 
next section. 

In general, we can model the probability of choosing the 
center in area by people in area using the equation 

.   is the utility gained by people in area to 
get the service of the center in area and  is the set of 
alternatives to establish centers. We can use different ways to 
model the utility function ( ). One of the most famous 
models is the multinomial Logit function proposed by Feddan 
in 1974. According to this model,  is calculated using the 
equation . In this formula,  is related to 
the th attractiveness factor of the center in area j, L is the set 
of attractiveness factors and  is a parameter that shows the 
effect of its corresponding factor on utility [12]. We use the 
multinomial Logit function in our model to calculate utility. 
Travel time is the only attractiveness factor.  

Marianov, Rios and Icaza proposed a model to locate 
multi-server facilities to maximize market capture in 2008. 
Customers choose the facility to patronize in view of the time 
needed to travel to the facility and the waiting time at the 
facility. The Logit function is utilized to model the user-choice 
environment [13]. Zhang, Berman and Verter in 2012 
developed a model to maximize total participation in a 
preventive care program. The only attractiveness factor used in 
the Logit function they proposed was the proximity of the 
service center to its clients [14].  

III. PROBLEM DESCRIPTION AND MODELING 
Before describing the problem, a mention of the two 

properties of Poisson process, which are used later, should be 
in order: 

1. If  and  follow Poisson processes with 
parameters  and , then  also follows a 
Poisson process with parameter . 

2. If customers' arrival follows a Poisson process  
with parameter  and customers belong to two groups with the 
probabilities  and , then the arrivals of group one and 
two also follow Poisson processes with parameters  and    

. 

A brief explanation of the terms "service", "server", 
"station" and "center", which are frequently used in this study, 
should also be in order. By "service", we mean medical 
services offered by health centers. They fall into to three 
categories in the proposed model, namely normal, preventive 
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and emergency. Dental services, mammograms and fire and 
rescue services are examples of these services respectively. 
"Server" is the person who provides medical services. 
Examples of servers can be doctors, nurses and dentists. 
"Station" is a place where a special service is offered, which 
has one or more servers on tap. Finally, by "center" or "health 
center", we mean a place where a combination of different 
services is provided. So a center can include service stations. 

Let  be a network with a set of nodes  and 
a set of links . The nodes represent population zones and 
the links are the main transportation arteries showing travel 
time between the nodes. The number of patients residing in 
area who require service is denoted by 

p
 and is Poisson 

distributed by a rete of  per unit of time (  denotes the 
population of area , each person generates a demand for 
service  according to a Poisson process with rate per unit 
of time). Therefore, the number of demands in area for 
service type is  per unit of time.  

Travel time from area to areaa through the shortest path 
is denoted by . Service time or the time required by a server 
to provide service is exponentially distributed at a rate of  
per unit of time. We assume that every patient goes to a center 
for a special service but after receiving that service, he may be 
referred to another service. So a patient may use several types 
of services to complete his treatment process. To be more 
accurate, we also divide services to two types, namely normal 
and emergency. Emergency cases need immediate visits such 
as food poisoning, insect stings and other unpleasant events. 
Other types of services such as dental services, simple and 
specialized medical services, drug stores fit into the normal 
group [3]. Other assumptions of the proposed model are as 
follows (however, it should be noted that these assumptions 
depend entirely on the conditions of the issue under discussion 
and can change if necessary): 

1. Patients' choice behavior follows this pattern: for 
emergency services, because of the immediate need for 
treatment, patients go to the nearest health center which 
provides the service. For normal services, patients have 
"probabilistic choice behavior", meaning they choose a center 
according to the Logit utility function. 

2. The attractiveness factor considered by patients to 
choose a center is travel time.  

3.  A patient may be referred to another service after 
receiving a service. In this situation, the person goes to the 
nearest area that provides the service (for convenience).  

Before discussing the model equations, its notations are 
presented in the following table: 
Notation Description 

Model sets 

 Set of demand and healthcare areas  

 Set of services 

 Set of normal services 

 Set of emergency services 
Model indexes 

 Index of demand areas 

 Index of  health center areas 

 Index of services  

 Index of number of servers 
Model parameters 

 Travel time between demand area and health center in area  

 
Travel time between health center in area l and health center in 
area  

 Number of demands in area for service  

 Demand rate of each individual in area for service   

 
Maximum number of servers that can be allocated to service 
station   

 
Number of available servers for service  that can be assigned 
to health centers 

 Service rate of service  

 Minimum arrival rate required to provide service  

 
Standard values determined by experts for average waiting 
time at service station   

 

Maximum arrival rate of patients at service station  
with servers so that average waiting time in the system 
equals  

 Probability of referring patients from service  to service   

 Importance coefficient of section of the objective function 
Model Auxiliary Variables 

 Probability of choosing  service  in areaa by patients in area  

 Sum of patients' utility of all centers for service  

 Patients' arrival rate at the station type  in area  

 Average waiting time at the station type  in area  

 
Weighted sum of travel time between area and area  and 
number of services provided in a center of type in area  

Model Decision Variables 

 
1    if patients in area  go to the center in area  to receive 

emergency service type 
0    otherwise 

 

1    if patients go to the center in area  to receive service type 
 after receiving services in a center in area  

0    otherwise 

 

1    if at least servers are assigned to the service station  in 
area  

0    otherwise 
According to the explanations provided so far, we can 

model the health system as a queue network. Every patient 
goes to the network to receive a special service, but after 
receiving that service, he or she may be shifted to another 
service with a specific probability. This network consists of 
some alternative systems; each provides a special service with 
some servers. Each alternative system is called a service 
station. In every service station, one or more servers work in 
parallel. In such a network, we cannot consider each station as 
an independent queuing system, because patients entering a 
station may be the outputs of other stations [16]. 

According to the assumptions made above, the health 
system can be modeled as a Jackson queue network. Our 
model satisfies four main assumptions of such networks: 

1. This assumption states that patients' arrival at each 
service station from demand areas should follow a Poisson 
process. According to the Poisson process properties described 
at the beginning of this section, we can show that patients' 
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arrival at service station in area follows a Poisson process 
with parameter  and is calculated by the following 
equations: 

(1)  

   (2) 

 is a binary variable that takes the value 1 if patients in 
area  go to the center in area  to receive service type  
(

g
).  shows the probability of choosing service  in 

in areaa by patients in area . 

The above equations calculate patients' arrival rate from 
demand areas for emergency and normal services respectively. 
We showed earlier that patients' demand for every service in 
each area follows a Poisson process, so according to the first 
property of this process, the sum of these demands also 
follows a Poisson process. Consequently, equation (1) follow 
Poisson process. In addition, because patients' demand for 
every service in each area follows a Poisson process,  % of 
them also follows a Poisson process according to the second 
property of this process. Consequently, equation (2) also 
follows Poisson process.  

2. This assumption states that service time at each station 
should be exponentially distributed and independent of other 
stations. In our model, we have assumed that service time at 
the service station follows exponential distribution at a rate 
of  and is independent of other stations. 

3. This assumption states that queue capacity should be 
unlimited in all service stations. This assumption has been 
accommodated in our model too. 

4. According to this assumption, everyone is referred to 
another station or out of the system after receiving a service 
with a certain probability. In this model, a patient may be 
referred to service  with a probability of  After 
receiving service , or may leave the system with a 
probability of . As we have assumed, these patients go to 
the nearest health center that provides the service they need.  

Let binary variables   be 1 if patients in area 
y
 go to the 

areaa to receive service . Consequently, patients' arrival rate 
from other stations of the health network to the station  in 
areaa is calculated as follows: 

 
In the above equation,  is patients' arrival rate at 

service station  in area . 
According to the above explanations, in general, patients' 

arrival rate at service station in in areaa is composed of two 
parts and is calculated as follows: 

 

The first part is patients' arrival rate from demand areas 
( ) and the second part is patients' arrival rate from other 
service stations ( ). 

If there is no feedback in the health network, it means the 
patient has not returned to a previously visited service station 
directly or indirectly, the number of patients entering a station 
follows a Poisson process and every station is an  
queuing system. If there is feedback, patients' arrival does not 
necessarily follow a Poisson distribution, but to calculate the 
average waiting time in the queue/system or the average 
number of patients in the queue/system, we can still use the 
equations proved for 

q
 queuing systems [16]. 

We use the following equation proposed by Kleinrock in 
1975 to calculate the average waiting time in a  
queuing system [14].  shows the average waiting time in a 
station with  servers. 

 

 

To guarantee the quality of services provided, constraint (6) 
is used.  is the average waiting time at the service station 

(
 

in area  and is calculated using equation (5).  is the 
standard average waiting time at the service station  
proposed by experts. So this constraint states that the average 
waiting time in the service station  should be less than the 
standard value determined by experts for it. 

 

[Note that if the average waiting time  is set equal to 
the standard value determined by experts , the 
maximum arrival rate, when there are  servers in the service 
station , can be obtained. This value is denoted by  in the 
following] 

To satisfy the equation (6), it is sufficient that arrival rate 
at service station 

q
in area

(
a (

)
) be less than the maximum 

arrival rate ( ). That is . 

Because in the proposed model, the number of servers at 
every service station is a decision variable, the mentioned 
equation ( ) for is modeled as follows: 
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In the above equation,  is a binary variable that takes 
the value 1 if at least servers are assigned to the service 
station  in area .  

Note that is zero. To clarify the above equation, assume 
that it is decided by the model to offer service type  in area  
with two servers. So  and  become 1,  becomes 0 for 

 and the equation becomes 
. This is the same 

as the equation  as stated earlier. Therefore, 
according to equation (7), the number of appropriate servers to 
satisfy standard waiting time in the system is determined. 

The number of available servers to allocate to the stations 
of each type of service is limited and is  .So the limitation 
in the number of available servers may not allow the model to 
allocate an enough number of servers to all stations of a 
special type of service in order to satisfy the average standard 
waiting time and, consequently, constraint (7) may become 
infeasible. Therefore, in this model, we change hard constraint 
(7) to a soft one and then try to minimize the undesired 
deviations ( ) in the objective function. The following 
equation is obtained: 

 

To model patients' choice behavior for normal services, we 
have used the probabilistic choice model and Logit utility 
function. The equations are as follow: 

  

 

 shows the probability of choosing service  in area by 
patients in area .  is the utility gained by patients in area  
if they choose a center in area for service .  shows the 
sum of patients' utilities in area for service .  is 
calculated by dividing  by . 
According to the Logit utility function, the significant factor in 
patients' choice behavior shows itself in the power of the 
statement . This factor is the travel time between 
areaa and areaa  indicating accessibility. 

Against this backdrop of the above explanations, the whole 
proposed model is as follows:

 

 

 

 

 

 
 
 
 

 
 

 

 
 

 
 

 
 
 

 
 
 

The objective function minimizes the demand weighted 
total distance traveled by patients between their residential 
areas and health centers for emergency services (the first 
section) and also between health centers for normal and 
emergency services (the second and third sections) and the 
weighted sum of undesired deviations from standard arrival 
rates at the medical stations (the forth section). 

 is the importance coefficient of section of the objective 
function. 

p
 is used to make the forth section of the 

objective function similar to the first three sections in terms of 
unit. Note that if  takes a non-zero value for a station, 
then patients' arrival rate ( ) is more than the standard 
arrival rate of patients ( ) at that station or, similarly, average 
waiting time in that service station ( ) is more than the 
standard value ( ) determined for it, therefore, patients 
should wait at the service station for at least  units of 
time.  That is why this coefficient is used for the forth section 
of the objective function to make its unit similar to the other 
sections. 

Equation (12) satisfy capacity constraint. Constraints (13) 
limit the number of allocated servers to service stations. 
Constraint (14) satisfies minimum patients' arrival rate 
required to provide a service. Constraint (15) states that if we 
provide service in area , patients can choose to go there. 
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Constraint (16) states that patients go to the nearest center for 
emergency services. Note that if variable  takes the value 1, 
then patients in area  go to the center of in area to receive 
service type . Now if this type of service is offered in area , 
then  takes the value 1 and the whole equation becomes 

 that guarantees  is less than all  or, 
similarly, the travel time between area  and area  to receive 
emergency service type  is less than the travel time between 
area 

g
 and area 

y
 where service type  is provided. 

Consequently, area  is the nearest. 

Constraint (17) ensures that patients go to one and only 
one center for emergency services. Constraint (18) states that 
after receiving a service, if required, patients go to the nearest 
center for the next service. Constraints (19) and (20) ensure 
that the mentioned referral in (18) happens to one and only one 
center and if the service is provided in that center respectively. 
Equation (21) calculates 

p
 which was explained earlier. 

Constraints (22) to (24) calculate patients' arrival rate to health 
centers. Description on constraint (25) which calculates the 
positive and negative deviations of patients’ arrival rates from 
the standard rates was explained earlier. Constraint (26) 
ensures thatt servers are already allocated before allocating 
the th server to the service station. Constraint (27) 
explains that the product of positive and negative deviations 
must equal zero so that both do not take values simultaneously. 
Note that because the proposed model is nonlinear, this 
constraint is not redundant and cannot be omitted. 

IV. SOLUTION METHODS 
The proposed model is a Mixed Integer Non-Linear 

Programming problem (MINLP). The presence of the term 
 in the second and third part of the objective function 

and constraint (22), the presence of the term  in 
constraint (21) and the product of positive and negative 
deviations in constraint (27) causes the nonlinearity of the 
model. To linearize the terms  and , we use the 
method in [14].  After linearizing these terms, constraint (27) 
becomes redundant and can be avoided. Because it is never 
optimal for both positive and negative deviations to 
simultaneously assume non-zero values. 

Since  is a binary variable and  is a continuous 
variable, the term  can be linearized as follows by 
defining as an artificial continuous variable: 

 
 
 
 

Where  and  denote two big numbers. Similarly for 
constraint (21) we have: 

 
 

 
 
 
 
 

In the above equations,  is defined as the product of  
 and . 

Consequently by adding constraints (30) to (33) and (35) to 
(38) and eliminating constraint (27), the proposed model 
becomes linear. 

The model is formulated as an MIP, which can be solved 
directly by standard MIP solvers, such as CPLEX. However, 
the proposed model is NP hard, as it contains a p-median 
problem as a particular case (to see this, assume that, (1) there 
is just one emergency service (2) the minimum workload 
required is set at zero (3) the maximum number of servers in a 
center is set at one (4) 

)
 and  are considered large enough 

to make patients' arrival rate at every station less than 
g
). 

Therefore, heuristic or meta-heuristic methods should be 
developed to solve the large instances of the model.  

The proposed heuristic is based on the breakdown of the 
model into three subsections, namely (1) determination of the 
location of service stations, (2) calculation of patients' arrival 
rates at service stations and (3) allocation of servers to service 
stations. 

A. Location of Service Stations 
 In this subsection, we use Genetic algorithm to determine 

the location of service stations. The solution structure is shown 
in Figure I. The rows show the areas and the columns show the 
services.  

  …  
  …  
⁞ ⁞ … ⁞ 
  …  

 
FIGURE I. LUTION STRUCTURE (CHROMOSOME) USED IN 

HEURISTIC 

Step 1 (producing first generation): generate  
feasible chromosomes randomly. In addition to satisfying the 
limitation on the number of the servers of each service type, a 
feasible chromosome must have at least one service station for 
each normal and emergency service. 

Step 2 (calculation of fitness function): after determining 
the locations of service stations (generating feasible 
chromosomes), the objective function of the produced 
solutions is calculated by applying the second (calculation of 
patients' arrival rates at service stations) and the third 
(allocation of servers to service stations) subsections. The 
fitness of each chromosome is inversely proportional to the 
objective function value. 

Step 3 (generating the new generation):  

Area 1 

Area 2 

Area n 

Service 1 Service 2 Service k 
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3-1 (parent selection): the roulette wheel selection method 
is applied to randomly choose two parents from the population. 

3-2 (crossover): the one-point crossover operator is 
applied to all columns of the chromosome. 

3-3 (mutation): for each column of the chromosome, a 
place is randomly chosen. If it is zero, it is changed to one, 
otherwise, it is changed to zero.  

Step 4 (replacement): the first  chromosomes, which 
have better objective function among parents and children, are 
chosen.  

Step 5 (stopping criterion): strong convergence is used as 
the stopping criterion. According to this criterion, we must 
calculate the variance of the objective function values of 
chromosomes in each iteration; the algorithm stops if the 
difference of the maximum and minimum variance values of 
the last  iterations is less than .  and  are arbitrary values. 

B. Calculation of Patients' Arrival Rate at Service Stations 
Step 1: in the first subsection, service stations for 

establishment are determined. In this step, according to 
patients' choice behavior explained at the beginning of section 
3, the direct arrival rates of patients from demand areas to the 
service stations are calculated.  

Step 2: in the above step, we only calculated the direct 
arrival rates . To calculate the real arrival rates of patients 
at the service stations  that consider patients' flow 
between service stations, we form a "system of equations" of 
variables . The number of variables and equations of this 
system is . 
You can see the "system of equations" in constraint (22). 

Step 3: in this step, the "system of equations" of the 
previous step is solved by the Gaussian elimination method 
and  is calculated.  

Step 4: in this step, the feasibility of the solution is 
checked. The calculated arrival rates 

y
 for established 

service stations must be more than minimum arrival rates 
required . If the solution is feasible, we go to the next 
subsection of the algorithm; otherwise, stations with infeasible 
arrival rates are removed. Then, the resulting solution must be 
modified if there is not at least one station to provide each 
normal and emergency service. If this condition is not satisfied, 
one station is randomly established for that service and then 
we turn back to the first step. 

C. Allocation of Servers to Service Stations 

For this subsection, we use the greedy approach.  

Step 1: for each service, calculate  for all stations 
(  is the number of the servers of that station). For each 
station, if the calculated value is positive, the number of 
servers allocated to that station is enough. Otherwise, it means 
that patients' arrival rate is more than the standard rate, so 
more servers should be assigned to it. 

Step 2: choose the most negative value calculated for the 
service in the previous step and allocate one server of that type 
to it. 

Step 3: repeat the previous two steps for the service until 
at least one of the following conditions is satisfied: 

 All calculated values in step 1 become non-negative. 
 The servers of that type finish. 

Step 4: repeat the previous three steps for all services. 

V. COMPUTATIONAL RESULTS 
To test the computational performance of the GA-based 

heuristic, ten problems with corresponding demand areas are 
designed in such a way that, for example, problem number 1 
has one demand area, problem number 2 has two demand 
areas and so forth. For each problem, more cases are produced 
by changing the number of available servers ( ) for each 
service (a total of 75 cases are produced). There are four 
services, namely three normal services, and one emergency 
service, in these problems. The proposed heuristic is coded in 
C# and all runs are performed on a computer with 2.27 GHz of 
CPU and 3 GB of RAM.  

The input parameters are produced randomly in the 
following intervals in the ten test problems: the travel time 
between demand areas and health centers in the interval [0.25 -
1.25] (hour), the travel time between health centers in the 
interval [0.2- 1] (hour), the demand rates for four services per 
hour in the intervals [15- 25], [10 - 20], [5- 10] and [3- 10] 
respectively. The average service rate for four services is 6, 5, 
5 and 4 patients per hour, standard waiting time in the system 
is 25, 30, 35 and 35 minutes and the minimum arrival rate 
required to provide services is 4, 3, 3 and 1 patient(s) per hour 
respectively. For determining

,
, we assume that the 

importance of reaching a service station for emergency 
services from demand areas to health centers (first section of 
the objective function) one unit of time earlier is set at 3. We 
assume this importance is 2 for normal services between 
health centers, 5 for emergency services between health 
centers and 0.5 for undesired arrival rates at service stations. 

After linearizing the model, we compared the performance 
of CPLEX (12.2) and the GA-based heuristic for solving the 
75 cases explained above. 

For all cases of each problem, the average objective 
function is measured for both CPLEX and the GA-based 
heuristic. For the cases of the first four problems which have 1, 
2, 3 and 4 demand areas respectively, CPLEX reached the 
optimal solution in at most 1000 seconds. For the cases of 
other problems, we got the best solution found by CPLEX in 
the limited time of two hours. The results are presented in 
Figure II. 

As explained, for the cases of the first four problems, 
CPLEX guaranteed the optimal solution. For these cases, the 
deviation of the GA-based heuristic from the optimal solutions 
is only 0.73% on average. For the cases of the problems with 5, 
6 and 7 demand areas, CPLEX and GA-based heuristic have 
almost the same performance. But for the cases of the 
problems with 8, 9 and 10 demand areas, the GA-based 
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heuristic produced better objective functions than those of the 
CPLEX produced in two hours. As can be clearly seen, as the 

size of the problem increases, so does the gap between the two 
graphs. 

 
FIGURE II. AGE DEVIATIONS (%) (PERCENTAGE DIFFERENCE OF THE OBJECTIVE FUNCTION VALUES FROM THE BEST VALUE OBTAINED) 

 
FIGURE III. ATION (%) OF THE OBJECTIVE FUNCTION OF CPLEX 

FROM GA-BASED HEURISTIC FOR TEN CASES OF THE 
PROBLEM WITH 10 DEMAND AREAS 

 
FIGURE IV. 1-AVERAGE SOLUTION TIME (IN SECONDS) FOR THE 

GA-BASED HEURISTIC FOR TEN PROBLEMS

Generally, in the 75 cases checked, the average deviation is 
0.038% for the GA-based heuristic and 1.181% for the 
CPLEX (what is meant by "deviation" is the percentage 
difference of the objective function obtained of GA-based 
heuristic (CPLEX) from the best objective function obtained 
of both the GA-based heuristic and CPLEX). 

For the last problem that has 10 demand areas, ten cases 
are designed (as explained earlier, in these cases, the number 
of available servers for four services are gradually increasing).  
For all cases, GA-based heuristic could reach better objective 
function than CPLEX. The percentage difference of the 
objective function of CPLEX from those of GA-based 
heuristic is depicted in Figure III. As can be seen, as the 
number of available servers increases in these cases, CPLEX 
produce less qualified objective function. 

Figure IV. shows the average time (in seconds) for the GA-
based heuristic for ten problems. 

VI. CONCLUSION AND FUTURE RESEARCH 
In this article, a mathematical model is developed to 

simulate patients' choice behavior in choosing health centers. 
In the proposed model, services provided in the health centers 
are broken down into normal and emergency ones. Since 
patients may be shifted to another service after receiving a 
service by doctors' order, patients' flow between services is 
considered in the proposed model. The model seeks to 
minimize the demand weighted total distance traveled by 
patients between their residential areas and health centers and 
also between health centers and the weighted sum of undesired 
deviations from standard arrival rates at service stations. The 
location of health centers as well as the type of services they 
offer and the number of servers at each service station are the 
main determinants of the proposed model 

We linearize the proposed mixed integer nonlinear 
programming model and then solve the small instances using 
optimization software CPLEX. In addition, to solve the 
medium and large instances, we have broken down the model 
to three subsections, namely the location of service stations, 
calculation of patients' arrival rates at service stations and the 
allocation of servers to service stations, and have developed a 
GA-based heuristic to solve the model. 

To evaluate the performance of the proposed heuristic, 
some test problems are generated. In the 75 cases checked, the 
average deviation is 0.038% for the GA-based heuristic and 
1.181% for the CPLEX. In general, GA-based heuristic has an 
acceptable performance to solve the proposed model, since for 
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small instances (problems with 1 to 7 demand areas) it 
performs nearly the same as the CPLEX, but for large 
instances (problems with 8 to 10 demand areas) it produces 
better results in much less time than CPLEX. 

The proposed model can be extended in different ways. In 
addition to the assumptions for modeling patients' choice 
behavior, other factors such as average waiting time and 
number of services provided in the system may be suitable. In 
the proposed model, patients go to the centers without an 
appointment; therefore, it can be changed to an appointment 
system. Adding some constraints like budget constraints, 
considering another index for controlling the congestion of the 
system and considering general service time instead of 
exponential time for services are other directions for extending 
the model.  
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