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Abstract. There are time-varying parameters within the performance index function and dynamic 
model of home energy optimization (HEO) which contains thermostatically controlled appliances 
(TCAs) and electric vehicles (EVs). And TCAs and EVs may be off-line. Adaptive dynamic 
programming (ADP) can not be applied directly to the optimization. In this paper, these problems are 
solved by transformation of the performance index function and dynamic model, and ADP is applied to 
the optimization with guarantees of convergence and optimality. The performances of the 
transformation are given in numerical results. 

Introduction 
The energy consumption of TCAs, including heating, ventilation, and air-conditioning (HVAC), 

exceeds half of the household energy consumption[1]. With the popularity of EVs, EVs become 
important storage devices in smart grid. HEO with HVACs and EVs is a hot research topic in the 
literature [1-5].  

HEO is an infinite-horizon problem. The cost of every time step in the future should be considered. 
However, as the dimension of solution increases while the number of time step increases, intelligent 
algorithms such as particle swarm optimization confront more difficulty to obtain the optimal solution. 
On the other hand, dynamic programming (DP) solves the Hamilton-Jacobi-Bellman (HJB) equation 
accurately and gives the optimal solution exactly [6]. But because of the "curse of dimensionality" [6], 
DP meets great burdens of computation and storage while the dimension of solution increases. 
Therefore, HEO is generally simplified as finite-horizon problem. The time horizon is usually set as one 
day and the number of time step is usually set as 24 [1-5]. 

ADP is an iterative algorithm[7]. It avoids the "curse of dimensionality", and it can solve 
infinite-horizon dynamic problem. The convergence and optimality of ADP without time-varying 
parameters were proven in [8-12], which assumed the systems are always on-line. Reference [13] 
assumed the dynamic price and uncontrollable loads were periodic time-varying parameters, applied 
ADP to schedule the power of battery and proved the convergence and optimality. But the battery was 
always on-line and its model was a time-invariant function. However, Thermal system is influenced by 
outdoor temperature, solar irradiance, and so on. System of EV is influenced by user's demand of travel 
as well. These systems are time-varying. Moreover, These systems will be off-line while they are shut 
down by user. Therefore, ADP can not directly applied to solve HEO with HVACs and EVs. 

In this paper, the off-line problem are solved, the time-varying parameters in system's model and 
performance index function are eliminated through an assumption, and simulation results show the 
performances of the assumption. 

Problem Formulation 
The HEO system in the paper includes a controller, HVACs, EVs, and other home appliances. The 

HVACs and the EVs are controlled by the controller. The other home appliances are uncontrollable. 
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Let t∆  be the time interval and k  be the time step index, 0,1, 2,k = L . kE  is the battery's energy 
of EV in time step k  and EV

kP  is the power of EV in k . EV
kP  is positive when EV charges and 

negative when discharges. Define a variable as 

1,  EV is parked at home in time step 
0,  otherwise

p
k

k
EV 

= 


                                                                            (1) 

which denotes whether EV is parked at home in time step k . Based on Reference [1],  EV's model is 
expressed as 

1 ( ) (1 )p EV EV p lost
k k k k k kE E EV P P t EV Eχ+ = + ∆ − −                                                                               (2) 

where ( )EV
kPχ  is the efficiency of EV's battery and lostE  is the energy consumption of EV in each time 

interval while EV is not at home. The second term of Eq. 2 shows that EV could be charged or 
discharged only when it is parked at home. The third term denotes that EV consumes energy when it is 
not at home. 

Indoor temperature of a home is influenced by cooking, solar irradiance, wind speed, humidity, 
outdoor temperature, HVAC power, etc. For simplicity, we assume solar irradiance, outdoor 
temperature, and HVAC power are the major factors of thermal model [1]. Let in

kT  be the indoor 
temperature in time step k , out

kT  be the outdoor temperature in k , HVAC
kP  be the input power of 

HVAC in k , and kφ  be the solar irradiance in k . Thermal model is described as 

1 1 2 3( )in in out in w HVAC
k k k k k k kT T l T T l HVAC P l φ+ = + − + +                                                                                (3) 

where 1l , 2l , and 3l  are coefficients, and 

1,  HVAC is working in time step 
0,  otherwise

w
k

k
HVAC 

= 


                                                                            (4) 

denotes whether HVAC is working or not in k . It is zero when HVAC is turned off by user. Let 

11,  1 and 0
0,  otherwise

p p
d k k

k
EV EV

EV − = =
= 


                                                                                                  (5) 

be the variable that denotes whether k  is the time step when EV just departs. H
kP  is defined as the 

total power consumption of the other home appliances in k , kβ  is defined as the dynamic price in k . 
maxE  and minE  are the maximum and minimum battery's energies of EV, ,maxEVP  and ,minEVP  are the 

maximum and minimum powers of EV, ,maxHVACP  and ,minHVACP  are the maximum and minimum input 
powers of HVAC. Let d

kT  be the desired temperature in k  and dE  be the desired battery's energy of 
EV when EV just departs. d

kT  and dE  are set by user. Let N  and M  be the numbers of EV and 
HVAC, n  and m  be the indexes of EV and HVAC. The infinite-horizon performance index function 
which is expected to be minimized is described as 
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                                                           (6) 

where (0,1)r ∈  is discount factor, 1c , 2,mc , 3,mc , 4,nc , 5,nc , and 6,nc  are weights, 
,max ,min0.5( )HVAC HVAC HVACP P P= +% , ,max ,min0.5( )EV EV EVP P P= +% , max min0.5( )E E E= +% . The utility 

function is composed of 1Û , 2Û , 3Û , and 4Û . 1Û  concerns the total electricity cost. In this paper, the 

battery of EV is not allowed to feed power to the power grid. ,
EV

t nP  is ineffective for 1Û  when EV n  is 

not at home. ,
HVAC

t mP  is ineffective for 1Û  when HVAC m  is turned off. The first term of 2Û  aims to 

make ,
HVAC

t mP  close to the middle of its limits. It avoids ,
HVAC

t mP  exceeds its limits. The second term of 2Û  

aims to make ,
in

t mT  close to the desired temperature. When HVAC m  is turned off, it is ineffective for 

2Û . The first term of 3Û  prevents ,
EV

t nP  exceeds its limits, and the second term of 3Û  prevents ,t nE  

exceeds the storage limits. EV n  is ineffective for 3Û  when it is not at home. 4Û  aims to make ,t nE  
close to the desired energy when EV n  just departs. We define 

,1 , ,1 ,
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L L
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                                                                  (7) 

where kx  is the vector of state, ku  is the vector of control, kλ  and kρ  are the vectors of time-varying 
parameter. The problem described by Eq. 2, Eq. 3, and Eq. 6 could be conveniently represented as 

( )ˆ ˆ , ,t k
t t t

t k
J r U x u ρ

∞
−

=

= ∑                                                                                                                    (8) 

1 ( , , )k k k kx f x u λ+ = .                                                                                                                         (9) 
As d

kEV  is determined by p
kEV , it is not included in kρ . Eq. 6 shows that when EV n  is not at 

home, ,
EV

t nP  is arbitrary as it doesn't affect Eq. 6. And so do ,
HVAC

t mP  when HVAC m  is not working. 

Actually ,
EV

t nP  must be equal to zero when EV n  is not at home, and ,
HVAC

t mP  must be zero when HVAC 
m  is turned off. Therefore we define 

,1 , ,1 ,( , , , , , )p p w w
k k k N k k M kdiag EV EV HVAC HVAC uΛ = L L                                                                   (10) 

as the actual vector of control from the controller to the EVs and the HVACs. 
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ADP Algorithm 
A discrete-time nonlinear system is described as 

1 ( , )k k kx F x u+ = .                                                                                                                                 (11) 
where n

kx ∈  is state vector, m
ku ∈  is control vector, and k  is the index of time step, 

0,1, 2,k = L . ,k kx u∀ , ( , )k kF x u  is continuous. It is assume that Eq. 11 is under state feedback 
control, that is ( )k ku u x= . The performance index function which is minimized by ku  is 

( ) ( , )t k
k t t

t k
J x U x uγ

∞
−

=

= ∑                                                                                                                  (12) 

where (0,1)γ ∈  is discount factor and ( , ) 0t tU x u ≥  is utility function. Eq. 12 can be written as 

1( ) ( , ) ( ) ( , ) ( ( , ))k k k k k k k kJ x U x u J x U x u J F x uγ γ+= + = + .                                                             (13) 
ADP algorithm is computed as follows 

( ) arg min{ ( , ) ( ( , ))}
k

i k k k i k k
u

u x U x u J F x uγ= +                                                                                 (14) 

1( ) min{ ( , ) ( ( , ))}
k

i k k k i k ku
J x U x u J F x uγ+ = +                                                                                       (15) 

where ( )i ku x  is the iterative control law and ( )i kJ x  is the iterative performance index function. 
0,1, 2,i = L  is the iteration step index. While the initial iterative performance index function 

0 ( ) 0J x = , the proofs of convergence and optimality have been presented [11]. That is, 
*lim ( ) ( )i i k kJ x J x→∞ =  and *lim ( ) ( )i i k ku x u x→∞ = , where *( )kJ x  is the optimal performance index 

function and *( )ku x  is the optimal control law. 

Elimination of Time-varying Parameters 
There is not time-varying parameter in Eq. 12. Therefore, the time-varying parameters within Eq. 8 

and Eq. 9 must be eliminated before applying ADP to the optimization. The time-varying parameters 
have a strong periodicity in HEO. In this paper, the time-varying parameters are assumed as daily 
periodic functions of time. For simplification of the following derivation, we assume the time interval is 
one hour and there are 24 time steps in a day. Therefore the assumption is 

24j jλ λ += , 24j jρ ρ += , , 1,j k k= + L .                                                                                          (16) 

kλ  and kρ  are known in the assumption, they are not the input variables of Eq. 8 and Eq. 9. Define 

( ) ( )ˆ ˆ, , ,t t t t t tU x u U x u ρ=  and ( , ) ( , , )k k k k k kf x u f x u λ= .                                                              (17) 
Based on the assumption of Eq. 16, the problem described by Eq. 8 and Eq. 9 is rewritten as 

( )ˆ ˆ( ) ,t k
k t t t

t k
J x r U x u

∞
−

=

= ∑                                                                                                               (18) 

1 ( , )k k k kx f x u+ = ,                                                                                                                           (19) 
and we have 

24
ˆ ˆ( ) ( )j jU U +⋅ = ⋅ , 24( ) ( )j jf f +⋅ = ⋅ , , 1,j k k= + L .                                                                          (20) 
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According to Eq. 19, Eq. 18 can be written as 

( ) ( )

( ) ( )
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ˆ ˆ, ( ( ( (
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t k

k k k k t t t k k k k t
t k

k
t k

k k k t t t k k k k t
t k

t k
k k k t t t k k

J x U x u r U f f f x u u u

r U x u r U f f f x u u u

r U x u r U f f f x

+
−

− − +
= +

+
−

+ + + − − + + + +
= +

−
+ + + − − + +

= +

+ +

+ +

∑

∑

L L

L L

L( )
71

8 48 49
49

, ), ), ),
k

k k t
t k

u u u
+

+ +
= +

+∑ L L

.               (21) 

Based on Eq. 20, Eq. 21 is transformed into 

( ) ( )

( ) ( )

( )

23

1 2 1
1
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24 24

24 24 1 2 24 24 25 24
1

48 48
48 48 1 2 48
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L( )
23

48 49 48
1

), ), ),
k

k t
t k

u u
+

+ + +
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+∑ L L

.                (22) 

Define a new control law as 

1 23{ , , , }k k k kv u u u+ += L                                                                                                                   (23) 
and a new utility function as 

( ) ( )
23

1 2 1
1

ˆ ˆ( , ) , ( ( ( ( , ), ), ),
k

t k
k k k k k k t t t k k k k t

t k
V x v U x u r U f f f x u u u

+
−

− − +
= +

= + ∑ L L .                                   (24) 

The performance index function is finally rewritten as 

24
24 24

0

ˆ( ) ( , )L
k k k L k L

L
J x r V x v

∞

+ +
=

= ∑ .                                                                                                  (25) 

Besides Eq. 25, a new dynamic model is needed. According to Eq. 19, we have 

24 23 22 1 23

48 47 46 24 24 24 25 47

72 71 70 48 48 48 49 71

( ( ( ( , ), ), ), )
( ( ( ( , ), ), ), )
( ( ( ( , ), ), ), )

k k k k k k k k

k k k k k k k k

k k k k k k k k

x f f f x u u u
x f f f x u u u
x f f f x u u u

+ + + + +

+ + + + + + + +

+ + + + + + + +

=
=

=

L L

L L

L L

L

.                                                            (26) 

Define 

23 22 1 23( , ) ( ( ( ( , ), ), ), )k k k k k k k k k kg x v f f f x u u u+ + + += L L .                                                                 (27) 
Based on Eq. 20, Eq. 26 can be rewritten as 

24( 1) 24 24( , )k L k k L k Lx g x v+ + + += .                                                                                                         (28) 
The problem described by Eq. 8 and Eq. 9 is transformed into an equivalent problem described by 

Eq. 25 and Eq. 28 under the assumption of Eq. 16. When the first time step k  of the problem is 
confirmed, ( )kV ⋅  and ( )kg ⋅  are time-invariant. Based on Eq. 28, Eq. 25 can also be written as 

24 24
24

ˆ ˆ ˆ( ) ( , ) ( ) ( , ) ( ( , ))k k k k k k k k k k kJ x V x v r J x V x v r J g x v+= + = + .                                                    (29) 
Let ( ) ( )kU V⋅ = ⋅ , ( ) ( )kF g⋅ = ⋅ , and 24rγ = . According to Eq. 13, Eq. 29 can be solved by ADP with 

the guarantees of convergence and optimality. 
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Numerical Results 
Assumption of Eq. 16 is the key of the tranformation. Actually, the time-varying parameters of 

different days are not completely the same. In this section, an ADP application for HEO is shown to 
test the performances of the assumption. For simplicity, we assume that the numbers of HVAC and EV 
are all one in the example.  

The time interval is set as 1 hour and the first time step is 0k = . We assume the EV has following 
parameters: its battery's capacity is 20kWh; its maximum power is 6kW and minimum power is -6kW; 
its initial battery's energy is 15kWh; it consumes 1.3kWh in each hour while it is not at home; its 
battery’s efficiency is 1; the user sets 17kWh as the value of desired battery's energy when the EV just 
departs; the time step when the EV just departs is normal distribution with the mean of 7:00 and the 
standard deviation of 2 hours, and the time step when the EV just arrives is normal distribution with the 
mean of 14:00 and the standard deviation of 2 hours [14]. We assume the HVAC runs in cooling mode 
and the coefficients of thermal model are 1 0.5l = , 2 2.5l = − , and 3 4l = . The  maximum input power 
of the HVAC is 4kW. The initial indoor temperature is 27.5°C. The time step when the HVAC is just 
turned off is  normal distribution with the mean of 20:00 and the standard deviation of 1 hour, the time 
step when the HVAC is just turned on is normal distribution with the mean of 22:00 and the standard 
deviation of 1 hour. The coefficients of performance index function are set as follows: 0.95r = , 

1 0.2c = , 2,1 0.001c = , 3,1 0.001c = , 4,1 0.001c = , 5,1 0.001c = , and 6,1 0.02c = . The average 
time-varying parameters of history are shown in Fig. 1(a). The actual time-varying parameters of the 
next 5 days are shown in Fig. 1(b). The time-varying parameters of different days are similar but not the 
same. 

We assume the time-varying parameters of the next 5 days are predicted perfectly. We set the time 
horizon as 5 days and optimize based on DP. The results are the standards of following comparisons. In 
the following discussion, we call them the standard, which is shown in Fig. 2. The time horizon of the 
standard should be set as infinity, but it is finite here because of the limitation of simulation.  

We analyze the results of the standard. The actual power of EV and the battery's energy of EV do 
not exceed their limits. The actual input power of HVAC is neither too large nor negative. The indoor 
temperature is close to the desired temperature when the HVAC is working. When the dynamic price 
and the total power consumption of the other home appliances are low, the EV charges. The battery's 
energy satisfies the desired one when the EV just departs. When the EV is not at home, the actual 
power of EV is zero and the battery's energy of EV is decreasing. The EV discharges when the dynamic 
price and the total power consumption of the other home appliances are relatively high, but almost 
stops charging or discharging when the dynamic price is low but the total power consumption of the 
other home appliances is high. The indoor temperature almost satisfies the desired one from 0:00 to 
7:00 per day when the dynamic price, the total power consumption of the other home appliances, the 
outdoor temperature, and the solar irradiance are very low. The actual input power of HVAC increases 
greatly at noon because the outdoor temperature and the solar irradiance are high. But due to the 
impact of electricity cost, the indoor temperature isn't very close to the desired one. When the HVAC 
is turned off, the actual input power of HVAC is zero and the indoor temperature increases. 

The following simulations are divided into 2 cases. 
Case 1: the time-varying parameters of the next days can not be predicted. We assume the 

time-varying parameters of the next days are the same as the ones in Fig. 1(a). We apply ADP to the 
optimization. As mentioned in Introduction, the time horizon is generally set as 1day. We transform the 
problem into 5 new problems which time horizon is 1day and optimize based on DP. They are called the 
simplified new problems based on DP (SNP-DP). The results of case 1 are shown in Fig. 2(a). As the 
time-varying parameters of the next days are not accurate, the results of ADP and SNP-DP are not the 
same as the ones of the standard. For example, the EV leaves earlier than usual on the second day and 
the forth day, the battery’s energy of EV can not reach the desired one. Furthermore, the difference 
between the results of SNP-DP and the standard is more obvious than the difference between the 
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results of ADP and the standard around 00:00 everyday as the cost after the end of time horizon is not 
considered in SNP-DP.  

Case 2: the time-varying parameters of the next day are predicted accurately. We apply SNP-DP to 
the optimization. We assume the time-varying parameters of the next days are the same as the ones of 
the next day and apply ADP to the optimization. The problem is resolved again by ADP and SNP-DP 
with the latest predictions. The results of example 1 are shown in Fig. 11. As the time-varying 
parameters are predicted perfectly, the results of ADP, the standard and SNP-DP are overlap almost 
completely. The results of ADP and the standard are difference around 120:00, as the cost after the 
next 5 days is not considered in the standard. Therefore, the values of performance index function of 
ADP and the standard are almost the same in Table II. As analyzed in case 1, the results of SNP-DP are 
different with the ones of ADP and the standard around 00:00 everyday, and the values of performance 
index function of SNP-DP are the greatest ones. 

 

  
   (a)       (b) 

Fig. 1.  Time-varying parameters. (a) Average time-varying parameters of history.  (b)Actual 
time-varying parameters of the next 5 days. 
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   (a)       (b) 

Fig. 2.  Results of  case 1 and case 2. (a) Results of case 1. (b) Results of case 2. 

Conclusions 
According to the periodic characteristic, the time-varying parameters in HEO are eliminated by 

transformations in this paper and ADP is applied to the HEO with HVACs and EVs. As future study, it 
is suggested to look into the problem of transformation while uncertain variables such as wind speed 
are included in HEO. 
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