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1. Introduction

Statistical distributions are very useful in describing and predicting real world phenomena. In fact,
the statistics literature is filled with hundreds of continuous univariate distributions and their suc-
cessful applications. The Weibull distribution is one of the most commonly used lifetime distribu-
tion in modeling lifetime data. In practice, it has been shown to be very flexible in modeling various
types of lifetime distributions with monotone failure rates but it is not useful for modeling the bath-
tub shaped and the unimodal failure rates which are common in reliability and biological studies.
To overcome this shortcoming, several generalizations of the classical Weibull distribution have
been discussed by different authors. Some notable generalizations include the generalized Weibull
distribution by Mudholkar and Kollia [27], the exponentiated-Weibull distribution by Mudholkar et
al. [28], the beta-Weibull distribution by Famoye et al. [13], the Kumaraswamy Weibull by Cordeiro
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et al. [12], the transmuted Weibull distribution by Aryal et al. [8], the Weibull Lomax distribution
by Tahir et al. [32] and the transmuted Weibull Lomax by Afify et al. [3].

Similarly, the Pareto distribution is well known in the literature for its capability in modeling
the heavy-tailed distributions. Applications of Pareto distribution have appeared in several areas
including reliability, exponential tilting (weighting) in finance and actuarial sciences, as well as in
economics. A hierarchy of the Pareto distributions has been established starting from the classical
Pareto (I) to Pareto (IV) distributions with subsequent additional parameters related to location,
shape and inequality. To add flexibility to the Pareto distribution various generalizations of Pareto
distribution have appeared in the literature. For example, Alzaatreh et al. [5] proposed the Weibull-
Pareto, Bourguignon et al. [11] introduced the Kumaraswamy-Pareto, Kareema et al. [23] defined
the exponentiated-Pareto, Alzaatreh et al. [6] introduced the Gamma-Pareto, Akinsete et al. [4]
introduced the beta-Pareto distributions, Zea et al. [34] studied the beta exponentiated Pareto, Mah-
moudi [26] proposed the beta generalized Pareto. Recently, a generator of distributions called the
Weibull-G class was proposed and studied by Bourguignon et al. [10]. Tahir et al. [33] used this
formulation to develop the Weibull-Pareto (WP) distribution. The WP distribution has higher skew-
ness as compared to a Weibull distribution and therefore is more suitable to model a heavily skewed
data which commonly arise in reliability and survival analysis.

The cumulative distribution function (cdf) (for x > θ > 0) of the Weibull-Pareto (WP) distribu-
tion as proposed in Tahir et al. [33] is given by

G(x;a,b,θ) = 1− exp
{
−
[( x

θ

)a
−1

]b}
, (1.1)

where θ is a scale parameter, a > 0 and b > 0 are shape parameters. The corresponding proba-
bility density function (pdf) is given by

g(x;a,b,θ) =
ab
θ a xa−1

[( x
θ

)a
−1

]b−1
exp

{
−
[( x

θ

)a
−1

]b}
. (1.2)

In this article we would like to provide an extension of the WP distribution using the exponen-
tiated generalization, say Gα . The new model is referred to as the exponentiated Weibull-Pareto
(EWP) distribution.

Definition: Let G be the cdf of and absolutely continuous random variable with support on (a,b)
where the interval may be unbounded, and let α be a positive real number. The random variable X
has a Gα distribution if its cdf, denoted by F(x), is given by

F(x) = [G(x)]α

Note that this is the αth power of the base line distribution function G(x), and the corresponding
pdf of X is given by

f (x) = αg(x) [G(x)]α−1 .

The class of Gα distributions contains certain well-known distributions for which their cdf’s
have closed forms, see for example, Gupta and Kundu [17–20] and Nadarajah [29]. Shakil and
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Ahsanullah [31] introduced some distributional properties of order statistics and record values from
Gα distributions.

Recently, many authors constructed generalizations based on the exponentiation method. For
instance, Afify et al. [2] studied the exponentiated transmuted generalized Rayleigh, Huang and
Oluyede [22] introduced exponentiated Kumaraswamy-Dagum, Nadarajah and Kotz pioneered the
exponentiated gamma, exponentiated Fréchet and exponentiated Gumbel, Gupta et al. [16] proposed
the exponentiated exponential distributions. It can be seen from the above mentioned articles that the
exponentiated models are significantly more flexible than their classical counterparts to characterize
the real life phenomenons. The goal of the present work is to propose and study a generalization
of the Weibull-Pareto distribution via the exponentiated method describe above in order to obtain a
larger class of flexible parametric models. The rest of the article is outlined as follows. In Section
2, we define the EWP distribution and provide the graphical presentation for its pdf and hazard rate
function (hrf). A useful mixture representation for its pdf and cdf is provided in Section 3. Section 4
provides the mathematical properties including quantile function, moments and Rényi q-entropies.
Some characterization results are provided in Section 5. In Section 6, the order statistics and their
moments are discussed. The maximum likelihood estimates (MLEs) for the model parameters are
demonstrated in Section 7. In Section 8, simulation results to assess the performance of the pro-
posed maximum likelihood estimation procedure are discussed. In section 9, the EWP distribution
is applied to a real data set to illustrate its usefulness.

2. The Exponentiated Weibull-Pareto Distribution

A random variable X is said to have an exponentiated Weibull-Pareto (EWP) distribution, denoted
by X ∼EWP(x,a,b,θ ,α), if its cdf is given (for x > θ ) by

F(x) =
(

1− exp
{
−
[( x

θ

)a
−1

]b})α

. (2.1)

The corresponding pdf of X is

f (x) =
abα
θ a xa−1

[( x
θ

)a
−1

]b−1
exp

{
−
[( x

θ

)a
−1

]b}(
1− exp

{
−
[( x

θ

)a
−1

]b})α−1

,(2.2)

where θ > 0 is a scale parameter representing the characteristic life. Also, a, b and α are positive
shape parameters representing the different patterns of the EWP distribution.

Figure 1 provides some plots of the EWP density curves for selected values of the parameters a,
b, θ and α .
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Fig. 1. pdf of EWP distribution for selected values of the parameters

The reliability function (R(x)), the hazard rate function (h(x)), the reversed-hazard rate function
(r(x)) and cumulative hazard rate function (H(x)) of X are, respectively, given by

R(x) = 1−
[

1− exp
{
−
[( x

θ

)a
−1

]b}]α

,

h(x) =
abαxa−1

[( x
θ
)a −1

]b−1
exp

{
−
[( x

θ
)a −1

]b}[
1− exp

(
−
[( x

θ
)a −1

]b)]α−1

θ a

[
1−

(
1− exp

{
−
[( x

θ
)a −1

]b})α
] ,

r(x) =
abαxa−1

[( x
θ
)a −1

]b−1
exp

{
−
[( x

θ
)a −1

]b}
θ a

[
1− exp

{
−
[( x

θ
)a −1

]b}]
and

H(x) = − ln

{
1−

(
1− exp

{
−
[( x

θ

)a
−1

]b})α}
.

Plots of the hazard rate function of EWP for selected values of the parameters a, b, θ and α
are given in Figure 2. It can be seen that the hazard rate function is very flexible so the proposed
distribution should be useful to model increasing, decreasing and constant failure rates behavior.
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Fig. 2. Hazard rate function of EWP distribution for selected values of the parameters

3. Mixture Representation

As presented in Bourguignon et al. [10], Weibull-G class can be expressed in terms of odds ratio
G(x)/[1−G(x)] of the base distribution. The EWP density function given in (2.2) can be expressed
as

f (x) = bαg(x)
G(x)b−1

G(x)b+1

∞

∑
i=0

(−1)i Γ(α)

i!Γ(α − i)
exp

{
−(i+1)

(
G(x)
G(x)

)b
}

= bα
(a

x

)( x
θ

)−a

[
1−

( x
θ
)−a

]b−1

{
1−

[
1−

(
1+ x

θ
)−a

]}b+1

×
∞

∑
i=0

(−1)i Γ(α)

i!Γ(α − i)
exp

−(i+1)


[
1−

( x
θ
)−a

]
1−

[
1−

( x
θ
)−a

]
b . (3.1)

Using the power series expansion, we have

exp

−(i+1)


[
1−

( x
θ
)−a

]
1−

[
1−

( x
θ
)−a

]
b=

∞

∑
k=0

(−1)k (i+1)k

k!

[
1−

( x
θ
)−a

]kb

{
1−

[
1−

( x
θ
)−a

]}kb .
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Substituting in (3.1) and after some calculations we obtain

f (x) =
abα

θ

(a
x

)( x
θ

)−a ∞

∑
i,k=0

(−1)i+k Γ(α)(i+1)k

i!k!Γ(α − i)

×
[

1−
(

1+
x
θ

)−a
]kb+b−1{

1−
[

1−
( x

θ

)−a
]}−kb−b−1

.

After a power series expansion, we get

f (x) =
∞

∑
j,i,k=0

(−1)i+k Γ(α)(i+1)k αb
j!i!k!Γ(α − i) [(k+1)b+ j]

Γ((k+1)b+ j+1)
Γ((k+1)b+1)

× [(k+1)b+ j]
(a

x

)( x
θ

)−a
{

1−
( x

θ

)−a
}(k+1)b+ j−1

. (3.2)

Equation (3.2) can be rewritten as follows

f (x;a,b,α,θ) =
∞

∑
j,k=0

υ j,kh(x;a,θ ,(k+1)b+ j) , (3.3)

where

υ j,k =
∞

∑
i=0

(−1)i+k Γ(α)(i+1)k αb
j!i!k!Γ(α − i) [(k+1)b+ j]

Γ((k+1)b+ j+1)
Γ((k+1)b+1)

and h(x;a,θ ,(k+1)b+ j) is the density of exponentiated-Pareto (EP) with parameters a,θ and
(k+1)b+ j. This means that the EWP density can be expressed as a mixture of EP densities. So,
several of its properties can be derived from those of the EP model.

Similarly, the cdf of the EWP in (2.1) can be expressed in the same mixture form as follows

F(x;a,b,θ ,α) =
∞

∑
j,k=0

υ j,kH(x;a,θ ,(k+1)b+ j),

where H(x;a,θ ,(k+1)b+ j) =
[
1−

( x
θ
)−a

](k+1)b+ j
is the cdf of EP with parameters a,θ and

(k+1)b+ j.

4. Mathematical Properties

Established algebraic expansions to determine some structural properties of the EWP distribution
can be more efficient than computing those directly by numerical integration of its density function.
The statistical properties of the EWP distribution including quantile function, ordinary moments
and Rényi and q-entropies are provided in this section.

4.1. Quantile Function

The quantile function (qf) of X , where X ∼ EWP(a,b,θ ,α), is obtained by inverting (2.1) as
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Q(u) = θ
{

1+
[
− ln

(
1−u

1
α

)] 1
b
} 1

a

, 0 ≤ u ≤ 1.

Simulating the EWP random variable is straightforward. If U is a uniform variate on the unit
interval (0,1), then the random variable X = Q(U) follows (2.1), i.e. X ∼ EWP(a,b,θ ,α).

4.2. Moments

The rth order moment (E(X r)), denoted by µ ′
r, of the EWP(x,a,b,θ ,α) is given by

µ
′
r =

∞

∑
j,k=0

υ j,k

∫ ∞

0
xrh(x,a,θ ,(k+1)b+ j)dx.

Therefore, for r ≤ α we have

µ
′
r = θ r

∞

∑
j,k=0

υ j,k [(k+1)b+ j]B
(

a− r
α

, [(k+1)b+ j]
)
, (4.1)

where B(m,n) =
∫ 1

0 tm−1 (1− t)n−1 dt is the beta function.
In particular, for r = 1 in (4.1), we obtain the mean of X as follows

µ
′
1 = θ

∞

∑
j,k=0

υ j,k [(k+1)b+ j]B
(

a−1
a

, [(k+1)b+ j]
)
.

The variance, skewness, and kurtosis can be calculated from the ordinary moments using well-
known relationships.

Using the relation between the central moments and non-centeral moments, we can obtain the
nth central moments, denoted by Mn, of a EWP random variable as

Mn = E
(
X −µ ′

1
)n

=
n

∑
r=0

(
n
r

)(
−µ

′
1

)n−r
E (X r)

=
n

∑
r=0

(
n
r

)
(−1)n−r

(
µ

′
1

)n−r
µ

′
r

and the cumulants (κn) of X are obtained from (4.1) as

κn = µ
′
n −

n−1

∑
r=0

(
n−1
r−1

)
(κr)

(
µ

′
n−r

)
,

where κ1 = µ ′
1. Hence, κ2 = µ ′

2 − µ ′2
1 ,κ3 = µ ′

3 − 3µ ′
2µ ′

1 + µ ′3
1 etc. The skewness and kurtosis

measures can be calculated from the ordinary moments using well-known relationships.
The rth descending factorial moment of X is

µ
′

(r) = E
[
X (r)

]
= E [X (X −1)× ...× (X − r+1)] =

r

∑
n=0

s(r,n)µ
′
n,

where s(r,n) = (n!)−1[dnx(r)/dxn]x=0 is the Stirling number of the first kind.
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4.3. Rényi and q-Entropies

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty and
is defined by

Iδ (X) =
1

1−δ
log

∫ ∞

−∞
f δ (x)dx, δ > 0 and δ ̸= 1.

For EWP distribution the Rényi entropy is derived as below. We have

f δ (x) =
∞

∑
i=0

(−1)i Γ(δ (α −1)+1)αθ

i!Γ(δ (α −1)+1− i)
bθ g(x)δ G(x)δ (b−1)

G(x)δ (b+1)
exp

{
−(δ + i)

[
G(x)
G(x)

]b
}
.

Using a power series for the exponential function and the generalized binomial expansion in the
above result, we obtain

f δ (x) =
∞

∑
j,k=0

ξ j,kg(x)δ G(x)kb+δ (b−1)+ j ,

where

ξ j,k =
∞

∑
i=0

(−1)i+k Γ(δ (α −1)+1)Γ(b(k+δ )+δ + j)(i+δ )k αθ

j!i!k!Γ(δ (α −1)+1− i)Γ(b(k+δ )+δ )
.

For δ (α +1)> 1and δ (b−1)>−1 transforming variables and integrating, we get

Iδ (X) =
1

1−δ
log

{
∞

∑
j,k=0

ξ j,k
θ (αθ)δ

α
B
(

δ (α +1)−1
α

,ρ
)}

,

where ρ = bk+δ (b−1)+ j+1.
The q-entropy, say Hq (X), is defined by

Hq (X) =
1

q−1
log

{
1−

∫ ∞

−∞
f q (x)dx

}
, q > 0 and q ̸= 1.

Then, for q(α +1)> 1 and q(b−1)>−1, we cam write

Hq (X) =
1

q−1
log

{
1−

[
∞

∑
j,k=0

ξ ∗
j,k

θ (αθ)q

α
B
(

q(α +1)−1
α

,ρ∗
)]}

,

where ρ∗ = bk+q(b−1)+ j+1and

ξ ∗
j,k =

∞

∑
i=0

(−1)i+k Γ(q(α −1)+1)Γ(b(k+q)+q+ j)(i+q)k αθ

j!i!k!Γ(q(α −1)+1− i)Γ(b(k+q)+q)
.

5. Characterizations

This section deals with various characterizations of EWP distribution. These characterizations are
based on: (i) a simple relationship between two truncated moments; (ii) the hazard function and
(iii) truncated moment of certain function of the random variable. Our first characterization result

Published by Atlantis Press
Copyright: the authors

333



The Exponentiated Weibull-Pareto Distribution

employs a theorem due to Glänzel [14], see Theorem 1 below. Note that the result holds also when
the interval H is not closed. Moreover it could be also applied when the cdf F does not have a
closed form. As shown in Glänzel [15] this characterization is stable in the sense of weak conver-
gence.

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [d,e] be an interval for some
d < e (d =−∞,e = ∞ might as well be allowed) . Let X : Ω → H be a continuous random variable
with the distribution function F and let g and h be two real functions defined on H such that

E [g(X) | X ≥ x] = E [h(X) | X ≥ x]η (x) , x ∈ H,

is defined with some real function η . Assume that g, h ∈C1 (H), η ∈C2 (H) and F is twice contin-
uously differentiable and strictly monotone function on the set H. Finally, assume that the equation
hη = g has no real solution in the interior of H. Then F is uniquely determined by the functions g,
h and η , particularly

F (x) =
∫ x

d
C
∣∣∣∣ η ′ (u)
η (u)h(u)−g(u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = η ′ h
η h − g and C is the normalization

constant, such that
∫

H dF = 1.

5.1. Characterization based on truncated moments

The first characterization of EWP is given in proposition 5.1 and it is based on a simple relationship
between two truncated moments.

Proposition 5.1. Let X : Ω → (θ ,∞) be a continuous random variable and let h(x) ={
1− exp

(
−
[( x

θ
)a −1

]b
)}1−α

and g(x) = h(x)exp
(
−
[( x

θ
)a −1

]b
)

for x > θ . The random
variable X belongs to EWP family (2.2) if and only if the function η defined in Theorem 1 has the
form

η (x) =
1
2

exp
(
−
[( x

θ

)a
−1

]b
)
, x > θ .

Proof: Let X be a random variable with pdf (2.2), then

(1−F (x))E [h(x) | X ≥ x] = α exp
(
−
[( x

θ

)a
−1

]b
)
, x > θ ,

and

(1−F (x))E [g(x) | X ≥ x] =
α
2

exp
(
−
[( x

θ

)a
−1

]b
)
, x > θ ,

and finally

η (x)h(x)−g(x) =
1
2

h(x)
{
−exp

(
−
[( x

θ

)a
−1

]b
)}

< 0 f or x > θ .
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Conversely, if η is given as above, then

s′ (x) =
η ′ (x)h(x)

η (x)h(x)−g(x)
= abθ−axa−1

[( x
θ

)a
−1

]b−1
, x > θ ,

and hence

s(x) =
[( x

θ

)a
−1

]b
, x > θ .

Now, in view of Theorem 1, X has density (2.2).

Corollary 5.1. Let X : Ω → (θ ,∞) be a continuous random variable and let h(x) be as in Propo-
sition 5.1. The pdf of X is (2.2) if and only if there exist functions g and η defined in Theorem 1
satisfying the differential equation

η ′ (x)h(x)
η (x)h(x)−g(x)

= abθ−axa−1
[( x

θ

)a
−1

]b−1
, x > θ . (5.1)

Note that the general solution of the differential equation in Corollary 5.1 is

η (x) = exp
([( x

θ

)a
−1

]b
)[

−
∫

abθ−axa−1
[( x

θ
)a −1

]b−1×
exp

(
−
[( x

θ
)a −1

]b
)
(h(x))−1 g(x)dx+D

]
,

where D is a constant. Note that a set of functions satisfying the differential equation (5.1) is given
in Proposition 5.1 with D = 0. However, it should be also noted that there are other triplets (h,g,η)

satisfying the conditions of Theorem 1.

5.2. Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F , satisfies
the first order differential equation

f ′(x)
f (x)

=
h′F(x)
hF(x)

−hF(x). (5.2)

For many univariate continuous distributions, this is the only characterization available in terms
of the hazard function. The following characterization establish a non-trivial characterization for
EWP distribution in terms of the hazard function when α = 1, which is not of the trivial form given
in (5.2).

Proposition 5.2. Let X : Ω → (θ ,∞) be a continuous random variable. Then for α = 1, the pdf of
X is (2.2) if and only if its hazard function hF (x) satisfies the differential equation

h′F (x)− (a−1)x−1hF (x) = a2b(b−1)θ−2ax2(a−1)
[( x

θ

)a
−1

]b−2
(5.3)

with the boundary condition limx→θ− hF (x) = 0 for b > 1.
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Proof. If X has pdf (2.2), then clearly (5.3) holds. On the other hand, if (5.3) holds, then

d
dx

{
x−(a−1)hF (x)

}
= abθ−a d

dx

{
x2(a−1)

[( x
θ

)a
−1

]b−1
}
,

or, equivalently,

hF (x) = abθ−ax(a−1)
[( x

θ

)a
−1

]b−1
,

which is the hazard function of the EWP distribution.

5.3. Characterization based on truncated moment of certain function of the random
variable

In this subsection we present the characterizations based on truncated moment of certain function of
the random variable. The following propositions are based on the technical report by Hamedani [21]
which can be used to characterize EWP distribution.
Proposition 5.3. Let X : Ω → (a,b) be a continuous random variable with cdf F . Let ψ (x) be
a differentiable function on (a,b) with limx→a+ ψ (x) = 1. Then for δ ̸= 1 ,

E [ψ (X) | X ≥ x] = δψ (x) , x ∈ (a,b) ,

if and only if

ψ (x) = (1−F (x))
1
δ −1 , x ∈ (a,b) .

Proposition 5.4. Let X : Ω → (a,b) be a continuous random variable with cdf F . Let ψ1 (x)
be a differentiable function on (a,b) with limx→b ψ1 (x) = 1. Then for δ1 ̸= 1 ,

E [ψ1 (X) | X ≤ x] = δ1ψ1 (x) , x ∈ (a,b) ,

if and only if

ψ1 (x) = (F (x))
1

δ1
−1

, x ∈ (a,b) .

Proposition 5.5. Let X : Ω → (a,b) be a continuous random variable and let ψ ∈ C1 (a,b) and
φ ∈C2 (a,b) such that limx→a−

(∫ x
a

φ ′(u)
φ(u)−ψ(u)du

)
= ∞. Then

E [ψ (X) | X ≥ x] = φ (x) .

implies

1−F (x) = exp
{
−
∫ x

a

φ ′ (u)
φ (u)−ψ (u)

du
}
.

Remark: It is easy to see that for certain functions ψ (x) on (θ ,∞); (a) Proposition 5.4 provides
a characterization of EWP distribution; (b) Propositions 5.3 and 5.5 provide characterizations of
EWP distribution for α = 1.
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6. Order Statistics

If X1,X2,...,Xn is a random sample of size n from the EWP distribution and X1:n,X2:n,...,Xn:n be the
corresponding order statistics. Then the pdf of ith order statistics (Xi:n) is denoted by fi:n (x) and is
given by

fi:n (x) =
f (x)

B(i,n− i+1)

n−1

∑
j=0

(−1) j
(

n−1
j

)
F i+ j−1(x). (6.1)

Note that

F i+ j−1(x) =
∞

∑
m=0

(−1)m
(

α (i+ j−1)
m

)
exp

{
−m

{(
1+

x
θ

)a
−1

}b}
. (6.2)

Then by inserting (2.2) and (6.2) in equation (6.1), we obtain

fi:n (x) =
∞

∑
m,h=0

bm+h+1
(m+h+1)ab

θ a xa−1
[( x

θ

)a
−1

]b−1

×exp
{
−(m+h+1)

{( x
θ

)a
−1

}b}
, (6.3)

where

bk+h+1 =
α

(m+h+1)B(i,n− i+1)

n−i

∑
j=0

(−1) j+m+h
(

n− i
j

)(
α (i+ j−1)

m

)(
α −1

h

)
.

The rth moment of Xi:n (for r < a ) follows from (6.3) as

E (X r
i:n) =

∞

∑
l,k,m,h=0

bm+h+1Vj,k [(k+1)b+ l]B
(

1− r
a
, [(k+1)b+ l]

)
, (6.4)

where

Vj,k = θ r (−1)k

l!k!
(m+h+1)b
[(k+1)b+ l]

Γ((k+1)b+ l +1)
Γ((k+1)b+1)

.

The L-moments are analogous to the ordinary moments but can be estimated by linear combina-
tions of order statistics. They exist whenever the mean of the distribution exists, even though some
higher moments may not exist, and are relatively robust to the effects of outliers. Based upon the
moments in equation (6.4), we can derive explicit expressions for the L-moments of X as infinite
weighted linear combinations of the means of suitable EWP distribution. They are linear functions
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of expected order statistics defined by

λr =
1
r

r−1

∑
d=0

(−1)d
(

r−1
d

)
E (Xr−d:r) , r ≥ 1. (6.5)

The first four L-moments are given by

λ1 = E (X1:1) ,

λ2 =
1
2

E (X2:2 −X1:2) ,

λ3 =
1
3

E (X3:3 −2X2:3 +X1:3) ,

λ4 =
1
4

E (X4:4 −3X3:4 +3X2:4 −X1:4) .

7. Parameter Estimation

In this section we discuss the method of maximum likelihood to estimate the parameters of the EWP
distribution. Let X1, ...,Xn be a random sample from EWP distribution with unknown parameter
vector υ = (a,b,θ ,α) . The likelihood function for L is given by

L =

(
abα
θ a

)n n

∏
i=1

[
xa−1

i

[(xi

θ

)a
−1

]b−1
exp

{
−
[(xi

θ

)a
−1

]b}]
n

∏
i=1

[
1− exp

{
−
[(xi

θ

)a
−1

]b}]α−1

.

Let s =
( x

θ
)a −1, p = 1− e−sb

and z =
( x

θ
)a ln

( x
θ
)
.

Then the log-likelihood function, ℓ= lnL, becomes:

ℓ = n lna+n lnb+n lnα −na lnθ +(a−1)∑n
i=1 lnxi

+(b−1)∑n
i=1 lnsi −∑n

i=1 sb
i +(α −1)∑n

i=1 ln pi.

Since θ is assumed known (as x > θ ), the score vector is U(υ) = ∂ℓ
∂υ =

(
∂ℓ
∂b ,

∂ℓ
∂a ,

∂ℓ
∂α

)T
. The

elements of the score vector are given by

∂ℓ
∂b

=
n
b
+∑n

i=1 lnsi −∑n
i=1 sb

i lnsi +(α −1)∑n
i=1

sb
i e−sb

i lnsi

pi
,

∂ℓ
∂a

=
n
a
−n lnθ +∑n

i=1 lnxi +(b−1)∑n
i=1

zi

si

−b∑n
i=1 sb−1

i

(xi

θ

)a
ln
(xi

θ

)
+b(α −1)∑n

i=1
e−sb

i sb−1
i zi

pi
,

∂ℓ
∂α

=
n
α
+∑n

i=1 ln pi.

We can find the estimates of the unknown parameters by setting the score vector to zero,
U(υ̂) = 0, and solving them simultaneously yields the ML estimators â, b̂ and α̂ . These equa-
tions cannot be solved analytically and statistical software can be used to solve them numerically
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by means of iterative techniques such as the Newton-Raphson algorithm. For the four parameters
EWP distribution all the second order derivatives exist.

For interval estimation of the model parameters, we require the 3 × 3 observed information
matrix J (υ) = {Jrs} (for r,s = a,b,α) . Under standard regularity conditions, the multivariate nor-
mal N3(0,J (υ̂)

−1
) distribution can be used to construct approximate confidence intervals for the

model parameters. Here, J (υ̂) is the total observed information matrix evaluated at υ̂ . Therefore,
approximate 100(1−ϕ)% confidence intervals for a,b and α can be determined as: â±Z ϕ

2

√
Ĵaa,

b̂ ± Z ϕ
2

√
Ĵbb, and α̂ ± Z ϕ

2

√
Ĵαα , where Z ϕ

2
is the upper ϕ th percentile of the standard normal

distribution.

8. Simulation Study

In this section, we provide the simulation results to assess the performance of the proposed maxi-
mum likelihood estimation procedure. An ideal technique for simulating from (2.2) is the inversion
method.
One would simulate X by

x = θ
{

1+
[
− ln

(
1−u

1
α

)] 1
b
} 1

a

, 0 ≤ u ≤ 1,

where U ∼U(0,1) is a uniform random number. For different combination of a,b,θ and α samples
of sizes n = 100,200,300,500 and 1000 are generated from the EWP distribution. We repeated the
simulation k = 100 times and calculated the mean and the root mean square errors (RMSEs). The
empirical results are given in Table 1. It is evident that the estimates are quite stable and are close
to the true value of the parameters for these sample sizes. Additionally, as the sample size increases
the RMSEs, provided in the parentheses, decreases as expected.

Table 1. Empirical means and the RMSEs of the EWP distribution for a = 1.5,b = 2,θ = 0.5 and α = 3.0

n â b̂ θ̂ α̂
100 1.784 2.526 0.527 4.164

(0.922) (1.233) (0.129) (7.998)
200 1.662 2.274 0.518 3.500

(0.647) (0.805) (0.111) (4.382)
300 1.611 2.178 0.517 3.059

(0.461) (0.607) (0.104) (2.516)
500 1.534 2.152 0.504 3.089

(0.371) (0.452) (0.092) (1.973)
1000 1.515 2.122 0.500 2.987

(0.331) (0.411) (0.078) (1.364)

9. Application

In this section, we provide an application of the proposed EWP distribution to show its usefulness
to fit real data set. The EWP model is compared with other related models, namely Weibull-Pareto
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(WP), Kumaraswamy Lomax (KwL) (Lemonte and Cordeiro [25]), transmuted Weibull Lomax
(TWL) (Afify et al. [2]), McDonald Lomax (McL) (Lemonte and Cordeiro [25]), Weibull-Lomax
(WL) (Tahir et al. [32]), transmuted complementary Weibull geometric (Afify et al. [1]), Pareto type
IV (PIV)(Arnold [7]) and Lomax (L) distribution whose pdf’s are given by

• The density of the KwL distribution is given by

f (x) =
αab

θ

(
1+

x
θ

)−(α+1)
[

1−
(

1+
x
θ

)−α
]a−1{

1−
[

1−
(

1+
x
θ

)−α
]a}b−1

,

where x > 0, α,θ ,a,b ≥ 0.
• The density of the TWL distribution is given by

f (x) =
abα

θ

(
1+

x
θ

)bα−1
[

1−
(

1+
x
θ

)−α
]b−1

exp

{
−a

[(
1+

x
θ

)α
−1

]b
}

×

{
1− γ +2γ exp

[
−a

[(
1+

x
θ

)α
−1

]b
]}

,

where x > 0, α,θ ,a,b > 0, |γ| ≤ 1.
• The density of the WL distribution is given by

f (x) =
abα

θ

(
1+

x
θ

)bα−1
[

1−
(

1+
x
θ

)−α
]b−1

exp

{
−a

{[(
1+

x
θ

)α
−1

]}b
}
,

where x > 0, α,θ ,a,b > 0.
• The density of the TCWG distribution is given by

f (x) =
αθγ (γx)θ−1 e−(γx)θ

[
α (1−b)− (α −αb−b−1)e−(γx)θ

]
(

α +(1−α)e−(γx)θ
)3 ,

where x > 0, α,θ ,γ > 0, |b| ≤ 1.
• The density of the McL distribution is given by

f (x) =
αγ

θB(aγ−1,b)

(
1+

x
θ

)−(α+1)
[

1−
(

1+
x
θ

)−α
]a−1{

1−
[

1−
(

1+
x
θ

)−α
]γ}b−1

,

where x > 0, α,θ ,γ,a,b > 0.
• The density of the L distribution is given by

f (x) =
α
θ

(
1+

x
θ

)−(α+1)
,

where x > 0, α,θ > 0.
• The density of the PIV distribution is given by

f (x) =
α
θa

( x
θ

) 1
a−1

[
1+

( x
θ

) 1
a
]−α−1

,

where x > 0, a,α,θ > 0.
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We analyze the data set which was originally reported by Badar and Priest [9] and referenced
by several authors including Kundu et al. [24] and Afify et al. [3]. The data represent the strength,
measured in GPa, for single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers
were tested under tension at gauge length 10 mm. We estimate the unknown parameters of the EWP
and other distributions discussed above using the method of maximum likelihood. Table 2 provides
the MLEs of the model parameters and their standard errors (in parentheses).

Table 2. MLEs and their standard errors (in parentheses) for carbon fiber data set

Model Estimates
α̂ θ̂ â b̂ γ̂

EWP 43.773 0.5122 0.7787 1.329 −
(101.835) (0.751) (1.498) (2.06) −

WP − 0.0755 0.1834 13.9522 –
− (0.159) (0.102) (7.705) –

PIV 1545.411 654.611 0.7167 – −
(513.088) (183.946) (0.015) – −

TWL 0.3922 0.6603 0.5287 8.4451 0.7364
(0.339) (1.174) (3.32) (4.397) (0.286)

WL 0.2417 0.3432 13.9237 10.0882 –
(.373) (0.669) (269.788) (6.637) –

McL 45.9249 48.3024 18.1192 195.4633 353.1435
(59.312) (63.047) (8.855) (123.217) (375.678)

TCWG 0.2022 3.3482 – −0.0001 0.3876
(0.217) (0.783) – (0.496) (0.069)

KwL 1.3863 0.545 60.4886 70.1112 –
(0.553) (0.942) (100.286) (110.438) –

L 2184.8817 6683.0742 – – –
(13139) (40191) – – –

The model selection is carried out using the AIC (Akaike information criterion), the BIC
(Bayesian information criterion), the CAIC (consistent Akaike information criteria) and the HQIC
(Hannan-Quinn information criterion). Note that the smaller the values of goodness-of-fit measures
better the fit of the data. These measures are defined as

AIC = −2ℓ(Θ̂)+2q

BIC = −2ℓ(Θ̂)+q log(n)

HQIC = −2ℓ(Θ̂)+2q log(log(n))

CAIC = −2ℓ(Θ̂)+
2qn

n−q−1

where ℓ(Θ̂) denotes the log-likelihood function evaluated at the maximum likelihood estimates,
q is the number of parameters, and n is the sample size. Here Θ denote the parameters. Table 3
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lists the numerical values of the −2ℓ(.), AIC, CAIC, HQIC and BIC. These numerical results are
obtained using the MATH-CAD PROGRAM.

Table 3. The statistics −2ℓ, AIC ,CAIC, HQIC and BIC for carbon fiber data set

Model Goodness-of-fit criteria
−2ℓ(.) AIC CAIC HQIC BIC

EWP 112.874 120.874 121.563 124.245 129.446
WP 121.790 127.790 128.197 130.319 134.219

KwL 115.028 123.028 123.717 126.399 131.600
TWL 119.688 129.688 130.741 133.903 140.404
WL 121.749 129.749 130.439 133.121 138.322

TCWG 126.895 134.895 135.585 138.267 143.468
McL 130.597 140.597 141.65 144.812 151.313
PIV 228.386 234.386 234.793 236.915 240.815
L 266.925 270.925 271.125 272.611 275.211

From Table 3 it is evident that the EWP model has the lowest values for the AIC, CAIC, HQIC
and BIC statistics among all fitted models. So, the EWP model could be chosen as the best fitted
model for the subject data. The plots comparing the EWP distribution with other competing dis-
tribution is given in figure 3. These plots indicate that the EWP distribution fits the subject data
well.
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Fig. 3. fitted pdf of EWP and other distribution for the carbon fiber data
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10. Conclusions

In this paper, We propose a new four-parameter model, called the exponentiated Weibull-Pareto
(EWP) distribution, which extends the Weibull- Pareto (WP) distribution introduced by Tahir et
al. [33]. An obvious reason for generalizing a standard distribution is the fact that the generalization
provides more flexibility to analyze real life data. We provide some of its mathematical properties.
We derive explicit expressions for moments, generating function, Rényi and q-entropies . We also
obtain the density function of the order statistics and their moments. We discuss maximum likeli-
hood estimation. The proposed distribution is applied to a real data set. The EWP provides a better
fit than several other nested and non-nested models. We hope that the proposed model will attract
wider application in areas such as engineering, survival and lifetime data, meteorology, hydrology,
economics and others.
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