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Abstract

This paper introduces shrinkage estimators for the parameter vector of a linear regression model with con-
ditionally heteroscedastic errors such as the class of generalized autoregressive conditional heteroscedastic
(GARCH) errors when some of the regression parameters are restricted to a subspace. We derive the asymp-
totic distributional biases and risks of the shrinkage estimators using a large sample theory. We show that if the
shrinkage dimension exceeds two, the relative efficiency of the shrinkage estimator is strictly greater than that
of the full model estimator. Furthermore, a Monte Carlo simulation study is conducted to examine the relative
performance of the shrinkage estimators with the full model estimator. Our large sample theory and simulation
study show that the shrinkage estimators dominate the full model estimator in the entire parameter space. We
illustrate the proposed method using a real data set from econometrics.
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1. Introduction

The linear regression model is a commonly used statistical tool for analysis of the relationship
between the response and predictor variables. Econometricians often wish to build regression mod-
els for macroeconomic data. For example, they may want to predict returns on a stock based on
interest rates, money supply, and the monthly treasury bill rate; these variables serve as proxies for
macroeconomic announcements. For a comprehensive review of regression models for the condi-
tional mean and conditional variance of equity returns, see [14] and, references therein. However,
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empirical studies of financial time series have shown that linear regression models involving eco-
nomic variables fail to be adequate because the residuals are rarely homoscedastic. In the presence
of heteroskedasticity, ordinary least squares estimates of the regression parameters will be unbiased,
but the standard errors and consequently the confidence intervals will be too narrow, giving a false
sense of precision. Taking this heteroskedasticity explicitly into account has a number of advan-
tages: First, the loss in asymptotic efficiency from neglected heteroskedasticity may be arbitrarily
large, which may lead to a lower power of statistical tests. Second, a correct specification of the
heteroskedasticity provides unbiased estimates of the variance.

Many financial series such as returns on stock prices and foreign exchange rates, exhibit lep-
tokurtosis and time-varying volatility (variance). These two features have been the subject of exten-
sive research ever since ( [29] and [7]) reported them. Autoregressive conditional heteroscedas-
tic (ARCH) models (see, [7]; [9]) and generalized autoregressive conditional heteroscedastic
(GARCH) models of [4], provide a convenient framework to study time-varying volatility in finan-
cial markets. An investigation of the literature reveals that despite growing attention in designing
various regression models with GARCH errors, to the best of our knowledge, no interest has been
shown in implementing the shrinkage estimation method for regression parameters. Recently, [13]
studied simultaneous model selection and parameter estimation using LASSO and Shrinkage meth-
ods for the partially linear models with random coefficient autoregressive errors. An extensive sur-
vey of the theory and applications of these regression models is given by [6], [18], and [30]. Other
surveys of GARCH(p, q) processes include [23], [21], [3], [19], [32] and [25], [34], and [22].
Introductory surveys include [12] and [11]. Intermediate and advanced textbooks that provide more
details are [36], [35], and [20]. Some research monographs on the theoretical properties of GARCH
models include [33], [17], [37]; see also nine chapters on GARCH modeling in [1].

The aim of this paper is to develop the James-Stein shrinkage estimation method for the linear
regression model with GARCH errors when some of the macroeconomic predictors may not be
active, i.e., not statistically significant for the response or when the prior information on inactive
predictors is available. One common problem in regression modeling occurs frequently in selecting
active predictors for the response, especially when a large number of predictors is under consider-
ation. If many inactive predictors are selected, the statistical model loses its predictive power, and
the results are difficult to interpret. The shrinkage method estimates the coefficients of active pre-
dictors by using the information contained in discarded inactive predictors. In this situation we can
partition the regression parameter vector βββ into two sub-vectors as βββ = (βββ ′

1,βββ
′
2)

′, where βββ 1 and
βββ 2 are assumed to have dimensions k1 × 1 and k2 × 1, respectively, such that k = k1 + k2. We are
interested in estimating the parameter sub-vector βββ 1 by incorporating the information of βββ 2 into
the estimation procedure. One may obtain more efficient estimators this way than the estimators
obtained when the prior information is ignored. We set the values of βββ 2 near some specified value
which, without loss of generality, a null vector, βββ 0

2 = 000.
The plan of the paper is as follows. We begin with the linear regression model with GARCH

errors in Section 2 and proceed to the estimation strategies. Section 3 describes the asymptotic dis-
tributional biases and risks of the shrinkage estimators where the corresponding proofs are given in
the Appendix. In Section 4, we use Monte Carlo simulations to evaluate the numerical performance
of the shrinkage estimators with respect to the full model estimator. Section 5 applies the procedure
to a real data example. Concluding remarks are given in Section 6.
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2. Model description and estimation strategies

In this section, the model arising from the motivating examples is discussed and several estimation
strategies for the regression parameters are outlined.

2.1. Linear Regression Model with GARCH(p,q) Errors

Consider a multiple linear regression model with GARCH errors. Let yt be the response, xxx′t =
(xt1,xt2, · · · ,xtk) be a k× 1 predictor vector, and εt be the GARCH(p,q) errors. The model for the
process yt is:

yt = xxx′tβββ + εt , t = 1,2, . . . ,n, (2.1)

where

εt = σtZt , (2.2)

σ2
t = α0 +

p

∑
i=1

αiε2
t−i +

q

∑
j=1

γ jσ2
t− j, (2.3)

Zt is an i.i.d random variable with continuous density such that Zt has mean zero and variance 1,
and βββ = (β1,β2, · · · ,βk)

′ is a k×1 vector of unknown regression coefficients.
Let ωωω ′ = (α0,α1, · · · ,αp,γ1, · · · ,γq) be the (1+ p+q)×1 vector of unknown variance param-

eters where α0 > 0, αi ≥ 0, γ j ≥ 0 for i = 1, . . . , p and j = 1, . . . ,q. Define θθθ = (βββ ′,ωωω ′)′ be the
(k + 1+ p+ q)× 1 vector of all unknown parameters with θθθ ∈ ΘΘΘ and ΘΘΘ is a compact subset of
Euclidean space. When q = 0, we obtain the class of ARCH models introduced by Engle (1982)
as an error term. A necessary and sufficient condition for εt to be covariance stationary with finite
variance is ∑p

i=1 αi +∑q
j=1 γ j < 1, see [4].

2.1.1. The Full and Reduced Model Estimators

Earlier literature on inference from GARCH models is based on the maximum likelihood estimation
(MLE) method. For example, [7] assumes conditional normality while [4] advocates the use of the
t-distribution. As the distribution of the innovation term is rarely known, Gaussian quasi-maximum
likelihood (QML) estimation is employed. The idea is to maximize the likelihood function written
under the assumption that Zt in ( 2.2) is Gaussian. The resulting estimators are known as QMLEs.
The assumption of normality for Zt turns out to be non-essential for the strong consistency and
asymptotic normality of the QMLE provided that the innovation has a finite fourth moment. This
result holds even if the true distribution is far from Gaussian, as shown by [23], [21], and [3].
Semiparametric estimation of the regression model with ARCH errors using estimating function
theory has been studied by [24]. Similarly, [16] studied estimation of the pure GARCH model using
the combined estimating function method. While no distributional assumptions are made about Zt ,

knowledge the conditional skewness and conditional kurtosis of the innovation process is required.
In this paper, we study shrinkage estimators and their asymptotic properties based on QMLE for
regression models with GARCH errors. The details are as follows and are based on discussions
in [15].

Let θθθ 0 = (β01, · · · ,β0k,α00,α01, · · · ,α0p,γ01, · · · ,γ0q)
′ be the unknown true parame-

ter value. Put sss′t = (1,ε2
t−1, · · · ,ε2

t−p,σ 2
t−1, · · · ,σ 2

t−q). Now conditioning on initial values
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ε2
0 , . . . ,ε2

1−p, σ̃2
0 , . . . , σ̃2

1−q, the natural logarithm of the quasi-likelihood function for the model (2.1)
apart from some constant is given by:

Ln(θ) =
1
n

n

∑
t=1

lt(θ)

lt(θ) = −1
2

log(σ̃ 2
t )−

1
2
(yt − xxx′tβββ )2

σ̃2
t

, (2.4)

where σ̃2
t is defined recursively, for t ≥ 1, by

σ̃2
t = α0 +

p

∑
i=1

αiε2
t−i +

q

∑
j=1

γ jσ̃2
t− j. (2.5)

[15] showed that while the sequence σ̃ 2
t is not stationary, it can be viewed as an approximation of

the strictly stationary solution of Equation (2.3) under the assumption that ∑q
j=1 γ j < 1.

The information matrix for the variance parameter ωωω is given by

Iωωωωωω =−1
n

n

∑
t=1

E
(

∂ 2lt
∂ωωω∂ωωω ′

)
=

1
2n

n

∑
t=1

(
1

σ4
t

∂σ 2
t

∂ωωω
∂σ 2

t

∂ωωω ′

)
,

where

∂σ 2
t

∂ωωω
= ssst +

q

∑
j=1

γ j
∂σ 2

t− j

∂ωωω
.

The information matrix corresponding to βββ is given by

Iββββββ = −1
n

n

∑
t=1

E
(

∂ 2lt
∂βββ∂βββ ′

)
=

1
n

n

∑
t=1

(
xxx′txxxt

σ 2
t
− 1

2
1

σ 4
t

∂σ 2
t

∂βββ
∂σ 2

t

∂βββ ′

)
,

where

∂σ 2
t

∂βββ
=−2

p

∑
i=1

αixt−iεt−i +
q

∑
j=1

γ j
∂σ 2

t− j

∂βββ
.

The elements of the off-diagonal block of the information matrix are zero. That is,

Iωωωβββ =−1
n

n

∑
t=1

E
(

∂ 2lt
∂ωωω∂βββ ′

)
= 0.

Thus, the variance-covariance matrix is the inverse of the information matrix

I =
[

Iωωωωωω 000
000 Iββββββ

]
.

A QMLE of θθθ is defined as the solution θ̂θθ n of

θ̂θθ n = argmax
θθθ∈ΘΘΘ

Ln(θθθ).

The natural logarithm of the quasi-likelihood function is maximized using the numerical optimiza-
tion techniques for a given initial value of the parameter. Due to the asymptotic independence of
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βββ and ωωω , βββ may be estimated without loss of efficiency based on a consistent estimate of ωωω and
vice-versa. The successive conditional variances are computed using the GARCH recursion formula
from (2.5) with updated estimates α̂0, α̂i (i = 1,2, · · · , p), and γ̂ j ( j = 1,2, · · · ,q). The regression
parameter βββ is estimated using generalized least squares where σ̃ 2

t forms the diagonal entries of the
weighting matrix. This iterative procedure is repeated until there is no change in β̂ββ . The resulting
QML estimator is denoted by β̂ββ

FE
, as the full model estimator (FE).

Let A(L) = ∑p
i=1 αiLi and B(L) = 1−∑q

j=1 γ jL j be the characteristic polynomials, where L is the
backshift operator with A(L) = 0 if p = 0 and B(L) = 1 if q = 0. In addition, let γ(AAA000) be the the top
Lyapunov exponent of the sequence (A0t), where (A0t) is a matrix defined on p.86 of Andersen et
al. (2009) used in deriving the stationarity of the GARCH process. The following assumptions (see
[3], [33] and [15]) are needed to ensure the consistency and asymptotic normality of the estimator
β̂ββ :
A1: θθθ 0 ∈ ΘΘΘ and ΘΘΘ is a compact subspace of the Euclidean space
A2: γ(AAA0)< 0 and ∀ θθθ ∈ ΘΘΘ, ∑q

j=1 γ j < 1.
A3: Z2

t has a non-degenerate distribution with E(Zt) = 0 and E(Z2
t ) = 1.

A4: if q > 0, A(L) and B(L) have no common roots, A(1) ̸= 0, and α0p + γ0q ̸= 0.
A5: E(Z4

t )< ∞.

A6: The information matrix E
(
− ∂ 2lt

∂θθθ∂θθθ ′

)
is finite and positive definite.

Under the above assumptions, the full model estimator β̂ββ
FE

is consistent and asymptotically
normally distributed with mean βββ and the variance-covariance matrix III0(β̂ββ ) = limn→∞ IIIββββββ/n and it
is constructed from an estimate of the information matrix used in the last step of the optimization
algorithm. The matrix III0(β̂ββ ) with β̂ββ = (β̂ββ

′
1, β̂ββ

′
2)

′ can be partitioned as(
III11 III12

III21 III22

)
,

The reduced model estimator (RE), β̂ββ
RE

of βββ can be obtained by maximizing the log-likelihood
function (2.4) subject to the restriction βββ 2 = 000. If the restriction is true, the RE is expected to per-
form better than the FE, otherwise the RE tends to be biased, inefficient, and even inconsistent.

Remark. Under assumptions A1-A6, the error process (εt) will be strictly stationary. Applied time
series analysts view strict stationarity as restrictive and focus their attention on covariance stationary
series. However, second-order stationarity requires up to the fourth moment of the error term (and
hence yt) to be finite; this requirement is viewed as questionable for financial series.

2.2. Shrinkage and Positive Shrinkage Estimators

The shrinkage estimator which combines the full and reduced model estimators, can be defined as

β̂ββ
SE

= β̂ββ
RE

+
(
1−νD̂−1

n
)
(β̂ββ

FE
− β̂ββ

RE
), ν = k2 −2 and ν ≥ 1,

where D̂n is defined below. In other words, the shrinkage estimator β̂ββ
SE

is the linear combination
(1−λ )β̂ββ

FE
+λβ̂ββ

RE
of a full model estimator β̂ββ

FE
and a reduced model estimator β̂ββ

RE
. The param-

eter λ determines the extent to which these estimates are pooled together. If λ = 1 then the reduced
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model estimator dominates completely, whereas for λ = 0 no shrinkage occurs. The test statistic Dn

is defined as

Dn = 2[l(β̂ββ
FE

;yyy1,yyy2, · · · ,yyyn)− l(β̂ββ
RE

;yyy1,yyy2, · · · ,yyyn)],

= nβ̂ββ
′
2III22.1β̂ββ 2.

where III22.1 = III22 − III21III−1
11 III12. If III(βββ ) is replaced by a consistent estimator III(β̂ββ ), then

D̂n = nβ̂ββ
⊤
2 ÎII22.1β̂ββ 2 +oP(1),

which is asymptotically χ2-distributed with k2 degrees of freedom n → ∞ when the null hypothesis
H0 : βββ 2 = 000 is true.

The difficulties with the shrinkage estimator is that it is not a convex combination of full and
reduced model estimators, and it has the tendency to over-shrink the full model estimator and reverse
the sign. This can occur when the test statistic D̂n is less than ν . To moderate this effect, it is better
to define a truncated estimator called a positive-part shrinkage estimator (PSE). This estimator is
defined as

β̂ββ
PSE

= β̂ββ
RE

+
(
1−νD̂−1

n
)+

(β̂ββ
FE

− β̂ββ
RE
),

where z+ = max(0,z).

3. Asymptotic Results

3.1. Asymptotic Distributional Results: Bias

In this subsection we present the asymptotic distributions of the estimators and the necessary test
statistics. This will facilitate the derivation of the asymptotic distributional bias (ADB) and, later,
the asymptotic distributional risk (ADR) of the estimators of βββ .

Under nonlocal (fixed) alternatives, all the estimators are asymptotically equivalent to β̂ββ
FE

,
while β̂ββ

RE
has unbounded risk. To obtain the non-degenerate asymptotic distribution and the mean-

ingful bias and risk comparisons among these estimators we consider the local Pitman alternatives,
we consider a sequence of local alternatives,

K(n) : βββ 2 =
δδδ√
n
, (3.1)

Note that δδδ = 000 implies βββ 2 = 000. So (3.1) is a special case of K(n). Under local K(n), the following
theorem facilitates the derivation and numerical computation of the ADB and the ADR of the esti-
mators outlined below:

Theorem 3.1.1. Under the local alternatives K(n) in (3.1) and the usual regularity conditions,

(1)
√

nβ̂ββ 2
L−→ N(δδδ , III22.1) as n → ∞

(2) As n → ∞, the distribution of D̂n converge to a non-central chi-squared distribution
Hk2(x;∆) with k2 degrees of freedom and non-centrality parameter ∆ = δδδ ′III22.1δδδ , III22.1 =

III22 − III21III−1
11 III12 is a positive definite matrix, and Hk2(x;∆) = P

(
χ2

k2
(∆)≤ x

)
, x ∈ R+.
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The outline of a proof is available in [31], Chapter 1.
The shrinkage estimators are, in general, biased estimators, although bias is accompanied by

reduction in variance. We define ADB of an estimator βββ ∗ as

ADB(βββ ∗) = E
[

lim
n→∞

√
n(βββ ∗−βββ )

]
,

where βββ ∗ be a generic notation for any of β̂ββ
FE

, β̂ββ
RE

, β̂ββ
SE

or β̂ββ
PSE

.

Theorem 3.1.2. Using the above definition of ADB and Theorem 3.1.1, under the local alternatives
K(n) in (3.1), and the usual regularity conditions, as n → ∞,

ADB(β̂ββ
PSE

) = ADB(β̂ββ
SE
)− III−1

11 III12δδδ [Hν+4(ν ,∆)−νE (Z1I(νZ1 > 1))] ,

where Z1 = χ−2
k2+2(∆), ADB(β̂ββ

SE
) = −νIII−1

11 III12δδδE(Z1), ADB(β̂ββ
RE
) = −III−1

11 III12δδδ , and Hg(x;∆) =
P
(
χ2

g (∆)≤ x
)
, x ∈ R+ is the cumulative distribution function of a non-central chi-square with g

degrees of freedom and non-centrality parameter ∆, and

E
(
χ−2 j

g (∆)
)
=

∫ ∞

0
x−2 jdHg(x;∆).

Proof. See the Appendix.

The constant term δδδ is common to the ADBs of β̂ββ
RE

, β̂ββ
SE

, and β̂ββ
PSE

and the ADBs differ only
by a constant factor ∆ only. It then, suffices to compare ∆ only. It is clear that the ADB of the β̂ββ

RE
is

an unbounded function of ∆. On the other hand, the ADBs of both β̂ββ
SE

and β̂ββ
PSE

are bounded in ∆.

Since E(χ−2
k2+2(∆)) is a decreasing function of ∆, the ADB of β̂ββ

SE
starts from the origin, increases

to a maximum, and then decreases towards 0 as ∆ > 0. The characteristics of β̂ββ
PSE

are similar to

that of β̂ββ
SE

.

3.2. Asymptotic Distributional Results: Risk

To derive expressions for the ADRs of the estimators, we define a quadratic loss function

L (βββ ∗;WWW ) =
[√

n(βββ ∗−βββ )
]′WWW [√

n(βββ ∗−βββ )
]
,

where WWW is a positive semidefinite weight matrix. If we choose WWW = III, the identity matrix, this is
the usual quadratic loss. Using a general WWW gives a loss function that weights different βββ ’s differ-
ently. We will use this identity matrix in the simulation study. One may select a weight matrix with
different arbitrary entries on its main diagonal but in this situation, shrinkage estimators are not
guaranteed to outperform the full model estimators. As an example, see the discussion in [27]. The
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expected loss function is defined as

E[L (βββ ∗;WWW )]≡ ADR(βββ ∗,βββ ;WWW )≡ ADR(βββ ∗,βββ )

which is called the risk function. The risk function can be rewritten as

ADR(βββ ∗,βββ ;WWW ) = nE{(βββ ∗−βββ )WWW (βββ ∗−βββ )′}
= ntrace[WWWE{(βββ ∗−βββ )(βββ ∗−βββ )′}]
= trace(WWWΓΓΓ), (3.2)

where ΓΓΓ is the asymptotic covariance matrix of βββ ∗.
Under the sequence of local alternatives, we define the asymptotic distribution function of an

estimator βββ ∗ as

G(yyy) = lim
n→∞

P
[√

n(βββ ∗−βββ )≤ yyy|K(n)
]
,

where G(yyy) is nondegenerate distribution function for the estimators we consider. We define the
asymptotic distributional quadratic risk (ADR) by

ADR(βββ ∗;WWW ) =
∫

· · ·
∫

yyy′WWWyyydG(yyy)

= trace(WWWΓΓΓ),

where ΓΓΓ =
∫
· · ·

∫
yyyyyy′dG(yyy) is the dispersion matrix for the distribution G(yyy).

An estimator βββ ∗ is then said to dominate an estimator βββ 0 asymptotically if ADR(βββ ∗;βββ ) ≤
ADR(βββ 0;βββ ). If, in addition, ADR(βββ ∗;βββ ) < ADR(βββ 0;βββ ) for at least some (βββ ,WWW ), then βββ ∗ strictly
dominates βββ 0.

Theorem 3.1.3. Under the local alternatives K(n) in (3.1) and the usual regularity conditions, as
n → ∞, we obtain the ADR functions of the proposed estimators by virtue of the following theorem:

ADR(β̂ββ
PSE

;WWW ) = ADR(β̂ββ
SE

;WWW )− trace(WWWBBB)E
[
(1−νZ1)

2I(νZ1 > 1)
]

− γγγ ′WWWγγγE
[
(1−νZ2)

2I(νZ2 > 1)
]

+ 2γγγ ′WWWγγγE [(1−νZ1)I(νZ1 > 1)] , where

ADR(β̂ββ
SE

;WWW ) = ADR(β̂ββ
FE

;WWW )−2ν trace(WWWBBB)[2∆E(Z2
2)+E(Z1)]

+ ν(ν +4)γγγ ′WWWγγγE(Z2
2),

Z2 = χ−2
k2+4(∆), ADR(β̂ββ

RE
;WWW ) = ADR(β̂ββ

FE
;WWW ) − trace(WWWΦΦΦ) + γγγ ′WWWγγγ , ADR(β̂ββ

FE
;WWW ) =

trace[WWWIII−1
11.2], γγγ = III−1

11 III12δδδ , ΦΦΦ = III−1
11.2 − III−1

11 III12III−1
22.1III21III−1

11 , III11.2 = III11 − III12III−1
22 III21, and BBB =

III−1
11 III12III−1

22.1III21III−1
11 .

Proof. See the Appendix.

4. Simulation Results

In this section we have carried out a Monte Carlo simulation study to assess the relative performance
of the proposed estimators with respect to the full model estimator. We generated response from the
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following regression model with GARCH (1,1) errors:

yt = xxx′tβββ + εt , (4.1)

where

εt = σtZt

σ2
t = α0 +α1ε2

t−1 + γ1σ 2
t−1,

with t = 1,2, · · · ,n where n = 600 700, and 800, and Zt are i.i.d standard normal errors. The predic-
tor values xxx′t = (xt1,xt2, · · · ,xtk) have been drawn from a multivariate standard normal distribution.

We partition the regression coefficients as βββ = (βββ ′
1,βββ

′
2)

′, where the coefficients βββ 1 and βββ 2 are
k1 ×1 and k2 ×1 vectors, respectively with k = k1 + k2. Then the linear model (4.1) can be written
as

yt = XXX111′tβββ 1 +XXX222′tβββ 2 + εt ,

where XXX111 and XXX222 are k1 × n and k2 × n dimensional partitioned design matrices, respectively. In
this model, our objective is to construct a test for the hypothesis

H0 : βββ 2 = 000 versus Ha : βββ 222 ̸= 000.

We set the true values of βββ at βββ = (βββ ′
1,βββ

′
2)

′ = (βββ ′
1,000)

′ with βββ 1 = (1.6,2.2,−1.2) and the weight
matrix WWW = III. We also set the true value of GARCH parameters α0 = 0.002, α1 = 0.2, and γ1 = 0.7.
We define the parameter

∆ = ||βββ −βββ (0)||2,

where βββ (0) =(βββ ′
1,000

′)′, βββ 1 is the true parameter in the model and || · || is the Euclidian norm. Samples
were generated using ∆ between 0 and 1. We provide detailed results for (k1,k2) = (3,3), (3,6),
(3,12), (3,17), (3,20), and (3,25). The number of replications in the simulation was varied initially
but it was determined that 1,000 was adequate for each combination of parameters because a further
increase in the number did not change the results significantly.

The objective here is to investigate the behavior of the estimators for ∆ ≥ 0. In order to do this,
further samples are generated from the standard normal distribution (i.e. for different ∆ between
0 and 1). Different values of βββ 2 are chosen to obtain the different values of ∆. The criterion for
comparing the performance of any estimator βββ ∗ is based on the mean squared error (MSE). Based on
the simulated data, we calculated the MSE of all the estimators studied in this paper. We consider the
full model estimator β̂ββ

FE
as the “benchmark” estimator, and thus the performance of the estimators

is evaluated in terms of the MSE relative to the MSE of β̂ββ
FE

. For any estimator β̂ββ
∗
, the simulated

relative MSE (RelMSE) of β̂ββ
∗

to β̂ββ
FE

is defined by

RelMSE(β̂ββ
FE

: β̂ββ
∗
) =

Simulated MSE(β̂ββ
FE

)

Simulated MSE(β̂ββ
∗
)
.

Keep in mind that RelMSE greater than 1 indicates the degree of superiority of β̂ββ
∗

over β̂ββ
FE

.
The simulation results are presented in Figures 1, 2, & 3 (∆ ≥ 0) and Table 1 (∆ = 0) when the

active set of parameters βββ 1 = (1.6,2.2,−1.2) and inactive set of parameters βββ 2 = (β3,mmm), where
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Table 1. Simulated relative MSE of RE, SE, and PSE with respect to FE when the restricted parameter space is correct
(∆ = 0) for n = 600 700, and 700.

n = 600
Estimators k2 = 3 k2 = 6 k2 = 12 k2 = 17 k2 = 20 k2 = 25

RE 2.07 3.54 5.10 7.10 7.90 8.98
SE 1.26 2.10 2.95 4.23 4.99 5.65

PSE 1.28 2.33 3.58 4.95 5.38 7.62
n = 700

RE 1.93 2.98 4.79 6.69 7.72 8.90
SE 1.21 1.86 2.86 4.22 4.86 5.46

PSE 1.27 2.05 3.51 4.83 5.32 7.27
n = 800

RE 1.88 2.92 4.78 6.68 7.70 8.73
SE 1.18 1.76 2.83 4.02 4.73 5.32

PSE 1.25 2.03 3.31 4.78 5.25 6.46

β3 =
√

∆=0, 0.07, 0.10, 0.20, 0.32, 0.55, 0.71, and 1.00 and mmm is a zero vector with varying dimen-
sions, are presented in Figures 1 and 2 and Table 1. Note that there are m = k2−1 inactive variables
and that ∆ = β 2

3 . We summarize our findings as follows:

(i) The reduced model estimator β̂ββ
RE

dominates all the estimators at and near ∆ = 0. That is,
if a reduced model is nearly correctly specified, then the RE is the optimal one. For large
values of ∆, the RelMSE of β̂ββ

RE
decreases sharply, crosses the benchmark line at a certain

level of ∆, and converges to zero as ∆ → ∞ whereas the RelMSE of all the other estimators
remains bounded and approaches 1.

ii) Keeping n and ∆ fixed, the RelMSE of the shrinkage estimator is a monotone increasing
function of the number of inactive variables m. For m = 16, the RelMSE of the PSE can
be as large as 4.95 (Table 1). This indicats a remarkable performance of PSE over FE. The
figures also reveal that for small values of ∆, the positive shrinkage estimator offers a large
improvement in RelMSE as the number m of inactive predictors is increased. Comparing
the SE and the PSE shows that the PSE has a higher RelMSE than the SE, which shows the
better performance of the PSE over the SE. Finally, our simulation finding is in agreement
with the asymptotic results of Section 3.

5. Real data example

In this section, we apply the shrinkage estimation procedure to the [26] data set. The data consist of
14 macroeconomic variables sampled at an annual frequency. The sample varies for each series with
a starting date between 1860 and 1909. However, each series ends in 1988. Data are available as a
part of R’s tseries package ( [28]). As two of the time series start from 1909, only the data from 1909
until the end of the series in 1988 will be used. The sample size is n = 80. The response variable is
the log returns of stock prices as the price process is not weakly stationary. The predictor variables

Published by Atlantis Press
Copyright: the authors

414



Shrinkage Estimation of Linear Regression with GARCH Errors

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

2
.0

 a. m = 3

∆

R
e

lM
S

E

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

 b. m = 5

∆

R
e

lM
S

E

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

 c. m = 11

∆

R
e

lM
S

E

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

 d. m = 16

∆

R
e

lM
S

E

Unrestricted
Restricted
Shrinkage
Positive Shrinkage

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
 e. m = 19

∆

R
e

lM
S

E

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

 f. k = 24, category = 3

∆

R
e

lM
S

E

Fig. 1. Simulated relative efficiency with respect to β̂ββ
FE

of the estimators when the subspace misspecifies β3 as zero as
a function of ∆ = β 2

3 . Here m = k2 −1 which is the number of inactive predictors and n = 600.

are real GNP (x1), real per capita GNP (x2), GNP deflator (x3), money stock (x4), real wages (x5),
industrial production index (x6), bond yield (x7), consumer price index (x8), total employment (x9),
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Fig. 2. Simulated relative efficiency with respect to β̂ββ
FE

of the estimators when the subspace misspecifies β3 as zero as
a function of ∆ = β 2

3 . Here m = k2 −1 which is the number of inactive predictors and n = 700.

nominal GNP (x10), velocity of money (x11), nominal wages (x12), and total unemployment rate
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Fig. 3. Simulated relative efficiency with respect to β̂ββ
FE

of the estimators when the subspace misspecifies β3 as zero as
a function of ∆ = β 2

3 . Here m = k2 −1 which is the number of inactive predictors and n = 800.

(x13). We use the first difference of all predictors, where x6 and x8 being log-transformed before
differencing in order, to stabilize the predictor variances.
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Fig. 4. ACF and PACF plots of OLS residuals for Nelson-Plosser data

We begin our analysis of the data with the ordinary least squares (OLS) method. The residuals
from the OLS fit are uncorrelated according to the sample autocorrelation (ACF) and partial ACF
(PACF) plots, see Figure 3(a, c). However, the sample ACF of squared residuals (see Figure 3(b))
shows that they are correlated having a significant spike at lag 1. This motivates us to fit a regression
model with GARCH(1,1) errors.

In order to form a restricted subspace of the total number of predictors, we used AIC or BIC
criterion in the first step of the shrinkage method. It shows that x1, x2, x3, x4, and x5 are the active
predictors, and the effects of the remaining six predictors may be ignored. We then form a constraint
on the full model by using the inactive predictors. Here is the restricted subspace, βββ 2= (β6, β7, β8,
β9, β10, β11, β12, β13)

′ = (0,0,0,0,0,0,0,0), k = 13, k1 = 5, and k2 = 8.
We bootstrap from the data to examine the performance of the suggested estimators for estimat-

ing coefficients of the five active predictors. We draw bootstrap samples of size n = 75 by 10000
times with replacement from the data matrix (yt ,xxxt) to examine the point estimates, standard errors,
and relative mean squared errors of the estimators. These results are reported in Table 2. Our numer-
ical result reveals that the reduced and shrinkage estimators are superior to the full model estimator,
which is in agreement with our theoretical and simulation results. As expected, the reduced model
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Table 2. Estimate (first row) and standard error (second row) for real GNP (β1), real per capita GNP (β2), GNP deflator
(β3), money stock (β4), real wages (β5) on the log returns of stock prices. The RelMSE column gives the relative MSE
based on bootstrap simulation of the estimators with respect to FE.

Estimators β1 β2 β3 β4 β5 RelMSE
FE 3.460 -2.876 -0.026 0.475 -1.072 1.0000

2.233 1.455 0.012 0.093 0.045
RE 3.368 -2.819 -0.251 0.364 -0.390 2.821

1.446 1.383 0.008 0.027 0.023
SE 3.455 -2.875 -0.049 0.462 -0.972 1.225

2.041 1.373 0.010 0.086 0.037
PSE 3.452 -2.871 -0.052 0.461 -0.971 1.225

2.037 1.372 0.010 0.086 0.036

estimator performs better than all the other estimators as the data is generated from an empirical
distribution where the subset of predictors is nearly true.

6. Conclusion

We compared the performance of the reduced, shrinkage, and positive estimators with respect to
the full model estimator in the context of a linear regression model with GARCH errors when some
of the regression parameters lie in a subspace. We explored the risk properties of the shrinkage
estimators via asymptotic distributional risk and a Monte Carlo experiment. We conclude that the
risk improvement of the reduced model estimator over other estimators is substantial at and near
the restriction βββ 2 = 000. However, the improvement starts diminishing as the restriction moves away
from the restriction βββ 2 = 000. Furthermore, the shrinkage estimators with data based weights perform
well if the restriction is true. In fact, the shrinkage estimators outperform the full model estimator
β̂ββ

FE
in the entire parameter space for ν ≥ 1. Finally, a real data example and a simulation study

support the idea that the proposed estimators are superior to the full model estimator.
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Appendix A. Appendices

The following Lemma will help us to derive the results of Theorems 3.1.2 and 3.1.3.

Lemma 1. Let zzz be a k2 vector that follows normal distribution with mean µµµk2
vector and covari-

ance matrix ΣΣΣk2 as zzz ∼ Nk2(µµµk2
,ΣΣΣk2). Then, for any ϕ Borel measurable and real-valued integrable

function, we have

E[zzzϕ(zzz′zzz)] = µµµk2
E[ϕ

(
χ2

k2+2(∆)
)
]

E[zzzzzz′ϕ(zzz′zzz)] = ΣΣΣk2E[ϕ
(
χ2

k2+2(∆)
)
]+µµµk2

µµµ ′
k2

E[ϕ
(
χ2

k2+4(∆)
)
],

where ∆ = µµµ ′
k2

ΣΣΣ−1
k2

µµµk2
. The proof can be found in [2].

Proof of Theorems 3.1.2 and 3.1.3
To prove the theorems, we use βββ = (βββ ′

1,000)
′. Under the local alternative K(n) and the assumed regu-

larity conditions, we have as n → ∞

ηηη1 = lim
n→∞

√
n(β̂ββ

FE
−βββ ) L−→ N(000, III−1

11.2)

ηηη2 = lim
n→∞

√
n(β̂ββ

FE
− β̂ββ

RE
)

L−→ N(γγγ ,BBB)

ηηη3 = lim
n→∞

√
n(β̂ββ

RE
−βββ ) L−→ N(−γγγ,ΦΦΦ)

where γγγ = III−1
11 III12δδδ , BBB = III−1

11 III12III−1
11.2III21III−1

11 , ΦΦΦ = III−1
22.1 − III−1

11 III12III−1
22.1III21III−1

11

Proof of Theorem 3.1.2. Here, we provide the proof of the bias expressions. It is obvious that
ADB(β̂ββ

FE
) = 0. The ADB of the reduced, shrinkage, and positive shrinkage estimators are as fol-

lows:

ADB(β̂ββ
RE
) = E

[
lim
n→∞

√
n(β̂ββ

RE
−βββ )

]
= E

[
lim
n→∞

n(β̂ββ
FE

−βββ − III−1
11 III12δδδ/

√
n)
]
=−III−1

11 III12δδδ =−γγγ .

ADB(β̂ββ
SE
) = E

[
lim
n→∞

√
n(β̂ββ

SE
−βββ )

]
= E

[
lim
n→∞

(√
n(β̂ββ

FE
−βββ )− (β̂ββ

FE
− β̂ββ

RE
)νD̂−1

n

)]
=−νIII−1

11 III12δδδE(Z1), by Lemma 1.
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ADB(β̂ββ
PSE

) = E
[

lim
n→∞

√
n(β̂ββ

PSE
−βββ )

]
= E

[
lim
n→∞

√
n(β̂ββ

SE
−βββ )− lim

n→∞

√
n(β̂ββ

FE
− β̂ββ

RE
)(1−νD̂−1

n )I(D̂n < ν)
]

= ABD(β̂ββ
SE
)−E

[
ηηη2(1−νD̂−1

n )I(D̂n < ν)
]

= ABD(β̂ββ
SE
)− γγγE [(1−νZ1)I(νZ1 > 1)] , by Lemma 1

= ABD(β̂ββ
SE
)− γγγ [Hν+4(ν ,∆)−νE (Z1I(Z1 > 1))] ,

where γγγ = III−1
11 III12δδδ , ν = k2 −2, and Z1 = χ−2

k2+2(∆).

Proof of Theorem 3.1.3. In order to prove this theorem, we first derive the asymptotic covariance
matrices for the four estimators. The covariance matrix ΓΓΓ(β̂ββ

∗
) of any estimator βββ ∗ is defined as:

ΓΓΓ(βββ ∗) = E
[

lim
n→∞

n(βββ ∗−βββ )(βββ ∗−βββ )
]
.

First, we derive the covariance matrices of FE and RE:

ΓΓΓ(β̂ββ
FE

) = E
[

lim
n→∞

√
n(β̂ββ

FE
−βββ )

√
n(β̂ββ

FE
−βββ )′

]
= E(ηηη1ηηη ′

1) =Var(ηηη1)+E(ηηη1)E(ηηη ′
1) =Var(ηηη1) = III−1

11.2.

ΓΓΓ(β̂ββ
RE
) = E

[
lim
n→∞

√
n(β̂ββ

RE
−βββ )

√
n(β̂ββ

RE
−βββ )′

]
= E(ηηη3ηηη ′

3) =Var(ηηη3)+E(ηηη3)E(ηηη ′
3) = ΦΦΦ+ γγγγγγ ′.

Second, we derive the covariance matrices of the shrinkage estimators:

ΓΓΓ(β̂ββ
SE
) = E

[
lim
n→∞

√
n(β̂ββ

SE
−βββ )

√
n(β̂ββ

SE
−βββ )′

]
= E

[
lim
n→∞

√
n
(

β̂ββ
FE

−βββ +νD̂−1
n (β̂ββ

FE
− β̂ββ

RE
)
)

√
n
(

β̂ββ
FE

−βββ +νD̂−1
n (β̂ββ

FE
− β̂ββ

RE
)
)′
]

= E
[

lim
n→∞

(β̂ββ
FE

−βββ )(β̂ββ
FE

−βββ )′−2νD̂−1
n (β̂ββ

FE
− β̂ββ

RE
)(β̂ββ

FE
−βββ )′

+ ν2D̂−2
n (β̂ββ

FE
− β̂ββ

RE
)(β̂ββ

FE
− β̂ββ

RE
)′
]

= E
[
ηηη1ηηη ′

1 −2νD̂−1
n ηηη2ηηη ′

1 +ν2D̂−2
n ηηη2ηηη ′

2
]
.

Using the conditional mean of bivariate normal, the second term of ΓΓΓ(β̂ββ
SE
) without −2ν is equal to

E
[
ηηη2ηηη ′

1
]
= E

[
E
(
ηηη2ηηη ′

1D̂−1
n |ηηη2

)]
= E

[
ηηη2E

(
ηηη ′

1D̂−1
n |ηηη2

)]
= E

[
ηηη2 (E(ηηη1)+(ηηη2 −δδδ ))′ D̂−1

n
]

= E
[
ηηη2(ηηη2 −δδδ )′D̂−1

n
]
= E

[
ηηη2ηηη ′

2D̂−1
n
]
−E

[
ηηη2δδδ ′D̂−1

n
]

= Var(ηηη2)E(Z1)+E(ηηη2)E(ηηη2)
′E(Z2)−E(ηηη2)δδδE(Z1), by Lemma 1

= BBBE(Z1)+ γγγγγγ ′E(Z2)− γγγγγγ ′E(Z1)
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where Z2 = χ−2
k2+4(∆). Therefore,

ΓΓΓ(β̂ββ
SE
) = III−1

11.2 −2ν [BBBE(Z1)+ γγγγγγ ′E(Z2)− γγγγγγ ′E(Z1)]

+ ν2[BBBE(Z2
1)+ γγγγγγ ′E(Z2

2)]

= III−1
11.2 +νBBB[νE(Z2

1)−2E(Z1)]+νγγγγγγ ′[νE(Z2
2)+2E(Z1)−2(Z2)]

= ΓΓΓ(β̂ββ
FE

)−νBBB[2∆E(Z2
2)+E(Z1)]+ν(ν +4)γγγγγγ ′E(Z2

2).

Again, ΓΓΓ(β̂ββ
PSE

) = E
[

lim
n→∞

√
n(β̂ββ

PSE
−βββ )

√
n(β̂ββ

PSE
−βββ )′

]
= ΓΓΓ(β̂ββ

SE
)−2E

[
lim
n→∞

n
(
(β̂ββ

FE
− β̂ββ

RE
)(β̂ββ

RE
−βββ )′(1−νD̂−1

n )I(D̂n < ν)
)]

+ E
[

lim
n→∞

n(β̂ββ
FE

− β̂ββ
RE
)(β̂ββ

FE
− β̂ββ

RE
)′(1−νD̂−1

n )2I(D̂n < ν)
]

= ΓΓΓ(β̂ββ
SE
)−2E

[
ηηη2ηηη ′

3(1−νD̂−1
n )I(D̂n < ν)

]
− E

[
ηηη2ηηη ′

2(1−νD̂−1
n )2I(D̂n < ν)

]
.

Consider the second term without −2 and use the rule of conditional expectation

E
[
ηηη2ηηη ′

3(1−νD̂−1
n )I(D̂n < ν)

]
= E

[
ηηη2E

(
ηηη ′

3(1−νD̂−1
n )I(D̂n < ν)|ηηη2

)]
= E

[
ηηη2(−γγγ ′+000×ΦΦΦ(ηηη2 − γγγ)′)(1−νD̂−1

n )I(D̂n < ν)
]

= −E
[
ηηη2γγγ ′(1−νD̂−1

n )I(D̂n < ν)
]

= −γγγγγγ ′E [(1−νZ1)I(νZ1 > 1)] , by Lemma 1.

Therefore,

ΓΓΓ(β̂ββ
PSE

) = ΓΓΓ(β̂ββ
SE
)+2γγγγγγ ′E [(1−νZ1)I(νZ1 > 1)]

− BBB E
[
(1−νZ1)

2I(νZ1 > 1)
]
− γγγγγγ ′E

[
(1−νZ2)

2I(νZ2 > 1)
]
.

The proof of Theorem 3.1.3 now follows using (3.2) and the above covariance matrices.
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