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Abstract. The catastrophic/benign flutter boundary character evaluation and its control are carried 

out for 2-DOF lifting surfaces. Catastrophic/benign implies that the Limit Cycle Oscillation (LCO) is 

either unstable or stable. Within this work: (1) Quasi-Steady (QS) theory and Computational Fluid 

Dynamics (CFD) for subsonic flow calculations are implemented, (2) Flutter motion equations of a 

two-dimensional airfoil section with cubic nonlinear stiffness in the pitching direction are established, 

(3) Uncoupled bending and torsion frequencies of the selected aerodynamic surface are computed 

using recently developed Transfer Matrix Method of Multibody Systems (MSTMM), and (4) 

Lyapunov’s First Quantity (LFQ) is computed to study the bifurcation behavior of the aeroelastic 

system in the vicinity of the flutter boundary. The main objective of this study is to implement a 

control capability enabling one to control both the flutter boundary and its character as to safely 

expand the operational envelop of the aerospace vehicle without failure.  

1. Introduction 

One of the major challenges facing aeronautical and 

space vehicles designers today is that of aeroelasticity as 

shown in Fig. 1. Complex interactions between dynamics, 

solid mechanics, and aerodynamic forces can create 

problems if not well understood and analyzed. Aerospace 

vehicles structural fatigue, passenger discomfort, decreased 

performance, and even catastrophic failure can result. 

Today’s aerospace vehicles, specifically aircraft, however, 

are expected to push the physical limits in terms of speed, 

altitude, maneuverability, endurance, range, and cost [1]. 

Designers are turning to lightweight materials for use with 

high-powered engines to reduce weight in order to carry 

more fuel and payload. These lightweight materials exhibit more flexibility than conventional 

aircraft/missiles materials which when used at higher speeds and altitudes pose possible aeroelastic 

concerns. Aeroelasticity can be broken into two main categories: static and dynamic. Cases in which 

the inertial forces play a negligible role are referred to as static. Dynamic aeroelasticity involves 

influential inertial forces and the associated instabilities are referred to as flutter. Flutter is a dynamic 

instability phenomenon resulting from the interaction between an elastic structure and the flow 

around the structure. Depending on the nature of the flutter boundary, i.e. catastrophic or benign, if 

the vehicle reaches the flutter speed it can feature a catastrophic failure (unstable limit cycle 

Figure 1.  The aeroelastic traingle of 

forces 
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oscillations (LCO)) or can survive (stable LCO), respectively. In the latter case, the failure will not 

occur catastrophically, but by fatigue [2]. Therefore, a better understanding of all the factors 

contributing to the occurrence of flutter and the character of the flutter instability are highly 

recommended. In addition, the possibility of controlling this issue is important. The goal of the 

control is to expand the flight envelope without weight penalties by increasing the flutter speed and to 

convert the catastrophic flutter into benign one [3]. The principle of catastrophic and benign types of 

flutter can be found in the different literature under different terminologies that depend on the 

particular approach of the problem itself. In this study, the determination of the catastrophic/benign 

character of the flutter boundary and its control is carried out via determination of the sign of the 

Lyapunov First Quantity (LFQ) [4], for the flutter boundary that corresponds to the purely imaginary 

roots of the characteristic equation.  

Multibody system dynamics (MSD) has become an important theoretical tool for wide 

engineering problems analysis. Several MSD methods have been studied both theoretically and 

computationally. Rui and colleagues [5-9] transferred the concept of State Vectors (SVs) into the 

classical transfer matrix method, and built up a new multibody dynamics method called Transfer 

Matrix Method of Linear Multibody Systems (MSTMM). It is a new efficient method where the 

overall transfer equations (TE) of the system are used in the transfer matrix method instead of the 

global dynamics equations of the system which is used in traditional dynamics method such as Finite 

Element Method (FEM).  

The focus of this paper is to investigate the aeroelastic behavior of a two-dimensional 

aerodynamic surface (for airplane wings such as vertical and horizontal stabilizers (Fig. 2(a)) and for 

missile such as flight control surfaces (Fig. 2(b)). 

Quasi-steady (QS) theory and Computational Fluid 

Dynamics (CFD) are used for aerodynamic modeling. 

A two-degrees-of-freedom (2-DOF) airfoil section 

with cubic nonlinear stiffness in pitching direction is 

theoretically modeled. Uncoupled bending and 

torsion frequencies for the selected aerodynamic 

surface are computed using MSTMM. Lyapunov 

first quantity is used to the determination of the 

catastrophic/benign character of the flutter boundary.  

2. Aeroelastic Equations of Motion 

2.1 Structural model 

The aerodynamic surface of semi-span L in Fig. 3 (a) is modeled as a chordwise rigid (Section 

A-A in Fig. 3 (a)), and the two-degrees-of-freedom (2-DOF) airfoil model that accommodates motion 

in pitch ( , positive nose-up) and plunge ( h , positive down) immersed in a horizontal flow of 

undisturbed speed U 
is shown in Fig. 3 (b). The model is referred to in the literature as the typical 

section. Control surfaces are connected to the main body via torsionally less stiff shafts as sketched in 

Fig. 3 (c). For purposes of theoretical flutter prediction, inertia and geometric properties of a lifting 

surface/or control surface can be represented by a typical section with inertia and geometric properties 

of the surface at ¾ of the distance from the root of the wing [10]. The airfoil can pitch about an elastic 

axis which is defined as being perpendicular to the shear center of the airfoil. The structural stiffness 

in plunge is modeled 

with linear spring 

coefficient 
hK , 

while the restoring 

moment is modeled 

with linear and 

nonlinear torsional 

 (b) 

 

Figure 2.  (a) Vertical and horizontal stabilizers 

on the airplane, and (b) Four main 

categories of  missile flight controls 

 

 (a) 

 

  (a) 

 

 (b) 

 

Figure 3.  (a) Sketch of aerodynamic surface, (b) 2-DOF airfoil model (section 

A-A), and (c) Control surface with shaft, which modeled as a torsional spring 

 

 

  (c) 
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stiffness coefficients K 
 and K̂ 

, respectively. Noteworthy points on the airfoil include the center of 

gravity, elastic axis, and aerodynamic center. The non-dimensional distances (as a fraction of b  and 

positive in the positive z direction) from the elastic axis (center of rotation) to the center of gravity 

and to the mid-chord position are denoted as /x S mb   and a , respectively, where S
 is the static 

unbalance about the elastic axis. The 2-DOF nonlinear (autonomous ordinary differential equations 

(ODE)) aeroelastic governing equations can be written as [3, 11] 

 

 3

(t) (t) (t) (t) .

(t) (t) (t) (t) (t) .

h

h h aero

S aero C

mh S c h k h F t

S h I c k k F t F



 

    



    


    

     

                                (1) 

In Eq. (1), m  is the airfoil mass per unit length, 2 2I mb r   is the airfoil mass moment of inertia 

about the elastic axis per unit length, 2r  is the radius of gyration about elastic axis, 
hc  and c  are 

plunge and pitch viscous damping coefficient, respectively, ,h

aero aeroF F and 3

1 2( ) ( )C CF t t        are 

lift (positive downward), moment (positive leading edge up), and the active nonlinear control, 

where
1 2, , 

S and 
C  are respectively, the linear, nonlinear control gains and tracers can take the 

value 1 or 0 depending on whether the nonlinearity effect of structure/control is included or ignored. 

2.2 Aerodynamic model in subsonic flow 

For aeroelastic analyses, there are many of aerodynamic models starting from quasi-steady 

(QS) to highly complex numerical flow field solvers, such as ‘Navier–Stokes (NS)’ unsteady codes. 

However, applying complex CFD codes are computationally expensive, quite long to set up as well 

and required huge memory although still cheaper than measuring the aerodynamic characteristics of 

an aerospace vehicle in a wind tunnel [12]. The QS aerodynamic approximations are widely used in 

the pre-design stages, as the simplest aerodynamic modeling technique. In the following, the QS 

aerodynamic lift force h

aeroF and moment 
aeroF  (with respect to the elastic axis) per unit span are 

 

 

2 2

2 2

(t) (t)
(t) ( (t) (1 2 ) ).

(t) (t)
(1 2 ) (t) (1 2 )( (t) (1 2 ) ).

h

aero L

aero L

h b
F t b U U bC a

U U

h b
F t b U b a U bC a a

U U



 


   


   

   

 

   

 

    

       

                   (2) 

where 
and 

LC   are the air density and lift coefficient, respectively. Although the QS aerodynamic 

model is relatively simple, it is very useful and has proven to provide insight on the physical behavior 

of the aeroelastic system. 

2.3 Modeling of aerodynamic surface with shaft in the view of MSTMM methodology 

The aerodynamic surface connected with shaft shown in Fig. 3 (c) may model it as coupled 

bending-torsion Euler-Bernoulli beam with torsional spring in the view of MSTMM. The full theory 

of MSTMM is described in [9, 13]. However, the SV of a connection point is given by kinematic and 

kinetic quantities in physical coordinates: in case of linear multibody systems, vibrations are 

described by small displacements , ,x y z  along the Cartesian axes and small angular rotations 

,x y z,   about these axes; cutting forces and 

moments are given by , ,x y zq q q  and 

, ,x y zm m m , respectively. In 3-dimensional 

case (3D) with 12sn   (
sn is the number of 

state variables in the SV), the SV in physical 

and modal coordinates at the connection point 

are summarized in a vector, receptively. 

physical coordinates

modal coordinates

[ , , , , , , , , , ]

[ , , , , , , , , , ]

T

x y z x y z x y z

T

x y z x y z x y z

x y z , ,m m m q q q

X Y Z Θ Θ ,Θ ,M M M Q Q Q

  



z

Z
    (3) 

The differential equation of the coupled 

Figure 4.  Some typical elements in MSTMM 

library: (a) Beam segment, and (b) Torsional 

spring 

x Om

xK 

z O

x Im

xI

 (a)  (b) 

x
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bending-torsion Euler-Bernoulli beam vibrating in a plane with frequency   shown in Fig. 4 (a) for 

MSTMM terminology with length l , bending stiffness EI , torsional rigidity GJ , and its modal 

transformation are given as [14] 
2 2

( , ) ( )sin

( , ) ( )sin 2 2

( ) ( ) ( ) 0.0

( ) ( ) ( ) 0.0

IVIV

y x t Y x t xx

x t Θ x t IIII x x
x xx x

EIY x m Y x m b Θ xEIy my m b

GJΘ x m bY x I Θ xGJ m by I

 

 

  

   

    






      


     
             (4) 

The subscripts I and O  in Fig. 4 are element‘s input and output, respectively. Eliminating either 

( )Y x or ( )xΘ x from Eq. (4), one equation in sixth order differential in non-dimensional form 

(non-dimensional length /x l  ) can be obtained 
2 2 2 2 2 2

6 4 2 2 2 2 4 2 2

( / ) ( / ) ( / )( / ) (1 / ) 0

or, ( ) 0;where     / , / , 1 / , d/ d .

VI IV IIW I GJ W m EI W m EI I GJ W m b I W

D aD bD abc W a I l GJ b m l EI c m b I D

   

  

    

   

    

        
   (5) 

The general solution of Eq. (5) can be cast as 
1 2 3 4( ) cosh sinh cos sinW C C C C          

5 6cos sinC C  with arbitrary constant coefficients 1 6,C C . ( )W   represents the solution for both 

the bending displacement Y  and the torsional rotation 
xΘ with different constant values. Thus 

1 2 3 4 5 6( ) cosh sinh cos sin cos sinY A A A A A A             and
1 2( ) cosh sinhxΘ x B B     

3 4 5 6cos sin cos sinB B B B      where 
1 6,A A and 

1 6,B B are the two different sets of constants 

[14]. For the Euler-Bernoulli beam vibrating in a plane, the SV in Eq. (4) can be reduced to include 

( )Y  , ( )xΘ  , and the linearized relations /z Y l  , 2/zM EIY l , /y zQ M l  , /x xM GJ l  will 

lead to the modal solution functions of the TE ( ) ( )   orx xZ B a  

3

2 2 2 2 2 2 2 2 2 2
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           (6) 

The coefficient vector  1 2 3 4 5 6, , , , ,
T

A A A A A Aa  of unknown constants can be adopted as boundary 

condition IZ  at the input end such as  (0)I Z B a  or  
1

(0) I


a B Z . For the beam output end at 

x l or 1  , from Eq. (6) the output condition can be found 

     1( ) ( ) (0) .CB
O I Il l   Z B a B B Z U Z                                                 (7) 

where,    1( ) (0)CB l U B B is the bending-torsion coupled beam transfer matrix. A massless linear 

torsional spring may vibrate in a plane as shown in Fig. 4 (b). The moments at the input and output 

ends are equal and given by the rotation angles as ( )x O x I x x O x Im m K     . Applying the  

transformations sin , sinx x x xt m M t     , results in the TE 

1 1 1 1
or  where  .

0 1 0 1

x xx xTS TS
O I

x xO I

K K

M M

        
        
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Z U Z U                         (8) 

where TS
U can be written with SV in a form [ , , , , ]Tz z y x xY Θ ,M Q Θ MZ . 

2.4 State-space form 

Introducing the following dimensionless variables: 2 2 2/ , , ,h hh b k m k mr        

2/( ), /(2 ), /(2 ), / ,h h h hV U b c mr k c mk              1 1
ˆ/ , / , / ,U t b k k k        2 2 / ,k 

2/m b  and letting 1 2 3, , ,x x x     and 4x  , or (    1 2 3 4, , , , , ,
T T

x x x x     x ), Eqs. (1 

and 2) may written in the form of state-space [4] 
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 The coefficients in Eq. (9 (a)) are  
(1) (1) (1) (1) (2) (2) (2) (2)
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3. Lyapunov First Quantity (LFQ) 

An equilibrium point of a dynamical system generated by an autonomous system of ODEs is a 

solution that does not change with time. There are three equilibrium points founded by equating the 

right-hand sides of the ODEs (Eq. 9) to zero, as follows  

      
 

 

 (4) (3) (3) (4) (4) (3) (3) (4) (4) (3) (3) (4) (4) (3) (3) (4)(4) (3) (3) (4)
1 2 1 2 2 222 2 222 1 2 1 2 2 222 2 2221 2 1 2

3/ 2 (4) (3) (3) (4)(4) (3) (3) (4) (4)
1 222 1 2221 222 1 222 1

0,0,0,0 , , ,0,0 ,
a a a a a a a a a a a a a a a aa a a a

O P Q
a a a aa a a a a

         
 
   

(4) (3) (3) (4)

1 2 1 2

3/ 2 (4) (3) (3) (4)(3) (3) (4)
1 222 1 222222 1 222

, ,0,0 .
a a a a

a a a aa a a

 
  

 
 

 

The stability of typical equilibria of smooth ODEs is determined by the sign of real part of 

eigenvalues of the Jacobian matrix. The Jacobi matrix of equilibrium point (0, 0, 0, 0)Eq O x x is 

(3) (3) (3) (3)

1 2 3 4

(4) (4) (4) (4)

1 2 3 4

0 0 1 0

0 0 0 1

a a a a

a a a a

 
 
 
 
 
 

J . Obviously, the trivial solution (0, 0, 0, 0)Ox is the static equilibrium point 

of system (10). The eigenvalues of the Jacobian matrix J are the roots of the characteristic 

polynomial. The characteristic polynomial of J is defined as
4( ) det( )AK    I J G . The 

characteristic equation corresponding to the linearized system obtained on the flutter boundary is 

4
4 3 2 0 where    , , , det( ).

ii ij ik

ii ij

ii ji jj jk

i i j i j kji jj

ki kj kk

g g g
g g

p q r s p g q r g g g s
g g

g g g

   
  

             G       (10) 

In order to investigate the character of the equilibrium point (originO ), follwoing [4] the classical 

Routh–Hurwitz (R–H) conditions which define the parameter bound for the stability of the system in 

this case can be written in the form 2 20, 0, 0, 0,  and 0p q r s pqr sp r        . Based on the Hopf 

bifurcation theory, if there exist a pair of pure imaginary roots and the real parts of other roots of the 

characteristic equation are negative, the Hopf bifurcation occurs at this point. In other words, the 

critical condition for flutter to occur is  0 , from which the flutter speed can be calculated; i.e.  

solve( 0)FV    . To obtain the flutter frequency F , one may consider the solution of Eqs. (9) under 

the form of ˆ( ) ˆ,where ( / )k kx W e V

    , the characteristic equation is 4 3 2ˆ ˆ ˆ ˆ 0p q r s        ; 

and on the flutter boundary (  0 ), the roots are given by [4]:  

1,2 3,4
垐 , .i i           where   2 2 2/ , / 2, / / 4, 1.r p p sp r p i                      (11) 

The stability boundaries of equilibrium points are benign (safe) and catastrophic (dangerous) [2, 4, 

15]. In order to define whether the corresponding boundary of stability is benign or catastrophic, it is 

necessary to calculate the Lyapunov First Quantity (LFQ) 
1( )FL V value on the stability boundary  0 . 

The catastrophic and benign portions of the flutter instability boundary can be determined, via 

determination of the sign of 1( )FL V . In our case, after accomplishing some transformations and 

algebraic operations for 1( )FL V , we may obtain the following form [4] 

(3) (4) 3 (3) (4) 3 (3) (4) 2 (3) (4) 2

1 13 222 14 222 21 23 222 24 222 22 23 222 24 222 21 22 13 222 14 222 21 22

3
( ) ( ) ( ) ( ) ( ) .

4
FL V a a a a a a a a


     


                (12) 
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4. Results and Discussions 

All the formulations of the aeroelastic dynamic modeling, 

solutions and analyses of missile control fin flying at sea 

level ( 31.225 kg/m  ) are performed using MATLAB
©

 and 

Mathematica
©

. The configuration of the fin, considered in 

the present work, is shown in Fig. 5 with the geometric 

dimensions. Fin material is steel with the following 

properties:  modulus of elasticity 11 22.07 10 N/mE   , 

Poisson’s ratio 0.3  , and density 37850 kg/mm  . Fin shell 

thickness is 2 mmshellt  . The fin is symmetry about 

x  coordinate. Airfoil section is biconvex with / 8%t c  at 

the root and 4% at the tip, where t  is the maximum 

thickness of the airfoil section and c  is the fin reference chord. Aspect and taper ratios are 2.4242 and 

0.678, respectively. Nearly 50% of the fin root, the fin is connected with a shaft. Only rotational 

degree-of-freedom is allowed. The other end of the shaft is completely restrained. The shaft is 

represented in this work by a torsional spring with coefficient 800 N.m/rad.xK   which computed 

experimentally. The typical section is considered at section ¾ of the fin semi-span from fin root; 

namely 0.135m (the dashed line in Fig. 5). However, to go further, the motion equations are required 

structure and aerodynamic parameters, mainly 2, , , ,r a     and 
LC  .   

In order to demonstrate the concept of MSTMM and to build-up a model for a vibration 

characteristics of the fin control surface, one is often required to derive the equivalent structural beam 

stiffness,  and EI GJ , and the position of the elastic axis. Herein the position of the elastic axis is 

computed from ANSYS Workbench static structure analysis module [16]. A unit torque is applied at 

the fin free end and the coordinates of the locus of the zero transverse deflection nodes are obtained. 

The elastic axis is assumed to lie along the locus of these. Consequently, the locus of these points is 

considered as an equivalent beam.  The fin is divided into 6 elements according to the nodes on the 

elastic axis. The structural data such as the length, mass, mass moment of inertia about the center of 

gravity and the distance between elastic axis and center of gravity of these 6 elements are evaluated by 

3D modeling software SPACECLAIM [17]. By separately applying a unit force (to produce bending 

moment 
bM ) and torque T at the tip end of the elastic axis, the bending and torsional rotations z  and 

x of a selected six nodes on the elastic axis can be computed. This is done through ANSYS 

Workbench analysis. Essentially, what is done is a back substitution in the simple beam formulas for 

bending and torsion, 1
B

z AB b
A

EI M ds    and 1
B

x AB
A

GJ T ds   which provide the bending and 

torsion stiffness, 
ABEI and ABGJ for the element AB , respectively. In the view of MSTMM, the 

corresponding topology of the system is chain and depicted in Fig. 6 (a). The point from MSTMM 

analysis is to compute the in-vacuum uncoupled bending and torsional frequencies ,h   and its ratio 

  by letting 0   . This chain vibrating system comprises 7 elements. Torsional spring about 

x  axis is element 1 of transfer matrix 1
TSU U  according to Eq. (8) and the other 6 elements ( 2, 7 ) 

are the coupled bending-torsional Euler Bernoulli beam elements 2,...,7 2,...,7
CBU U  (Eq. (7)). Choosing 

the transfer direction from left to right, the element TE read as 8 7 6 5 4 3 2 1 1 1 1
fin Z U U U U U U U Z U U Z . The 

SVs are [ , , , , ] ,T
i z z y x x iY Θ ,M Q Θ MZ  1, 8i  . The overall TE is [6, 7, 9] 

1 6 6 8where , .
T

fin T T
all all all all 1

      
   

U Z 0 U U U I Z Z Z                             (13) 

At the boundary conditions ( 1Z and 8Z ), always half of the state variables are zero due to constraints, 

whereas the others are unknown. In our case, we have 1 1 1 8 8 8[0,0, , ,0, , , ,0,0, ,0]Tall z y x z xM Q M Y Θ ΘZ . 

Thus, Eq. (13) may be reduced to all all U Z 0  where 1 1 1 8 8 8[ , , , , , ]Tall z y x z xM Q M Y Θ ΘZ  is composed of 

Figure 5.  Fin control surface and 

its geometry (all dimensions are 

in m) 
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the unknown state variables only, and allU  is a 6 6 -square matrix resulting from elimination of all 

columns of allU  associated with zeros in allZ . Also in this case the eigenvalue search on allU is 

performed with the fMin1D algorithm [8] on search interval   1,1000  rad/sec , with grid size 

0 5000xN  and tolerance 1010  . The lowest two uncoupled bending and torsion natural frequencies 

( 621.6048 rad/sech  and 671.9284 rad/sec  ) are shown in Fig. 6 (b). This yields, 0.925106  . The 

positions of elastic axis and the center of 

gravity from the leading edge of the 

typical section are 0.05874 m and 

0.058746675 m , respectively. Typical 

section mass and mass moment of inertia 

about the elastic axis are 0.131365 kg and 
-4 22.1437 10  kg.m , respectively. As a result, 

0.0001,   2 0.36625, 0.12,r a     at sea 

level 42.54083   and assume 0h    .  

Computational Fluid Dynamics (CFD) 

approaches are becoming more popular 

and they are being used for complimenting 

the experimental studies and decreasing 

the number of the wind tunnel 

measurements. CFD analysis is carried out 

using CFD code ANSYS CFX over the 

missile fin control surface to compute the 

aerodynamic lift coefficient at different 

angles of attack and Mach number. 

Computations are performed on HP of 16 

cores based PC with a 32GB memory. 

Multi block structured and unstructured 

meshes are generated within the 

computational domain as shown in Fig. 7 

(a). The far-field should be placed far 

enough from the fin since the free stream of infinity is defined as boundary conditions. The fin has the 

far-field boundary located at about 6c upstream away from the leading edge of the fin, about 15c away 

from the training edge downstream, and about 6c away from the fin in a lateral. The far field free 

stream condition is standard temperature and pressure (101.325kPa, 288K). The air is assumed as an 

ideal gas and the viscosity varies with temperature in accordance with Surthland three coefficient 

formulas. Flow field mesh number is 905882, 5y   . A no-slip boundary condition is imposed on the 

fin surface, and symmetry conditions are imposed on the wall of the tunnel where the wing fixed on it. 

The inlet and outlet are set to be velocity and reference pressure, respectively. Reynolds Averaged 

Navier Stokes (RANS) based steady-state three dimensional CFD simulation are performed. Shear 

Stress Transport (SST) k   turbulent model can predict the flow separation process with higher 

accuracy and hence preferred for the present case of study. Figure 7 (b) is summerizing the range of 

LC  vs. Mach number, i.e., (0.893 ~ 1.205 )LC    per radian for Mach numbers (0.1 ~ 0.9) . 

In the literature the flutter boundary is often represented by the Flutter Speed Index (the ratio of 

the non-dimensional flutter speed V divided by the square root of mass ratio  ). Figure 8 (a) shows 

the variation of Flutter Speed Index vs. flight Mach number (variation of LC  ) at sea level which 

obtained from the QS aerodynamic theory and CFD. It is obvious that the flutter speed decreases with 

the increase of the flight Mach number. As an example, a fin is flying at sea level with Mach number 

0.5, Hopf bifurcation point (critical flutter velocity) is occurred as shown in Fig. 8 (b). There exist a 

pair of pure imaginary roots (red dots of roots 1 and 2 crossed the Img-axis) and the remaining two 

Figure 7.  (a) Far field and CFD gird generation 

around the fin, and (b) LC  vs. Mach number 

 

 (b)  (a) 

1

2 7

1Z 2Z 8Z

tip
root

coupled beam element

transfer direction

torsional spring about x -axis

 (a)  (b) 

Figure 6.  (a) MSTMM model of torsional spring with 

fin, and (b) Determinant of  all U  
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roots (blue dots of roots 3 and 4) are complex conjugate and remain in the left-hand side of the 

complex plane. However, Fig. 8 (c) displayed the Flutter Speed Index decreases monotonously with 

the mass ratio at Mach number 0.5. 

In the plane of 1( ( ),Mach)FL V , Fig. 9 illustares the influence of structural nonlinearity ( 50)  on 

the flutter boundary, for the uncontrolled/controlled system. The solid line identifies the case of 

uncontrolled 1 2( 0)   , whereas unstable (catastrophic) LCO occured
1( ( ) 0)FL V  . However, the 

system is stabilized (stable LCO) after applying the active control 1 2 1( 0.2, 100 )     represented by 

dashed line. To verify the theoretical results, a numerical investigation using the Runge–Kutta 

algorithm to the original dimensionless Eq. (9) was carried out using MATLAB ODE45. At the flutter 

boundary 0 , the transient motion of the airfoil flying at sea level with Mach number 0.5 and initial 

condition ( 0.01498, =0.00174, = =0, =20000)     & & is depicted in Fig. 10. The bending and torsion 

amplitudes are growing up and no longer damped for the uncontrolled system as shown in Fig. 10 (a). 

Inversely, Fig. 10 (b) demonstrates the motion of the controlled system of both bending and torsion 

are damped. The results emerging from Figs. 9 and 10 reveals via the active control the dangerous 

LCO can become safe. 

5. Summary 

Using Lyapunov’s first quantity theory, the character of flutter boundary and its control of a 

two-dimensional airfoil in the subsonic flow with cubic structural non-linearity is investigated. The 

flutter instability can be benign or catastrophic. The potential of active linear and nonlinear control 

Figure 10.  Transient time history solution at the boundary 0 of 

2-DOF airfoil section flying at sea level with Mach number 

0.5, (a)   and   vs.  (uncontrolled), and (b)   and   vs. 

 (controlled) 

 

 (a) 

 

 (b) 

 

Figure 9.  LFQ.  Influence of structural 

nonlinearities on the flutter boundary 

for the uncontrolled/controlled cases 

 (b) 

 

Figure 8.  (a) Flutter Speed Index vs. flight Mach number at sea level, (b) Roots trajectory on the complex plane at 

Mach number 0.5 and sea level, and (c) Flutter Speed Index vs. mass ratio 

 (a) 

 

 (c) 
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issue is highlighted and increase the flutter speed and convert the dangerous boundary to the safe one.  
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