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Abstract

In this article we present an approach designed to solve a real world problem: the Anesthesiology Nurse
Scheduling Problem (ANSP) at a public French hospital. The anesthesiology nurses are one of the most
shared resources in the hospital and we attempt to find a fair/balanced schedule for them, taking into
account a set of constraints and the nurses’ stated preferences, concerning the different shifts. We propose
a particle swarm optimization algorithm to solve the ANSP. Finally, we compare our technique with
previous results obtained using integer programming.
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1. Introduction

Particle Swarm Optimization (PSO) was originally
designed as a numerical optimization technique
based on swarm intelligence. In the literature, there
are a few attempts to exploit its usage in the discrete
problem domain,! where binary encoding is usu-
ally used. Work on the transformation of the work-
ing mechanism of PSO to the permutation problem
domain, where the representations are highly con-
strained, has been relatively limited.>>* This limi-
tation is mainly caused due to the lack of a princi-
pled generalization of PSO to guide its adaptation to
discrete combinatorial problems such as scheduling
problems. In this paper, we design a PSO algorithm
for a real world scheduling problem with discrete

domains without losing the underlying principles of
the original PSO.

The Anesthesiology Nurse Scheduling Problem
(ANSP) tackled in this paper is a real world problem
occurring in a French public hospital. The problem
consists in assigning a group of nurses to a set of
working shifts over a given planning period. This
assignment has to fulfill several constraints such as
work regulation, nurse coverage, competency ade-
quacy and individual preferences. The objective is
to optimize fairness among all the nurses. The main
characteristic of this group of nurses is that they are
organized into a team of equally skilled nurses who
attend to various activities during the inpatient care
process: preparation and monitoring of inpatients’
anesthesia during the surgery, and monitoring the in-
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patients when the come round in the recovery room.
They are also able to perform activities which over-
lap with some surgical specialties. These nurses can
be assigned to different activities from one day to
another. The goal is to find a schedule where the
distribution of the tasks is balanced throughout the
nursing staff. With the current tendency of grouping
together several surgical specialties in one operat-
ing, larger groups of nurses are formed. This con-
siderably increases the complexity of the problem
and intensifies the need for help provided to head
nurses to solve the anesthesiology nurse scheduling
problem. Integer programming and constraints pro-
gramming approaches have been proposed to solve
this problem® but have shown some limits when the
number of nurses exceeds a certain threshold. More-
over, since the balance in the task distribution is a
concept that can be difficult to translate into an ob-
jective function, we think that including additional
orientation during the search could produce better
schedules.

The objective of our investigation is twofold:
first, to provide a new application of the PSO tech-
nique in discrete domains and to show its robustness
for solving a problem arising in hospitals; and sec-
ond, to enhance the quality of the scheduling solu-
tions obtained by using a PSO algorithm during the
search. In particular, we investigate how a new eval-
uation function based on the entropy concept can be
used to guide the search. Our new evaluation func-
tion is a not linear one, thus, the methods used in
our previous work (constraint programming and in-
teger programming based methods) are not able to
manage it directly. The new function allow one to
obtain, in general, solutions with a better load distri-
bution than those previously reported.

This paper is structured as follows. In the next
section we describe the nurse scheduling problem
and related work providing solution approaches.
This is followed by a description of the real-world
problem of scheduling anesthesiology nurses’ work.
In Section 3 we present the mathematical model of
the problem. In Section 4 we introduce the com-
ponents and mechanisms of the PSO algorithm that
we propose. Section 5 presents the experimentations
using real data, and finally, Section 6 gives the con-

clusions of our work.

2. Nurse scheduling problem

2.1. Related work

Assigning nurses to working shifts is a problem
that every hospital in the world continuously has to
solve. Nevertheless, the specificities of the prob-
lem vary from hospital to hospital, and even from
ward to ward. Objectives could be to minimize the
costs or to maximize the satisfaction of the person-
nel. The variety of practices among wards leads to
a wide range of objectives and problem constraints.
Some hospitals use cyclic schedules where the same
schedule is repeated as long as the requirements do
not change.® This requires a shift in patterns and
each nurse’s cycles, around a selection of patterns.
These kinds of schedules are easy to design but may
be very rigid and hard to adapt to changes. Other
hospitals choose to work with non-cyclic schedules
where a new schedule is generated for each schedul-
ing period. This process is more time-consuming but
much more flexible in dealing with the variability of
demand, the staff requests or unexpected events such
as absences.” 8

Nurse scheduling problems (NSP) or nurse ros-
tering problems (NRP), which involves the creation
of individual schedules, have been widely studied
over the last decades. Problem description and mod-
els vary from study to study and depend on the need
of each hospital. A multitude of solution approaches
can be found in the operational research literature,
based on, among other things, the wide range of
models that can be built. Several recent and comple-
mentary bibliographic surveys have been published
and give a good overview of the models used and the
large range of existing approaches.3%10:11

Several studies have employed optimization
methods to solve the NSP. Some authors use ex-
act methods like linear, integer or mixed inte-
ger programming,'? goal programming'3!* or con-
straint programming.'>!® Many recent papers tackle
the NSP with metaheuristic methods such as ge-
netic algorithms,!” tabu search'®>”!'7 or simulated
annealing.'® Vanhoucke and Maenhout!! respond to
the need for a benchmark database (highlighted in
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the work of Burke et al.® and Cheang et al.g), to
make the algorithm comparison easier. They also
develop a method to characterize the NSP under
study according to indicators dealing with prefer-
ence distribution measures, among others.

In this paper we deal with the ANSP. The objec-
tive is to obtain a high-quality schedule where the
load is well balanced between the nurses according
to a criterion based on the drawbacks of each type
of shift. Lorraine et al.’> model the problem with in-
teger linear programming and as a constraint satis-
faction problem. Then, the problem is solved using
LINGO and ILOG solvers.

We use the population-based metaheuristic PSO
to find good schedules. Unlike linear programming
or CSPs solvers, neighborhood-based methods (e.g.,
population-based and metaheuristic methods), allow
us to work with nonlinear functions (in our case,
the objective function is highly nonlinear). PSO has
shown good results when it has been applied to prob-
lems with continuous domains of variables. This
motivates us to apply the technique and to observe
what occurs when it is applied in problems with dis-
crete domains. Finally, the few parameters that PSO
has (only two in our approach), is an important fac-
tor to choose PSO instead of other evolutionary tech-
nique.

2.2. ANSP Description

The surgical suite is a complex service consisting of
two main parts: the operating rooms (ORs), and the
post-anesthesia care unit (PACU). Different teams of
nurses working in this service have to be scheduled:
the operating room nurses, assisting surgeons during
surgery; the anesthesiology nurses, taking care of in-
patients during surgery or supervising the PACU; the
registered nurses, taking care of inpatients during re-
covery; and finally, the auxiliary nurses, performing
the logistic and cleaning tasks.

In this work we deal with the anesthesiology
nurses. Anesthesiology nurses can work in a cross
section of different surgical specialties and several
types of surgery (scheduled cases, ambulatory cases
or emergency cases). They work with anesthesiol-
ogists during surgery but also during the recovery
time. In hospitals, they can perform surgical emer-
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gency services, sometimes working around the clock
(on-call or on stand-by). They are also are required
in the operating suite, where surgical teams have to
be ready rapidly to welcome a new patient. Nurses
can be assigned to either day or night shifts, and
each day to one activity. This daily activity can
change from one day to another. In our research we
study a French hospital with a surgical suite con-
taining 9 ORs. The part-time and full-time nurses
are all equally skilled, and can be assigned to any of
the day or night shifts, as shown in Table 1.

Table 1. Type of shifts, start and end time

PACU supervision shift (PS)

Type of shift start-end time
Day shift (DS) 8:00 - 16:00
Emergency day shift (EDS) 8:00 - 20:00
Emergency night shift (ENS) | 20:00 - 8:00

9:00 - 17:00; 11:00 - 19:00

The emergency shifts are on stand-by duty and
have to be worked on each day of the week (includ-
ing week-ends), whereas the other shifts are from
Monday to Friday. The shifts involving the supervi-
sion of the PACU are considered as equivalent. The
anaesthesiology head nurse draws up the anaesthe-
siology nurses’ schedule in a non-cyclical process.
First, the head nurse asks the nurses for their pref-
erences concerning the day they would like to be
off, and from these preferences he/she tries to plan
schedules which satisfy all the constraints listed be-
low. The constraints are related to shift coverage
(C1), working time (C2 to C4), and good working
practices (C5 and C6).

C1: Each shift on each day requires a specified

number of nurses.

C2: Working hours must not exceed 12 hours per

day.

C3: Working hours must not exceed 48 hours per

week.

C4: A nurse cannot work more than three ENSs

during a given week.

C5: A nurse works an EDS (resp. ENS) on Satur-

day if and only if he/she also works an EDS
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(resp. ENS) on Sunday. He/she will then get
the following Monday and Tuesday off.

C6: Sequence of activity constraints:

« If a nurse works an ENS on a weekday (i.e.,
one day between Monday and Friday), then
the following day is free.

« If anurse works an EDS on a weekday, then
the following day could be either an ENS or
free.

The coverage and time-related constraints C1 to C4
are considered as compulsory constraints that have
to be respected (hard constraints). Usually, con-
straints C5 and C6, as well as the constraints of pref-
erences expressed by the nurses, could be optional
(soft constraints). Since our objective is to find a
good schedule that maximizes the nurses’ satisfac-
tion, the required solution must ideally satisfy all the
constraints from C1 to C6.

In order to generate the fairest schedule, the
most and least preferred shifts have to be distributed
among the nurses in a balanced way. To express the
shift preferences, a penalty associated to each type
of shift on each day of the week is defined. The
penalties correspond to rational values ranging from
1 (most preferred shift) to 2 (least preferred shift)
and have been generated according to the knowledge
of the head nurses and the feedback from the nurses.
The penalty values are shown in Table 2.

The PS has more severe constraints than the oth-
ers since it requires a high level of vigilance during
the patient’s waking. With emergency night and day
shifts, the load is concentrated on only a few days
of the week, and these shifts are followed by a day
off. Hence, even when ENSs and EDSs are 12-hour
shifts, they are preferred to PSs. Finally, the clas-
sical DSs are the shifts preferred most, due to the
convenience of the start and end working time, and
to the work contents. DSs have the lowest penalty.

The best schedule might be the one that mini-
mizes the gap between the penalty of the nurse with
the heaviest load and that of the nurse with the light-
est load, while satisfying all the constraints. We,
however, show in Section 4 how the minimization
of an entropy-based function can improve the load

distribution among the nurses.

Table 2. Penalty associated to the shifts

Shift | Mon | Tue | Wen | Thur | Fri | Sat | Sun
DS 1 1 1 1 1 - -
EDS | 1.2 1.2 | 1.2 1.2 1211414
ENS | 14 14 | 14 1.4 14|16 |16
PS 1.6 1.6 | 1.6 1.6 1.6 | - -

In the following section we present a mathemat-
ical model for the ANSP.

3. ANSP models

In this section we detail two formulations for the
ANSP: as a linear program and as a constraint satis-
faction problem. These models are used by CPLEX
in the experimentation section.

Both models can be expressed by means of the
same parameters.

Parameters

N : Number of nurses to be scheduled

H : Number of days of the scheduling period

W : Number of weeks of the scheduling period

K : Number of shifts

b jx : Number of nurses required for shift k on day j
Pk : Penalty associated to shift k on day j

R; : Working rate of nurse i (1 for full time, < 1 for
part time)

Tax - Maximum number of hours that a full time
nurse can work (48 hours)

ng : Number of working hours within shift &

3.1. Integer linear programming model

The ANSP can be modeled as an integer linear pro-
gram (ILP) in which the decision variables S, are
binaries.
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Decision variables

g — 1 if the nurse i works shift k on day j
k=1 0 otherwise

Auxiliary variables

Puax and P, are respectively the maximum and
minimum penalties of all the nurses’ schedules. Vi =
1..N:
SijkD jk

R;

M=
M=

~

I
_
-

Il

Prnax 2

%]

ijkD jk

Pmin <

M=
M=

~

I
L
=

I

=

Objective Function

The objective is given by the minimization of the
difference between the maximum and minimum
nurse penalties:

Min Z = Puux — Puin

Constraints

In the following we give the formulation of the con-
straints.

Constraints C1 are related to the nurse coverage.
The coverage must be exact, without neither short-
age nor overcapacity, i.e., Vj=1..H,Vk=1..K,

N
Y Sijk=bje
i=1

Constraints C2 limit the number of daily working
hours. This is done by assigning one single shift for
each nurse on each day, i.e.,Vi=1..N, Vj=1..H,

K
Z Sijik < 1
=1

Constraints C3 limit the number of weekly work-
ing hours. They take into account the working rate
R; of the nurse i, as well as the number of hours 7
included in shift k: Vi=1..N, Yw = 1..W,

Tw

)»

J=T(w—1)+1

meSijk < TnaxRi
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Constraints C4 limit the number of NDSs(k = 3)
per week: Vi=1..N, Yw=1..W,

Tw

)y

J=T(w—1)+1

Sii3<3

First part of constraints C5 corresponds to a log-
ical equality: Vi=1..N, Vw = 1..W,

SiTw—1k = Si 7wk

The free Monday and Tuesday constraints (if the
shift type on weekend is EDS or ENS) are given by:
Vi=1.N,VYw=1..W—1, Vk=2,3,

K
Si 7wk + Z Sizwrip <1
k=1

K
Si 7wk + Z Sizwsop <1
k=1

Finally, constraints C6 are also divided into two
sets of constraints. The first of them indicates that
an ENS must be followed by a free day: Vi =
1.N,Vj=1.5 Vw=1.W,

K
Siatw—1)+j3 < 1= Y Si70w—1)4jr14
K=

The second one corresponds to a disjunction. On
a weekday, an ENS must be followed by day off:
Vi=1.N,Vj=1.5 vw=1.W,

K
Siaw—1)j2 < 1= Y Sig0we1)tjt1 4
K=l

or by an ENS:

Si7w—1)+2 S Si7w—1)+j+13

This disjunction can be transformed in the following
single set of constraints: Vi=1..N, Vj=1..5, Vw=
1.W,

K
Siatw—1+j2 < 1= Y Siz—1)4jr10
b73
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3.2. Constraints satisfaction problem model

The nurse scheduling problem can also be formu-
lated as a constraints satisfaction problem (CSP) and
solved using a constraint programming library (e.g.,
ILOG!).

Decision Variables

Constraint programming allows one to manipulate
integer variables. In the CSP formulation of the
ANSP, decision variables S;; are integer and corre-
spond to the shift assigned to nurse i on day j. This
variable take a value kK among the available shifts (1
for DS, 2 for EDS, 3 for NS and 4 for PS). The de-
cision variables also can take the value 0 implying a
free day. We also have to add the parameters ny =0
andpjo =0 Vj: 1.H.

Auxiliary Variables

The definition of P,;, and P, requires the def-
inition of a set of new variables P;; correspond-
ing to the penalty associated to nurse i on day j:
Vi=1..N,Vk=0.4,Vj=1.H,

ifSl'j :kthenPij =Djk

Note that the value of P;; depends on the value as-
signed to S;;. The domain of the variables P;; is
DP ={0,1,1.2,1.4,1.6}.

Pnax and Py, are defined as following: Vi=1..N,

H

2
Y 2 <P
=1

ZF >Pmin
j=1

Objective Function

The objective is the same as in the ILP model, i.e.:
Min Z = Pyux — Puin-

Constraints

In the CP approach, the constraints are globally the
same as in the ILP approach. However, some differ-
ences can be noticed due to the method used. For

instance, the constraints C2, limiting the working
hours per day (i.e., the assignment of only one shift
to each nurse on each day), are implicit in the CSP
model since a variable can take only one value in its
domain.

Constraints C1 related to the nurse coverage:
Vj=1.H,Vk=1.K,

Card ({i € {1,...,N}|S;j =k}) =Bj

where Card(x) corresponds to the cardinality (num-
ber of elements) of the set *.

Constraints C3, limiting the working hours per
week, require the introduction of new variables L;;
representing the length of the working day for nurse
i on day j. These variables take a value in the do-
main D* = {ny, ...,n4} and are defined using if-then
constraints: Vi =1..N, Vk = 0..4,

ifSij = k then Lij = ng

Thus, constraints C3 become: Vi =1..N, Vw =

1.W,
Tw

)»

J=1(w—1)+1

Lij < TnaxRi

Constraints C4 limit the number of night shifts:
Vi=1.N,Vw=1.W,

Card{j e {T(w—1)+1,....,7w}|S;; =3} <3

More details and the definition of constraints
C5 and C6 can be found in our previous work.?”
Also in this work, we report the results obtained
by these models using several mixed-integer opti-
mization softwares (LINGO, CPLEX, GLPK), and a
branch-and-bound algorithm. CPLEX and LINGO
have shown the best performances, both using the
ILP model. In this paper we then decided to use
CPLEX and the ILP model for our experimenta-
tions.

In the next section, we show how this prob-
lem can be solved using a PSO approach. We
also propose an evaluation function, different from
Poax — Puin, to guide the search. The results allow
us to compare the performance of the different ap-
proaches on the same set of problems.
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4. A PSO-based algorithm for ANSP

In this section we describe the components of our
PSO-based algorithm. Our algorithm works with the
same input data as the models above (see Section 3).

A PSO algorithm is a computational method that
optimizes a problem by iteratively trying to improve
a candidate solution. The algorithm works by having
a population (called a swarm) of candidate solutions
(called particles). Each particle has a position and
a velocity and is moved around in the search-space
in simple movements. These movements are guided
by the LocalBest (i.e., their own best known posi-
tion in the search-space) as well as the GlobalBest
(i.e., the entire swarm’s best known position). When
improved positions are being discovered these will
then come to guide the movements of the swarm.
The process is repeated until an ending condition is
reached.

In this article we use a simplified variant of the
PSO described by Pendersen and Chipperfield.”!
This variant only uses the swarm’s best known posi-
tion to guide the particles (the particle’s best known
position is forgotten).

In order to apply PSO to the ANSP, we must be
careful about the meaning of both the position and
the velocity in our context. In a classical PSO, the
position vector indicates the values of the variables
belonging to a continuous domain.

In a first attempt we defined the position of a par-
ticle, using the scheduling of nurses’ time of its re-
lated solution. However, the behavior of this kind
of representation is very different from that of the
position vector in continuous domains. It is reason-
able to think that small changes of the variable val-
ues (particle’s position) in continuous domains may
imply small variations of the value of the objective
function. This is a desirable behavior when we use
PSO. In discrete domains, on the other hand, small
changes in the solution (e.g., a swap in the schedul-
ing of nurses) can produce unexpected results (much
better or much worse). We therefore decided to rep-
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resent the position of a particle as the cost of its
related solution. The main problem of this repre-
sentation is related to the difficulty in changing the
position/cost in a desired direction. In Section 4.3
we propose an original and simple idea to solve this
problem.

In our representation, the velocity of a particle
has a probabilistic meaning and is represented by a
single value V. Thus, a high value (resp. low) of
V implies a high (resp. low) probability of bringing
the particle closer to the GlobalBest position.

4.1. Evaluation function

As noted above, in previous researches’*> we used

the evaluation/cost function Z = P, — P,,i,, for com-
puting the fitness of candidate solutions. B, and
P,in are, respectively, the maximum and minimum
penalties among all nurses. The idea was to mini-
mize Z to obtain a fair preference assignment. Now,
in order to be more accurate, we change Z to a new
entropy-based® evaluation function which not only
considers the extreme penalty values but also takes
into account the inequality of the assignments be-
tween P, and P,;,. Before introducing the eval-
uation function, we are required to introduce some
definitions.

The scheduling of nurses is represented by a ma-
trix S of size N x H, where N is the number of nurses
and H is the number of days. The value of the (i, j)
entry of S (§;;) corresponds to the type of assign-
ment: (1:DS, 2:EDS, 3:ENS, 4:PS or 0:free) of nurse
i on day j (similar to the CSP model shown in Sec-
tion 3.2). Fig. 1 shows a scheduling matrix repre-
senting the scheduling of 4 nurses in a week. Con-
sider for example the value of the (3,4) entry equal
to 3, which means that nurse 3 works an ENS on

4The entropy function is defined by § = —kg Y.\, (piln(p;)), where kp is the well-known Boltzmann constant and p; corresponds to a
probability in [0, 1] such that }' ; p; = 1. It is used in thermodynamics. Basically, it measures the amount of uncertainty which remains
about a system after its observable macroscopic properties (e.g., temperature, pressure and volume) have been taken into account. The
maximum value of S is reached when all the probabilities are equal and it is given by: Syqx = kpln(n). This formula is known as the

most famous equation of statistical thermodynamics.
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Thursdays.

Fig. 1. A scheduling matrix considering 4 nurses and 7
days. Last column shows the penalties associated to each
nurse .

Definition 1. (Penalty of a nurse) Consider a solu-
tion/matrix S of size N x H. The penalty P, of nurse
i is defined by the equation:

I, penalty(j,S;;)

R(S) = %

j=1

where penalty(j,Sij) = pjx with k = S;;, i.e., the
penalty associated to shift S;; on day ;.

The last column in Fig. 1 corresponds to the
penalties associated to each nurse using Table 2 and

considering that all nurses are full time (R; = 1).

Definition 2. (Average penalty) Consider a candi-
date solution/matrix S of size N x H. The average
penalty P of the solution is defined by:

Each nurse having a penalty equal to P(S) implies a
strict fairness.

Definition 3. (Current work distribution) Con-
sider a candidate solution/matrix S of size N x H.
The current work distribution of the solution is de-
fined by:

M=

CW(S) = ) (P(S) log(P(S)))

1

Definition 4. (Ideal work distribution) Consider a
candidate solution/matrix S of size N x H. We de-
fine the ideal work distribution /W of the solution
as:

(P(S) log(P(8))) = —(N P(8)) log(N)

M=

W(s) =
i=1

Proposition 1. Consider a candidate solu-
tion/matrix S of size N x H. The following equation
is verified:

CW(S) = IW(S)

Proof. From thermodynamics’ entropy function??

we deduce that:

Z leog Pz = —log(n) (1)

i=1
with p; € [0,1] and Y} ,p; = 1. Consider Pr =
YN P.(8S) the total penalty of the candidate solution.
We can define a set of values p; between 0 and 1
such that Z, \pi =1 and P(S) = p;Pr = piP(S)N
forall i in {1..N}. Using these equations we can de-
duce that:
CW(S) = fv 1(Pi(S) log(P(8)))
W (S) =Y, (piPT log(PiP(SIN)
CW(S) = PrZ 1 pilog(pi)+

PrEY, pi (log(P(S) +1og(N) )

Then, if we replace the first sum by using relation 1:
CW(S) > —Pr log(N)+ Pr log(P(S))+ Pr log(N)

W(S) = LY, P(S) log(P(S)) = IW(S) O

Proposition 1 shows that the function /W corre-
sponds to the lower bound of CW.

Finally, the evaluation function is given by the
fair work distribution.

Definition 5. (Fair Work Distribution) Given a
candidate solution S with an ideal work distribu-
tion /W and a current work distribution CW, the fair
work distribution FW is given by:

. <cw<s> - 1)
IW(S)

with o a constant equal to 10000. We have de-

fined this value in order to amplify the differences

between very similar solutions. Note that, by us-

ing Proposition 1, FW(S) > 0. FW(S) = 0 implies

a strict fairness of the candidate solution. Thus, our

objective is to find a solution/position S that mini-
mizes the value FW(S).

FW(S) =
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4.2. Initial population

The initial population seeks to obtain particles that
satisfy all the constraints. The solution/matrix S of
each particle is filled by the following greedy proce-
dure.

GenerateSolution(in :C,out: S)

S« ON,H

Initialize Domains(Z, S, C)

do
Select a pair (i, j) such that S;; =0 and Z; ; # 0
S;; < random value from ¥ ;
Forward _Checking(S,%,C.i,j)

while There exists a pair (i, j) such that S;; =0

and .@,’J 75 0

First, the matrix is initialized as a zero matrix of
dimensions N x H. The Initialize Domains pro-
cedure associates each (i, j) entry of S with a domain
9, initialized with the set of feasible shifts, taking
into account the set of constraints C (e.g., a part-time
nurse working 12 hours a week can work any shift
on weekdays but no shift on weekends). Next, a pair
(i, ) is randomly selected and assigned with a value
of the corresponding domain. A forward-checking
procedure is performed. The procedure eliminates
from the domains all the values in conflict with one
of the constraints in C. For example, if the last as-
signment was an ENS to nurse i on Monday 6, then:

« by using constraint C1: if the number of nurses
working ENS on Monday 6 reaches the specified
number, then the shift ENS is removed from the
domain of all the nurses on that day;

« by using constraint C2: it is removed any shift of
the nurse implying a violation of the constraint, if
nurse n works it, she/he exceeds her/his working
hours;

« by using constraint C6: all the shifts in the domain
of Tuesday 7 of nurse i are removed; etc.

The procedure finishes when all the domains be-
come empty.

Remark 1. It is possible that the nurses’ shift re-
quirement (constraint C1) is not fulfilled. The cost
of any solution violating constraint C1 is 4o (actu-
ally Cl1 is the only constraint that can be violated).

a) b) o

4204400][4204400 4244400
101048 |[10104@D||1 010400
0444100|lo4aa100|]|4444100
44420Q0 |[0402083f0o402033
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4.3. Moves

In our algorithm we have considered two moves:
Swap-shifts and Nearer. The former is applied
for improving the current solution of a particle, and
the latter is applied for bringing a particle closer to
another one.

1) Swap-shifts(S): Given a scheduling matrix
S, the procedure randomly selects two nurses iy, i»
and a day j. The values of the entries (i;, j) and
(i, j) in S are interchanged. If day j corresponds
to Saturday (resp. Sunday), the interchange also in-
volves the following day (resp. previous day), i.e.,
(i1, j+ 1) and (ip, j+ 1) would also be interchanged.
The values in rows i; and i, that are in conflict with
the new values (i.e., they violate one constraint be-
tween C2 to C6) are set to O (free shift). A greedy
procedure is then performed to attempt to satisfy
C1 (the do-while loop from the GenerateSolution
procedure). The move is accepted only if the value
of the cost function does not increase.

Consider the scheduling matrix of Fig. 2-a with
all nurses working full time (R; =1 foralli =1..4)
and the following shift requirements:

« Monday, Wednesday and Friday: two nurses on
PS and one on DS.

o Tuesday and Thursday: two nurses on PS and one
on EDS.

« Saturday and Sunday: one nurse on ENS

The move randomly selects nurses 2 and 4 and
Sunday for performing the swap. The values cor-
responding to the weekends are interchanged and
the conflicting entries are removed randomly until
no constraint (except C1) is violated (Fig. 2-b). As
nurse 4 was violating constraint C3, entries (4,1) and
(4,3) are set at 0. Finally, the greedy procedure at-
tempts, successfully in this case, to repair the solu-
tion setting entries (3,1) and (1,3) at 4 (Fig. 2-c).

'

Fig. 2. The swap-shift movement..
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2) Nearer(S, particles, gbest): This move has
been designed with the objective of bringing a so-
lution S closer to the GlobalBest position (gbest).
Recall that the position of a particle has been de-
fined as the cost of its related solution. Thus, the
Nearer procedure attempts to replace the solution
S by a solution S*, such that ghest < cost(S*) <
cost(S). Beginning with a reference solution S,
randomly selected from the set of particles, the pro-
cedure calls to the Swap-shifts2 method. This
method is equivalent to the Swap-shifts one but
accepts any solution with a cost less or equal to
goal _cost (not only improving solutions). The solu-
tion S is replaced by S* only if the latter is different
from S” (line 5).

Nearer(in: particles; in-out: S)
1: goal_cost < cost(S)
2: Select random solution S” € particles such that
cost(S") < goal_cost
3 SF 8
4: Swap-shifts2(S*, goal_cost)
5: if S* # S’ then S < S* end if

Remark 2. The random selection of the reference
solution (line 2) allows us to maintain the popula-
tion more diversified than if we only select the best
solution found as reference.

4.4. PSO—ANSP

The following pseudocode shows our implementa-
tion of the PSO for the ANSP. Table 3 summarizes
the parameters and variables used by the algorithm.

The algorithm begins by creating the initial set
of feasible particles. The GlobalBest solution (S9) is
initialized with the solution of the particle with the
best fitness. For each particle, the velocity (V?) is
initialized to 0.

PSO-ANSP(in: @g,nb_particles, maxlter)

1: particles < initializePopulation(nb_particles)

: S8 < null

: for all p € particles do

if cost(SP) < cost(S%) or S® = null then
Sé <SP

end if

AN A ol

7. VPO

8: end for

9: 1<+ 0

10: repeat

11:  forall p € particles do

12: UpdateVelocity(V?,S”, S8, ¢,)

13: if V” > random(0, 1) then

14: Nearer(S?, particles, cost(S?))

15: end if

16: Swap-shifts(S?)

17: if cost(S?) < cost(S$) then S8 < S” end
if

18: t+—t+1

19:  end for

20: until t = maxIter

Table 3. Parameters and variables related to the PSO-ANSP al-
gorithm.

nb_particles:  user-defined parameter (integer number greater than
0). It defines the amount of particles in the popula-
tion/swarm.
¢g:  user-defined parameter (belongs to the interval
[0,1]). It is related to the velocity formula (2).
maxIter:  maximum number of iterations for the algorithm.
particles:  the set of particles.
S8:  the best solution in the entire swarm (GlobalBest).
SP:  the current solution of the particle p.
VP:  areal numberin [0, 1]. It indicates the current velocity
of the particle p.

cost(S):  method that computes the cost of a solution S.

Then, an iterative process begins. Each particle
is selected, using a round robin principle. The veloc-
ity of the particle is updated, using the formula®!:

VP <~ @V?P + @ ro dif f(cost(S?),cost(S%)) (2)

where o is the inertia weight, and r, ~ U(0,1) is
a stochastic variable weighted by the user-defined
parameter ¢. We define dif f(g,x) := % as a nor-
malized difference, belonging to the interval [0, 1],
instead of using the classical subtraction (g —x). We
have also fixed the @ parameter to 0, so that the
velocity depends only on the current and best po-
sitions. In our PSO, V7 represents the probability
of using the Nearer procedure to bring the current
particle closer (in cost) to the GlobalBest solution.
Thus, the Nearer procedure is called if V7 is greater
than a random value chosen from a uniform distribu-
tion U (0, 1). The idea behind our concept of velocity
can be straightforwardly explained:
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o Solutions with costs far from the best solution
found have a high probability of been replaced by
better ones, using the Nearer procedure.

o Solutions with costs close to the best found are
changed with a low probability.

Next, the Swap-shifts move is applied in order
to improve the current candidate solution of the par-
ticle. If the solution related to the particle has a cost
less than or equal to the GlobalBest position/cost,
then the GlobalBest solution is replaced by the can-
didate solution of the current particle (line 17).

After maxlter iterations the algorithm finishes
and the best solution is held in S8.

Table 4. Parameters of the experimented tests.

Requirements
Inst. N | H Days | DS | EDS | ENS | PS
P1 7 | weekday 2 2 1 2
P5 14 14 | weekend 0 1 1 0
P9 28
P2 7 | weekday 7 2 1 2
P6 | 22 | 14 | weekend 0 1 1 0
P10 28
P3 7 | weekday 10 2 1 3
P7 | 26 14 | weekend 0 1 1 0
P11 28
P4 7 | weekday 20 4 2 4
P8 | 52 14 | weekend 0 2 2 0
P12 28

5. Results and Evaluation

The hardware platform for the experiments was a PC
Intel Corei7-920 with 4GB RAM under the Linux
Mandriva 2010 operating system. The algorithm has
been implemented in C++.

We have performed various experiments aiming:
(1) to ascertain which cost function is better (FW
or Z); (2) to find good values for the used-defined
parameters and (3) to compare our algorithm and
CPLEX.

We used a set of 12 instances related to some
requirements of a French hospital.>3 The input pa-
rameters of each instance are summarized in tables 4
and 5. Note that instances with the same number of
nurses share the same shift requirements. Table 5
reports how a set of N nurses is associated to dif-
ferent working rates. For example, of the instances
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related to N = 14 nurses (i.e., P1, P5 and P9), 5
are full-time nurses (i.e., R; =1 for i = 1..5), 6 are
part-time nurses working 80% of the regular weekly
working time (i.e., R; = 0.8 for i = 6..11), and the
last 3 are part-time nurses working 30% of this time
(i.e.,R;=0.3fori=11..14).

Table 5. Working rate of nurses.

N | 100% | 80% | 70% | 50% | 30%
14 |5 6 0 3 0
22 | 17 8 2 4 1
26 | 11 9 3 2 1
52 | 18 15 9 8 2

5.1. Comparison of different cost functions

We have compared two different aspects from differ-
ent cost functions (Z, FW). The first of these aspects
is related to the capacity of the cost function to de-
scribe the fairness of a schedule. The second aspect
is related to the skills of the cost function to guide
the algorithm through the search space.

Evaluating the fairness of a schedule

Table 6 shows some information retrieved from two
different feasible solutions (S; and S,) for the in-
stance P12. Each row corresponds to a solution, and
columns from 2 to 11 report the number of nurses
who have a penalty, at the top of the respective col-
umn. The last two columns shows the values of three
evaluation functions for each assignment (Z, FW).

Note that, even though S| has the lower value of
Z, by using the FW cost function we consider that
S, is better. This is because the objective function
Z only takes into account the difference between the
highest (9.25 in S| and 9.42 in S;) and lowest (8.6
in both solutions) penalties and not the disparity of
penalities among all the nurses. We can clearly see
this disparity in the number of nurses who have high
or low penalties. For example, S| has 24 penalties
higher than 9.1 or lower than 8.7 and S, has only
10. Thus, solution S; seems to be more unfair than
S,. This observation is corroborated by the value of
FW.
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Table 6. Comparison of two solutions on the instance P12.

P12 # of nurses having the given penalty [

8.6|8.67 |8.75|8.8|8.86| 9(9.14]9.2|9.25|9.42 Z| FW
Si 7 2 6| 11 5| 6 41 5 6 01]0.65|0.105
S 1 2 717 6|12 2| 2 2 1]0.83]0.062

Guiding the algorithm through the space search

Table 7 reports the results obtained by using differ-
ent cost functions to guide the search (Z = P —
Poin, ZT, FW). To keep things simple we have used
a basic hill-climbing algorithm HC(fo). The algo-
rithm performs only 103 calls to the Swap-Shifts
procedure and returns the best found solution w.r.t.
the given cost function fo. The Z* objective func-
tion corresponds to an improved variant of the Z
function used in our previous work?’: if two so-
lutions have the same evaluation of Z, ZT consid-
ers that the best solution is the one that has fewer
nurses with extreme penalties, i.e., nurses with a
penalty equal to P, or P,,. For example, con-
sider that the penalties of two solutions S; and S;
involving 5 nurses are (5.1,5.1,5.1,5.3,5.4) and
(5.1,5.2,5.3,5.3,5.4) respectively. Both have the
same evaluation of Z. However, by using Z*, S,
is considered better than S; because, in S1, 4 nurses
have extreme penalties (5.1 or 5.4) while in S, only
2 have extreme penalties.

Each tuple on the table reports how many of ten
runs in a given strategy returned a good evaluation
w.r.t. FW and Z respectively. We say that an evalua-
tion (ev) is good if ev < 1.2 best _ev, where best _ev is
the best evaluation obtained by the three strategies,
using the same random seed.

For instance, when we ran HC(Z') on the in-
stance P6, in 9 runs we obtained a solution with a
good evaluation of Z, and in only 2 runs we obtained
a solution with a good evaluation of FW.

Looking at the total number of good evaluations
(# good ev.), we find that HC(Z') obtained more
good solutions than did HC(Z) w.r.t. all cost func-
tions, specially Z. HC(Z™) also obtained solutions
with a good evaluation of the Z cost function more
often than did its competitors. However, we ex-
plained in the previous section that Z is not a good
way to determine the fairness of a nurses’ schedul-
ing. Thus, we prefer solutions with low values of

FW. In this respect, the best strategy is precisely the
one using the same cost function to guide the search,
i.e., HC(FW). It is interesting to note that HC(FW)
also obtains solutions with good evaluations of Z.

Table 7. Comparison among different cost functions to guide
the search.

HC(Z™T) HC(Z) HC(FW)
Inst. FW Z|FW Z|FW Z
P1 4 5 1 4 4 4
P2 8 10 1 3 2 2
P3 4 8 5 10 3 7
P4 0 6 1 4 7 3
P5 9 9 3 3 9 9
P6 2 9 10 10 9 9
P7 6 7 5 6 8 8
P8 2 6 0o 4 9 7
P9 10 10 10 10 10 10
P10 0 10 0 10| 10 10
P11 4 8 5 7| 10 8
P12 0 3 0 1 8 4

’ # good ev. \ 49 91 \ 41 72 \ 89 81 ‘

5.2. Tunning ¢,

Recall that ¢, is the only user-defined parameter that
we have not fixed in the velocity updating formula
(2). High (resp. low) values of ¢, imply high (resp.
low) values of V resulting in a high (resp. low) prob-
ability of applying the Nearer procedure (line 14
of the PSO-ANSP algortithm). The tendency of the
Nearer procedure to make the swarm converge on
the current best particle suggests that ¢, should be
fixed at a low value.

A few experiments not reported in this article
confirmed our intuition. The best results were ob-
tained with ¢, belonging to the interval [0.05,0.001].
Thus, in the subsequent experiments we decided to
use ¢, = 0.01.

5.3. Tuning the number of particles

Table 8 reports the results of the PSO-ANSP algo-
rithm, using a different number of particles (1, 2, 3,
5, 10 and 15), ¢, = 0.01 and FW as the cost func-
tion. To make a fair comparison, the number of it-
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erations (the max_iter parameter) has been fixed at
10’ for all strategies.

Table 8. Results obtained by PSO-ANSP with different number
of particles.

Inst. HC | 2 part. | 3 part. | 5 part. | 10 part. | 15 part.
P1 2.6260 | 2.6139 | 2.0012 | 1.2005 | 0.8941| 0.9366

2 3 2 5 8 7

P2 1.9341 | 1.4859 | 1.8867 | 1.3382 | 1.3117 | 1.4267

4 5 1 6 5 3

P3 2.1079 | 1.6093 | 1.5236 | 1.4958 | 1.2521| 1.0903

2 3 7 4 7 8

P4 3.0846 | 2.3361 | 2.5625 | 2.9061 | 2.3264 | 2.3336

0 5 2 0 3 5

P5 0.3482| 0.1526 | 0.1734 | 0.1526 | 0.1526 | 0.1526

4 9 7 9 9 9

P6 0.3174] 0.2890 | 0.2623 | 0.2634 | 0.2526 | 0.2451

4 6 8 8 9 10

P7 0.2267 | 0.2089 | 0.1991 | 0.1951 | 0.1887 | 0.1766

6 6 7 6 7 9

P8 0.3480 | 0.3308 | 0.2880 | 0.2879 | 0.3085| 0.3751

6 5 7 9 6 1

P9 0.0381| 0.0315 | 0.0315 | 0.0315 | 0.0315| 0.0315

8 10 10 10 10 10

P10 0.0587 | 0.0514 | 0.0501 | 0.0501 | 0.0501 | 0.0501
9 10 10 10 10 10

P11 0.0470 | 0.0443 | 0.0431 | 0.0412 | 0.0427 | 0.0445
7 8 9 10 10 9

P12 0.0529 | 0.0525 | 0.0541 | 0.0601 | 0.0660 | 0.0778
4 5 1 6 5 3

[#goodev.] 56] 75[ 71[  83] 89] 84 |

The first column shows the name of the in-
stances. Each entry of the table shows the results
obtained, using the specified number of particles in
a given benchmark. Note that the PSO parameter-
ized with only one particle (HC) is equivalent to a
hill-climbing algorithm that uses the Swap-Shifts
move. The value on the top side of each entry
corresponds to the average cost evaluation after 10
runs. The value on the bottom side of the entry
corresponds to the number of the 10 runs in which
the given strategy has obtained a good evaluation,
i.e., has reached the best cost evaluation (among all
strategies) or has been close to it (up to 20%). The
last row (# good ev.) shows the total number of
times among all the runs that the strategy has ob-
tained good evaluations.

For example, in P12 the PSO containing 2 par-
ticles obtained the best average of the cost evalua-
tions (0.0525). However, the PSO containing 5 par-
ticles obtained good results more often (in 6 of the
10 runs). Looking at the last row we observe that, by
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fixing the number of particles at 10 we obtain good
results more often than with any other strategy (in
89 runs). We therefore decided to use these value in
the following experiments.

Note that the PSO, using any number of particles,
outperforms the results obtained by the hill-climbing
algorithm.

5.4. Comparison between PSO-ANSP and
CPLEX

Table 9 shows a comparison between our PSO-
ANSP algorithm and the well-known ILOG CPLEX
solver, using the ILP model described in Section
3. We do not report the results obtained by the
CP model because they are worse than the results
obtained by the ILP model in every instance. As
the CPLEX solver does not allow us to use non-
polynomial functions as the objective function, we
used the Z function instead of FW.

The PSO-ANSP uses FW as the cost function
(to guide the search), ¢, = 0.01 and 10 particles.
For each instance, the CPLEX columns report the
last upper bound obtained after 10 and 100 seconds
of CPU time w.r.t. the Z and the FW evaluations.
In a similar way, the PSO-ANSP columns report
the average, best and worst results obtained after
10 runs of the algorithms. The last column of the
PSO-ANSP reports the average CPU time spent by
one (top of the entry) and 10 (middle of the entry)
runs. For example, on instance P1 after ten runs
(i.e., 14s of CPU time), the best evaluation found
by the PSO-ANSP algorithm evluates Z = 0.2 and
FW =0.0554.

If we compare CPLEX limited to 10 seconds and
the average results given by the PSO algorithm, it
is clear that the latter obtains better results than the
former in every instance. Furthermore, the worst re-
sult obtained by the PSO algorithm is always better
than or equal to the results obtained by CPLEX after
10 seconds. The results are similar if we compare
CPLEX limited to 100 seconds and the best result
obtained by the PSO algorithm (obtained in less than
100 seconds). Only in instance P2, does CPLEX
outperforms the PSO algorithm.
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Table 9. Result comparison between the ILOG CPLEX solver
(by using the ILP model) and the PSO-ANSP algorithm on the
twelve instances.

CPLEX PSO-ANSP
Inst. Z | FW [ t [ Z ] FW [ t

P1 0.55 2.7963 10s av | 032 | 0.8941 | 1.4s
0.35 1.8192 | 100s best | 0.20 | 0.0554 14s

worst | 0.35 | 0.0979
P2 0.80 6.2433 10s av | 048 | 1.3117 | 1.7s
0.38 0.6123 | 100s best | 0.42 | 0.8736 17s

worst | 0.55 | 1.8999
P3 0.60 2.2504 10s av | 0.54 | 1.2521 | 1.9s
0.35 0.7258 | 100s best | 0.30 | 0.6638 19s

worst | 0.60 | 1.9880
P4 1.00 | 12.0630 10s av | 0.80 | 2.3264 | 3.1s
1.00 | 12.0630 | 100s best | 0.55 | 1.6942 31s

worst | 1.00 | 2.9353
P5 0.90 1.6210 10s av | 0.22 | 0.1526 | 2.0s
0.40 0.3048 | 100s best | 0.20 | 0.1442 20s

worst | 0.40 | 0.2287
P6 0.62 0.8002 10s av | 035 | 0.2526 | 2.5s
0.33 0.2859 | 100s best | 0.33 | 0.2440 25s

worst | 0.53 | 0.3298
P7 0.93 1.1479 10s av | 0.36 | 0.1887 | 2.9s
0.43 0.3764 | 100s best | 0.33 | 0.1693 29s

worst | 0.43 | 0.2401
P8 1.40 2.9952 10s av | 0.54 | 0.3085 5s
0.85 1.7228 | 100s best | 0.33 | 0.2323 50s

worst | 0.76 | 0.3719
P9 0.65 0.2789 10s av | 0.20 | 0.0315 | 3.0s
0.25 0.0433 | 100s best | 0.20 | 0.0315 30s

worst | 0.20 | 0.0315
P10 0.82 0.2652 10s av | 0.40 | 0.0501 | 4.1s
0.40 0.1195 | 100s best | 0.40 | 0.0501 41s

worst | 0.40 | 0.0501
P11 1.00 0.3769 10s av | 0.44 | 0.0427 | 4.6s
0.60 0.2355 | 100s best | 0.40 | 0.0407 46s

worst | 0.50 | 0.0468
P12 2.00 1.1334 10s av | 0.40 | 0.0660 | 8.8s
1.05 0.4902 | 100s best | 0.40 | 0.0617 88s

worst | 0.40 | 0.0700

Remark 3. Though the search in the PSO algorithm
is guided by the FW function, the obtained solutions
evaluate Z better than CPLEX.

6. Conclusions

In this paper we propose an application of the parti-
cle swarm optimization algorithm in the real-world
problem ANSP. We have defined a new evalua-
tion function FW to guide the search of our algo-
rithm. FW, similarly to the function Z = P, —
Pin, searches for a minimum of unfair assignments
among the nurses. However, F'W allows for a better
discrimination among the possible solutions.

We have designed a PSO algorithm, requir-
ing only two user-defined parameters (¢, and
nb_particles), for this combinatorial problem. The
results obtained by our algorithm outperforms the
results obtained by the ILOG CPLEX solver.

In a future work we intend to apply our approach
to larger ANSP instances. Furthermore, the good
results shown by PSO in the ANSP make us think
that the technique can also be applied successfully
in other real world problems with discrete domains
of variables.
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