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Abstract 

This paper proposes a mechanism that helps improve the interpretability of linguistic fuzzy ruled based systems 
with common adaptive defuzzification methods. Adaptive defuzzification significantly improves the system 
accuracy, but introduces weights associated with each rule of the rule base, decreasing the system interpretability. 
The suggested mechanism is based on three goals: 1) reducing the number of total rules considering that rule 
weight close to zero can be removed; 2) reducing the rules with weights coupled because rules with weights close 
to one do not need the weight, and 3) reducing rules triggered jointly, all of them by using several metrics and a 
proposed interpretability index. This is performed using a multi-objective evolutionary algorithm, obtaining a set of 
solutions with different trade-offs between accuracy and interpretability. In addition, it is important to note that 
adaptive defuzzification and therefore the proposal developed in this work can be used together with other 
methodologies to improve system interpretability and accuracy, so it can be viewed as an interesting component.   

Keywords: Linguistic fuzzy modelling, interpretability-accuracy trade-off, multi-objective genetic algorithms, 
adaptive defuzzification methods. 

1. Introduction 

Fuzzy logic introduced by Zadeh1 is well-known by its 
suitability for linguistic concept modelling and its use in 
system identification. The semantic expressivity of 
fuzzy logic, using linguistic variables2 and linguistic 
rules3, is quite close to expert natural language. 
Therefore, the use of fuzzy logic in system modelling 
favours the interpretability of the final model, at least 
from the structural transparency viewpoint. Fuzzy 
modelling4, i.e., system modelling with fuzzy rule base 
systems (FRBSs), is an important and active research 
line within the fuzzy logic community.  

Accuracy and interpretability are in general terms 
contradictory goals: It is usually assumed that the more 
complex the FRBS is, the lower its interpretability, 
which means that complexity is implicitly considered to 
be related with a lack of interpretability. The ideal 
objective of fuzzy modelling would meet both criteria to 

a great extent, but the aforesaid opposition between both 
targets has shifted the problem to finding a balance 
between them 5-13. 

To summarize, two main trends are found regarding 
the improvement of the accuracy–interpretability trade-
off in the context of fuzzy systems5: 
• Linguistic fuzzy modelling (LFM), focused on the 

interpretability and then trying to improve the 
system accuracy6. 

• Precise fuzzy modelling (PFM), which focuses on 
the accuracy and then attempts to achieve better 
system interpretability7. 

A promising way is the LFM approach since it 
allows us to deal with the modelling of systems by 
building a linguistic model as starting point, which is 
clearly interpretable by humans. Concentrating then on 
LFM, historically at the researchers have usually 
initially focused on improving the accuracy of the 
models obtained without paying special attention to 

International Journal of Computational Intelligence Systems, Vol. 5, No. 2 (April, 2012), 297-321

Published by Atlantis Press 
      Copyright: the authors 
                   297

Administrateur
Texte tapé à la machine
Received 15 December 2010

Administrateur
Texte tapé à la machine
Accepted 1 June 2011



A.A.Márquez, F.A.Márquez, A.Peregrín 
 

interpretability6,14-20. Nowadays, the interest of the 
researchers in interpretability has grown; they deal with 
improving the accuracy, trying to avoid decreases in 
interpretability of the system, and in general terms, 
looking for a good balance5,21-29 between both features. 

Considering the interpretability and due to its 
subjective nature and the large amount of factors 
involved, the choice of appropriate measures is still an 
open problem21,28,30-34. In the specialist literature, there 
are proposal of different measures27,28,30-34 and 
techniques8-10,22,23,35-37 for obtaining more interpretable 
linguistic fuzzy models. There are also different 
proposal for taxonomies30-33 to help better understand 
better the interpretability matter. 

On the other hand, the adaptive inference system 
and especially the adaptive defuzzification methods 
have shown to be two important elements that could 
easily improve the accuracy of the system14-16. They are 
not the most relevant way to improve the accuracy, but 
they are well-matched with most other methodologies to 
do so. However, adaptive defuzzification methods 
introduce a loss of interpretability15,30-33, with 
implications for the overall meaning15,32. 

Multi-objective evolutionary algorithms38,39 

(MOEAs), have been shown to be a particularly 
interesting instrument to deal with the trade-off between 
accuracy and interpretability, due to the multi-objective 
nature of the problem 21-25,35,40. They present in a single 
step a set of solutions with different equilibrium 
between the two contradictory features, letting the 
engineers select the most satisfactory for their purposes 
in each situation, which could also change, and it is not 
necessary to re-run the algorithm to seek another more 
appropriate solution. 

Consequently, due to the interest of adaptive 
defuzzification methods from the point of view of 
accuracy, and bearing in mind their aforementioned 
drawback regarding interpretability issues, it was 
considered interesting to work on their accuracy-
interpretability trade-off. To do so, this paper proposes 
to introduce a mechanism to improve the interpretability 
when using adaptive defuzzification method that 
reduces the number of global rules of the FRBS, 
decreases the number of rules with an associated weight 
and also reduces the number of rules triggered 
simultaneously. A MOEA is used to obtain a set of 
linguistic fuzzy models more interpretable than usual 
with adaptive defuzzification and still accurate by using 

both objectives related with interpretability and 
accuracy through several measures and a specifically 
designed interpretability index. 

The paper is structured as follows: in section 2 we 
review the state of the art of the use of MOEA in 
interpretable linguistic FRBS modelling, and a 
description of adaptive defuzzification methods, their 
components, effects and recent works related on their 
interpretability. Section 3 begins with the description of 
the foundations of the mechanism proposed to improve 
the interpretability, and later shows two multi-objective 
models. In Section 4, two experimental studies are 
carried out to show the usefulness of the two models on 
thirteen real world problems. Finally, section 5 presents 
the conclusions of the studies performed.  

2. Preliminaries 

This section helps situate the presented work in the 
framework of the FRBS, and particularly with the 
previous works on the main streams found in the 
literature about two points: the use of MOEA in the 
trade-off between accuracy and interpretability, and the 
adaptive defuzzification methods and their issues in 
interpretability. We have not included preliminaries on 
interpretability here because they can be found in Refs. 
30, 31 and 33, so we encourage the reader to review 
them if needed.  

2.1. Accuracy-interpretability trade-off and 
MOEAs 

As commented in the Introduction section, since 
accuracy and interpretability are conflicting goals, the 
use of evolutionary multi-objective38, 39 strategies to find 
some points of equilibrium between the two features has 
become very popular in the linguistic FRBSs modelling 
field21. This subsection is devoted to a review of some 
important works from the literature on MOEAs in the 
FRBS regarding the trade-off between interpretability 
and accuracy, following a line based on concepts 
together with historical evolution. 

Ishibuchi has carried out some research on the 
application of MOEAs to the linguistic FRBS design, 
applied to classification problems. His earlier works9 
were devoted to using simple first-generation MOEAs 
to perform a rule selection on an initial set of 
classification rules involving “don’t care” conditions 
and considering two different objectives: classification 
accuracy and number of rules. The two-objective 
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formulation in Ref. 9 was extended to three objectives 
in Ref. 41 by introducing the total number of antecedent 
conditions (i.e., the total rule length) as an additional 
complexity measure. A more effective MOEA, i.e., the 
multi-objective genetic local search (MOGLS) was used 
for three-objective genetic fuzzy rule selection in Ref. 
42. An additional interesting study on the use of several 
multi-objective strategies in classification problems was 
discussed in Ref. 24. 

Another contribution in this framework previously 
commented, and also applied to classification problems, 
is on Ref. 43, where Cordon et al. use a classical 
MOEA, (MOGA), to perform feature selection and 
fuzzy set granularity learning jointly with only two 
objectives.  

On the other hand, there are only a few works in the 
framework of fuzzy modelling for regression problems. 
Next, we highlight some of the most significant papers 
on regression and MOEAs. 

Ishibuchi in Ref. 44 show how a simple MOEA can 
be, applied to a three-objective optimization problem to 
obtain Mamdani FRBSs for regression problems.  

Another interesting study is described in Ref. 29 
where the authors present an adaptation of the efficient 
(2+2) PAES for the identification of Mamdani FRBSs 
for regression problems by considering the 
minimization of two objectives (the system error and 
number of variables involved in the antecedents of the 
rules).  

Later, some papers considered the use of MOEAs 
for learning or tuning of membership functions for 
regression problems. Thus, in Ref. 22 the authors used 
MOEAs in order to improve the fuzzy model accuracy 
while keeping its interpretability regarding both 
membership functions and fuzzy rules. Furthermore, the 
authors of Ref. 23 used MOEAS and a process for rule 
reduction jointly with a novel approach consisting of 
considering a new linguistic rule representation model 
based on the linguistic 2-tuples representation to 
perform a genetic lateral tuning of membership 
functions35. Moreover, in Ref. 27, another MOEA has 
been adopted to perform context adaptation (adaptation 
of the membership functions by using scaling functions) 
as a post-processing algorithm applied to an initial 
knowledge base. 

Recently, Ref. 25 has used a MOEA for granularity, 
membership function and rule learning. Furthermore, 
Ref. 40 improves the fuzzy model accuracy preserving 

the interpretability promoting the cooperation between 
fuzzy operators and rule base, also based on multi-
objective strategies. 

Notice that usually only two objectives are 
considered in the majority of the works. One of these 
usually concerns the accuracy which can easily be 
defined by checking how similar the outputs of the 
model and the real system are, for instance using the 
mean squared error. Nevertheless, some problems arise 
to characterize the second objective, interpretability, 
which is still an open problem. 

2.2. Adaptive defuzzification methods 

This subsection concisely revises the fundamentals 
of the main adaptive defuzzification methods used on 
fuzzy modelling. 

Following the studies developed in Ref. 15, most 
adaptive defuzzification methods follow the expression 
(1),  
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where hi is the matching degree between the input 
variables and the rule antecedent fuzzy sets, so f(hi) is a 
functional of matching degree, and Vi represents a 
characteristic value of the fuzzy set inferred from rule 
Ri, the Maximum Value (MV) or the Centre of Gravity 
(CG).  As shown, it is an expression of defuzzification 
method acting in Mode B, i.e. it defuzzifies first the 
individual contribution of each rule and then the final 
result is computed utilizing a weighted sum. 

The functional term can take different arrangements, 
but the most frequent is the product: 

iii h)h(f α⋅= , 
where αi corresponds to a parameter for each rule Ri, i = 
1 to N, as well as the Centre of Gravity (CG) as 
characteristic value, due to its computational efficiency, 
linearity and similar results to other options for the 
functional term15. The final expression of the adaptive 
defuzzification method used in this paper is shown in 
(2). 
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 The effect of αi zone is as follows:  
αi ⋅ hi , α∈ [1,∞):empowerment of hi, (3) 
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            αi ⋅ hi , α∈ [0,1]: penalty of hi . 

In practice, the interval for α i used is usually 
restricted to [0,1] in order to act only as a penalty in 
different levels, obtaining similar results.  

The product functional term, which employs a 
different parameter for each rule, has an effect similar to 
weighted rules45. The following is an example of a set of 
weighted rules, where the weights are αi :   

 
  R1 : If X11 is A11 and … and X1m  is A1m then Y is B1 with α1 

R2 : If X21 is A21 and … and X2m  is A2m then Y is B2 with α2 

… 
 Rn : If Xn1 is An1 and … and Xnm  is Anm then Y is Bn with αn 

 
The αi values associated with rule Ri acquires the 

meaning of how significant or important that rule is for 
the inference process.  

The result of the use of rule weights in system 
modelling is a significant improvement of accuracy15. 
The rule weight adaptation is carried out frequently by 
using an evolutionary algorithm. The process of 
adaptation also produces a rule subset with better 
cooperation among the rules composing it15, due to rules 
with high level of cooperation among them get high 
values of weights and on the contrary, the rest of the 
rules obtain values close to zero.  

From the point of view of the influence of adaptive 
defuzzification on the interpretability of fuzzy systems, 
this is an issue occasionally discussed. On one hand, 
Nauck and Kruse46 consider that rule weights could be 
equivalently replaced by modifications in the 
membership functions in the antecedents or consequents 
part, and they consider this a severe negative aspect in 
the semantic interpretability of the FRBSs. 

Nevertheless, on the other hand, Ishibuchi and later 
Nakashima analysed the importance of weights viewed 
as certainty grades47. They showed that compact FRBSs 
can be designed without adjusting membership functions 
and can be partially replaced by the adjustment of the 
aforementioned certainty grades. They consider that the 
comprehensibility of the model viewing weights as 
certainty grades is not deteriorated significantly. In this 
way, the rule weight can be interpreted as the strength 
of each rule. They show that the larger the rule weight 
is, the large the decision area of each rule is. This 
approach allows a better approximation of 
interpretability working with rule weights because it 
retains the linguistic meaning of the data base. 

3. A new Proposal to Improve the 
Interpretability of Adaptive Defuzzification 

This section provides a detailed description of the 
mechanism to achieve interpretability improvements for 
FRBSs with adaptive defuzzification methods.  

We begin by describing the mechanism, its metrics 
and interpretability indexes to set up a basic model and 
later, in subsection 3.2, an improved adaptive model 
also based on the same principles.  

3.1. Description of the proposed mechanism 

In this subsection, we shall describe the elements of 
the mechanism to improve the interpretability and 
several metrics to measure it when an adaptive 
defuzzification method is used in a linguistic FRBS.  

The necessary reduction of rules with weight from 
the adaptive defuzzification30-33,45, the importance of 
rule selection8-12,42,44,48 and the interest in the reduction 
of  rules triggered together49, all in order to reduce the 
system complexity and favour the compactness of the 
rule base, are the lines followed in our proposal.  

3.1.1. Mechanism and metrics 

We first describe the two threshold mechanisms, and 
then the reduction of rules with weight and rules 
triggered together. 

A. Mechanism of global rule selection based on a 
low threshold 

As mentioned in subsection 2.2, adaptive 
defuzzification methods are equivalent to using rules 
with weights. Therefore, rules with weights close to 
zero are those with the lowest influence on the final 
output. Hence, we propose avoiding the use of rules 
with the lowest weight values, removing those rules 
during the learning process of the weights. In this way, 
the effect of their contribution, even though it is small, 
is taken into account for the rest of the system. 

This idea is applied establishing a threshold, TL 

(threshold low) that defines the cut-off level to remove 
rules. In order to measure its effect, we propose to use 
the usual metric: 

- Number of final rules, (#RF) 

Its expression is: 

Minimize  #RF = #R - #(rules with weights under TL)  (4) 
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with #R as the number of rules of the rule base 
(initially), before starting the defuzzification parameter 
learning process, and #(rules with weights under TL) the 
number of rules whose weight is close to zero. 

The rule selection improves the system 
interpretability, because the high-level interpretability31 

and complexity of the system at rule base level33 are then 
improved. The description interpretability, a concept 
introduced in Ref. 32 regarding the system structure 
readability, is enhanced.  

 Rule selection can also enhance the system 
accuracy8-11,23,34 because it improves the cooperation 
between the rules of the rule base. 

B. Mechanism to reduce the number of rules with 
weights based on a high threshold 

Weight values close to one belong to the most 
important rules for the FRBS. For this reason, we 
consider that these rules could be used without weights, 
and so we propose removing theses values during the 
learning process of the defuzzification parameters by 
using a new second threshold, TH (threshold high). The 
simply metric proposed to connect with this concept is 
the following: 

- Number of rules with weight, (#RW) 

It measures the number of rules with a weight 
associated of the rule base. Its expression is as follows: 

Minimize #RW = #R - #(rules with weights above TH) (5) 

with #R being the initial number of rules of the rule 
base, and #(rules with weights above TH) the number of 
rules whose weight is close to one. 

This technique reduces the complexity, lessens the 
impact on the semantic interpretability of the adaptive 
defuzzification46,33 and improves the explanation 
interpretability32 which is related with the systems’ 
comprehension of the model.   

C. Mechanism to reduce the average number of 
rules triggered together: 

Despite the fact that FRBSs obtain the output by 
combining the contribution of several rules triggered 
together with different levels, the system is more 
interpretable the lower the number of them triggered at 
the same time is 49.  

To take this fact into account, we shall use the 
following metric: 

- Average number of rules triggered by each example, 
(AvRTG) 

Its expression is the following: 
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where P is the number of examples and #Rj
TG is the 

number of rules triggered by the example j.  
Thus, reducing AvRTG, the rule base level31 and the 

semantic interpreatability33 are enhanced, as well as the 
explanation interpretability32.  

3.1.2. An interpretability index  

In the present work, we propose the aggregation of 
two metrics, #RW and AvRTG, in a global index based on 
the arithmetic mean of them, which is denoted as 
RW_AvRTG.  

To calculate the final expression of the new index (7), 
we first normalize both metrics to the range of 0 to 1. 
Then, the value of RW_AvRTG ranges between 0 (the 
highest level of interpretability) and 1 (the lowest). 

 
Minimize 

 2
#

_ TGW
TGW

AvRR
AvRR

+
=  (7) 

The interpretability index defined is based on two 
metrics which perform in the semantic33 and 
explanation32 interpretability as was commented in 
subsection 3.1.1 when they were introduced. The 
minimization of this index recovers the interpretability 
lost due to by the effect of the adaptive defuzzification, 
while enhancing that of the global system, which could 
have a margin of improvement due to the learning effect 
or optimization of the knowledge base. 

3.2. Evolutionary multi-objective models proposed 

This subsection describes the two evolutionary 
models proposed that use a multi-objective algorithm 
with the mechanism to improve the interpretability for 
adaptive defuzzification systems described in the 
previous subsection.  

3.2.1. A first model: Fixed Thresholds  

The first model presented learns the parameters of 
the adaptive defuzzification, using the interpretability 
improvement mechanism described above with fixed 
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thresholds and optimizing several objectives based on 
the metrics and index previously cited. 

The MOEA 

In this paper, an evolutionary model based on the 
popular NSGA-II50 was used.  In the following, we state 
its main components and parameters.  

Objectives 

In a previous work51, we used the minimization of 
the #RF and RW_AvRTG as an objective, but in the 
current study we only use the index RW_AvRTG. This is 
due to the fact that #RF will be also minimized when 
minimizing the interpretability index, because it 
includes the RW and uses the TL mechanism to reduce 
the number of rules (section 3.1.1), so when minimizing 
the RW through the interpretability index, the  #RF will 
be also minimized.  

Therefore, we will use the following two objectives: 
• Interpretability maximization: Minimizing the 

index of interpretability, RW_AvRTG. 
• Accuracy maximization: Minimizing the classical 

Mean Square Error (MSE), defined in expression 
(8), 

 

P

) ) - S  (x ( y  
 = MSE  (S ) 

P

k=
kk∑

1

2

2
1

 (8) 

where S denotes the fuzzy model using the adaptive 
defuzzification method shown in expression (2), and 
the minimum t-norm as conjunction and inference 
operators. This measure uses a set of system 
evaluation data formed by P pairs of numerical data 
Zk =(xk,yk), k=1,..,P, with xk being the values of the 
input variables, and yk being the corresponding 
values of the associated output variables.  

Coding scheme and initial population 

We use a real coding scheme, where n is the number 
of parameters αi (of the adaptive defuzzification, one for 
each rule of the rule base Ri), whose values are within 
the interval [0,1]. 

C = (α1, . . . , αn) | αi ∈ {0, 1}  

The initial population is set up as follows: An 
individual of the initial population has all the genes 
initially set to ‘1’ in order to begin the evolutionary 

process with all the rules without weight. The remaining 
individuals of the initial population are set randomly. 

NSGA-II based multi-objective genetic algorithm  

NSGA-II50 is one of the most widely known and 
used second generation MOEA in the literature for 
solving multi-objective problems.  It generates the 
offspring population from the current population 
through selection, crossover and mutation. It builds the 
next generation from the current population and the 
offspring until it reaches the stop condition, which in 
this work is based on the number of evaluations.  The 
NSGA-II algorithm has two features that make it one of 
the main and most important MOEA: One is the 
assignment of fitness based on the Pareto ranking and 
crowding operator and the other is the procedure for 
updating each generation through elitism. 

In this work, we have employed a MOEA based on 
the original NSGA-II with some adaptations. The 
proposed algorithm makes use of the NSGA-II selection 
mechanism, but in order to improve the search ability of 
the algorithm for our application, the searching effort is 
concentrated in a more interesting and reduced zone of 
the Pareto, the density of the obtained solutions being 
higher in this zone. 

To do so, in each stage of the algorithm, we force 
the population to have a number of individuals 
dominated by error as a basis for the selection of the 
next generation, and make this number smaller as the 
algorithm progresses by reducing the number of 
required dominated solutions from 80% to 0% 
progressively with the generations, or what is the same, 
increasing the number of non-dominated solutions 
allowed from 20% to 100% gradually. Then, the 
solutions non-dominated are sorted from the best to the 
worst (considering accuracy as criterion). 

Important issues related with implementation 

This subsection raises two questions related with the 
implementation. 

The first is related with the completeness52 of the 
rule bases obtained with this methodology; to ensure 
this property when removing rules from the rule base, 
we do not delete a rule if that rule is the only one to 
cover a specific example, since the effect on the FRBS 
is negative53, 54.  

The second issue is related with the implementation 
of the thresholds and the search ability of the 
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mechanism: during the evolutionary process, the value 
of the chromosome could involve removing a rule, or 
eliminating the weight of a rule, but the original value is 
maintained within the chromosome in order to avoid 
affecting the crossover operator and evolutionary 
process. 

3.2.2. A Second Model: Adaptive Thresholds 

In this subsection, we propose a new approach based 
on the use of self-adapted thresholds instead of preset 
ones, in the same process of defuzzification parameters 
learning. In this way, the multi-objective learning 
process will obtain a set of FRBSs with different trade-
off between accuracy and interpretability by using not 
only the defuzzification parameters but also different 
thresholds. 

The adaptive thresholds mechanism  

We propose to adapt the available range for the 
adaptive defuzzification parameters using a single 
parameter βT for the whole system, whose value is the 
width and is centred in the middle of the interval, as is 
shown in Figure 1. The use of a single parameter to 
carry out the adaptation of both thresholds, TH and TL, 
jointly as proposed versus the use of two parameters 
representing the thresholds is less flexible, but reduces 
the search space of the evolutionary algorithm. 

The MOEA 

The new MOEAs have the same characteristics as 
the first proposal described. The difference is that this 
approach uses a double real coding scheme: the first 

part belongs to the parameters of the adaptive 
defuzzification (CD) and the second part is used for the 
parameter of the adaptive thresholds (CT). Then, the 
resulting chromosome is C = CD + CT.  

The new CT part is also real coded, and is composed 
of a single gene: CT = βT | βT ∈ [0.30, 1]. This interval 
lets the thresholds be between TL=0 and TH=1, and 
TL=0.35 and TH=0.65. It has been selected empirically 
performing different tests.  

4. Experimental Study 

To analyse the practical behaviour of the proposed 
methodology, an experimental study was carried out, 
divided into two parts. The first focused on the first 
model and the second on the adaptive thresholds model, 
with thirteen problems of varying complexities 
(different numbers of variables and available data).  
Table 1 summarizes the main characteristics of the 
thirteen datasets selected from the KEEL project55 
webpage (http://www.keel.es) where they can be 
downloaded. 

Table 1 Data sets considered for the 
experimental study 

Datasets Name Variables Patterns 
Plastic Strength PLA 3 1650 
Quake QUA 4 2178 
Electrical Maintenance ELE 5 1056 
AutoMPG6 AU6 6 392 
AutoMPG8 AU8 8 392 
Anacalt ANA 8 4052 
Abalone ABA 9 4177 
Concrete CON 9 1030 
Stock prices STP 10 950 
Ankara Weather WAN 10 1609 
Izmir Weather WIZ 10 1461 
Mortgage MOR 16 1409 
Treasure TRE 16 1409 

 

4.1.  Common set-up of experiments 

Two algorithms were used to obtain the initial set of 
candidate linguistic rules: the well-known ad-hoc data-
driven algorithm of Wang and Mendel 56 (WM) and the 
first stage of MOGUL-IRL52, which we name 
FS_MOGUL. No other methods from the literature were 
used, due to the problems they present when using a 
high number of variable datasets like the ones used in 
this work (see the lower zone of Table 1). In this paper, 
the linguistic partitions consist of five linguistic terms in 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Description of the parameter to adapt the thresholds 

0 1 
TL TH 

βT 
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the case of datasets with less than nine variables and 
three linguistic terms in the remaining ones (which 
helps to obtain a more reasonable and compact number 
of rules in the main datasets).  

We adopted a 5-fold cross-validation model, i.e. 5 
random partitions of the data each with 20% of the 
patterns of the data set, and used four folds for training 
and one for testing.  For each of the data partitions, the 
learning methods were run 6 times using different seeds 
for the random number generator.  For each data set, we 
therefore consider the average results of 30 runs. 

The average results of the initial reference FRBSs 
obtained with WM and FS_MOGUL are shown in 
Tables 2 and 3.  

Table 2 Initial Results using WM rule base 

Name #R MSETRA MSETST 
PLA 14.80 3.434 3.557 
QUA 53.60 0.0258 0.0267 
ELE 65 56135 56359 
AU6 116.00 4.338 6.819 
AU8 70.60 12.71 13.73 
ANA 72.40 0.187 0.189 
ABA 68.20 8.407 8.424 
CON 135.40 91.176 94.190 
STP 122.80 9.074 9.042 

WAN 156.00 16.063 16.403 
WIZ 104.80 6.945 7.139 
MOR 77.60 0.985 0.973 
TRE 75.00 1.636 1.632 

Table 3 Initial Results using the first stage of FS_MOGUL 
rule base 

Name #R MSETRA MSETST 
PLA 75.40 5.246 5.262 
QUA 227.60 0.0633 0.0648 
ELE 88.80 129400 133564 
AU6 170.60 8.565 13.154 
AU8 78.80 21.47 22.07 
ANA 211.20 0.195 0.200 
ABA 50.20 24.790 24.720 
CON 124.40 163.157 164.638 
STP 45.60 16.745 16.906 

WAN 33.40 56.898 58.880 
WIZ 52.40 38.414 41.442 
MOR 31.40 2.002 1.995 
TRE 33.00 2.667 2.685 

 
In the case of multi-objectives approaches, we adopt 

the use of the three representative points of the 
accuracy-interpretability objectives, as in Ref. 28 and 
57: the most interpretable (MAX INT), the median 
(MEDIAN INT/ACC) and the most accurate in training 

(MAX ACC) points. This methodology was used for 
two-objective problems in Ref. 57. Then, in Ref. 28, it 
was extended to problems with more than two 
objectives by projecting the obtained Pareto fronts in the 
planes generated by considering pairs of objectives. In 
this way, the non-dominated solutions can be analyzed 
by considering the aforesaid interesting points for each 
pair of objectives (each projected plane). 

Therefore, for each representative point, we 
computed the mean values over the 30 trials of the 
MSEs on the training and test sets (MSETRA and 
MSETST), the #RF (although it is not an objective of the 
MOEA) and RW_AvRTG index. 

For the single-objective based approaches, we 
compute the same mean values over the 30 solutions 
obtained for each dataset. These three points are 
representative positions on the MSE - RW_AvRTG plane, 
and were only considered in order to perform a 
statistical analysis. Anyway, the final user could select 
the most appropriate solution from the final Pareto 
front, by also looking for a trade-off between MSE, RF 
and RW_AvRTG depending on their own preferences. 

In some cases, particularly with the second model, it 
was necessary to use another measure to capture the 
total MOEA performance38,58. We selected the Two Set 
Coverage58 (CS) ratio as a tool to compare the Pareto 
fronts of different multi-objective approaches. CS 
considers X’, X’’ ⊆ X’ as two sets of phenotype 
decision vectors and a’ and a’’ are two points belong to 
sets X’ and X’’, respectively. CS is defined as the 
mapping of the order pair (X’, X’’) to the interval [0, 1] 
per equation (9). 
 { }
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=  
 

(9) 

If all points in X’ dominate or are equal to all points 
in X’’, then by definition CS=1. CS=0 implies the 
opposite. In general CS (X’,X’’) and CS(X’’,X’), both 
have to be considered due to set intersection not being 
empty. The advantage of this metric is that it is easy to 
calculate and provides a relative comparison between 
MOEAS. 

To assess whether there are significant differences 
among the results, we adopted statistical analysis59-62 
and in particular non-parametric tests, according to the 
recommendations made in Ref. 61.  In particular, for 
pair-wise comparison we use the Wilcoxon signed-rank 
test63,64, and for multiple comparison we shall employ 
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different approaches, including Friedman’s test65, to 
detect statistical differences among a group of results, 
and the Finner post-hoc test66 to observe the difference 
in performance between the methods and the retention 
or rejection of the hypothesis with the level of 
significance fixed. To perform the tests, we used a level 
of confidence α = 0.05.  In particular, these tests are 
based on computing the differences on sample means 
(typically, mean test errors obtained by a pair of 
different algorithms on different datasets).  In the 
classification framework, these differences are well 
defined since the errors are in the same domain.  In the 
regression framework, to make the differences 
comparable, we adopt the normalized difference 
proposed in Ref. 57 and 28, namely DIFF and defined 
as: 

  

)(
)()(

otherMean
referenceMeanother  MeanDIFF  = −  

 
(10) 

where Mean(x) represents the MSE or #RF (it is not 
necessary in the case of  RW_AvRTG) obtained by the x 
algorithm. This difference expresses the improvement 
percentage of the reference algorithm on the other one. 

4.2.  First part of the experimental study 

In the first part of the experimental study we analyse 
the practical behaviour of the first model.  

A. Particular experimental set-up 

The FRBSs considered for this first part of the 
experimental study are summarized in Table 4, i.e. we 
are proposing the multi-objective approach with the 
interpretability improvement MO-ADI, but we also use 
two single-objective approaches: SO-AD which is the 
standard adaptive defuzzification15 accuracy oriented, 
and SO-ADI which is the same, but adding the 
mechanisms proposed to improve the interpretability. 

Table 4 Methods considered for comparison 

FRBSs Description 
Single-Objective FRBSs 

SO-AD Adaptive Defuzzification15 
SO-ADI Adaptive Defuzzification with the 

mechanism to improve interpretability 
Multi-Objective FRBSs 

MO-ADI Adaptive Defuzzification with the 
mechanism to improve interpretability 

Two different things will be studied in this first part 
of the experimental study: the influence of the values of 
the different thresholds for the interpretability 
improvement mechanism introduced first (subsection 
B), and then we will compare the single and the multi- 
objective approaches (subsection C). 

In the case of the studied adaptive defuzzification 
approaches, the values of the input parameters 
considered by the single-objective (SO-AD and SO-
ADI) methods are: population size of 61, 200000 
evaluations, 0.6 as crossover probability and 0.2 as 
mutation probability per chromosome. In the case of the 
MOEAs, (MO-ADI), they are: population size of 200 
individuals, external population size of 200 individuals, 
200000 evaluations, and 0.2 as mutation probability. 

B. Analysis of the influence of different values for 
the thresholds 

This section shows the results and analyses the 
proposed algorithm (MO-ADI) to evaluate the behaviour 
of the different thresholds values. Therefore, we analyse 
the use of the multi-objective approach with different 
thresholds in order to study the influence of these values 
on the interpretability and accuracy criteria. To do this, 
we have chosen three fixed thresholds configurations:  

 
• TL=0.1 and TH=0.9 
• TL=0.2 and TH=0.8 
• TL=0.3 and TH=0.7 

Then, the multi-objective approaches were denoted 
by MO-ADI(0.1-0.9), MO-ADI(0.2-0.8), MO-ADI(0.3-0.7), 
respectively. 

Tables 5 and 6 show the three representative points 
for the different configurations (different thresholds, 
using the rule bases of WM and FS_MOGUL). 

All the configurations have to be compared in order 
to determine which of them should be preferred. Since 
we will compare together more than two algorithms, on 
this occasion we use non-parametric tests for multiple 
comparisons. Particular details of the study can be 
consulted in Appendix A, where in order to perform a 
multiple comparison, it was necessary to check whether 
any of the results obtained by the algorithms presented 
any inequality. In the event of finding some, we can 
know by using a post-hoc test which algorithms 
partners’ average results were dissimilar.  
• Examining the results of the statistical analysis join 

to Tables 5 and 6, we can conclude the following 
points: 
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Table 5. Results obtained by MO-ADI for different configurations of thresholds using the WM rule base 

  MAX INT MEDIAN (INT / ACC) MAX ACC 

Dataset MO-ADI MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) TL - TH 
PLA 0.1 - 0.9 6.947800 6.940028 6.1       0.128       (  0.00    1.02) 2.073691 2.091053 10.6       0.385       (  2.23    2.48) 1.699226 1.759935 14.0       0.771       (10.80    3.25) 

0.2 - 0.8 7.042636 7.042633 6.0       0.125       (  0.00    1.00) 2.237865 2.245128 10.6       0.346       (  1.37    2.40) 1.769444 1.875019 13.9       0.675       (  8.50    3.11) 
0.3 - 0.7 7.042636 7.042633 6.0       0.125       (  0.00    1.00) 2.543587 2.545364 10.4       0.309       (  0.60    2.31) 1.830941 1.900387 12.4       0.551       (  6.13    2.75) 

QUA 0.1 - 0.9 0.023570 0.024276 22.7       0.179       (  4.93    2.12) 0.020914 0.022153 27.2       0.287       (10.60    3.01) 0.020675 0.021944 32.6       0.448       (22.67    3.79) 
0.2 - 0.8 0.024555 0.025273 19.9       0.138       (  1.23    2.02) 0.021178 0.022430 25.6       0.237       (  6.67    2.80) 0.020782 0.022043 32.1       0.416       (20.73    3.57) 
0.3 - 0.7 0.026361 0.027337 17.7       0.114       (  0.13    1.80) 0.021700 0.022975 24.7       0.193       (  3.13    2.62) 0.020897 0.022139 31.4       0.380       (17.37    3.49) 

ELE 0.1 - 0.9 57867 60608 35.8       0.167       (  7.37    3.10) 35428 39094 38.6       0.285       (16.30    4.48) 32518 35633 45.2       0.469       (33.27    5.96) 
0.2 - 0.8 83303 84897 27.2       0.082       (  1.10    2.06) 44049 47997 34.0       0.159       (  6.30    3.11) 32947 35747 45.3       0.440       (29.23    6.02) 
0.3 - 0.7 143152 150408 20.0       0.063       (  0.03    1.77) 64459 70994 27.6       0.086       (  1.17    2.16) 33433 35677 45.4       0.421       (25.97    6.19) 

AU6 0.1 - 0.9 3.487613 6.568578 84.6       0.214       (  6.60    6.07) 2.746415 6.482094 73.4       0.293       (28.57    5.57) 2.568845 6.457802 73.6       0.387       (48.77    5.77) 
0.2 - 0.8 3.715838 7.137473 61.2       0.143       (  2.77    4.29) 2.787005 6.521554 64.7       0.216       (15.17    4.94) 2.623889 6.440329 72.0       0.348       (41.27    5.57) 
0.3 - 0.7 5.551319 9.068401 40.9       0.086       (  0.27    2.78) 3.326684 7.252765 52.2       0.132       (  3.43    3.84) 2.687347 6.430410 72.5       0.325       (35.53    5.61) 

AU8 0.1 - 0.9 11.281517 13.152617 32.1       0.132       (  3.00    3.93) 9.102294 11.28545 33.9       0.201       (10.80    4.45) 8.897037 10.759520 36.2       0.303       (23.00    4.99) 
0.2 - 0.8 16.321254 18.062810 19.0       0.070       (  0.37    2.39) 9.601045 11.69286 26.3       0.124       (  3.80    3.47) 8.991249 10.937447 35.1       0.276       (19.97    4.80) 
0.3 - 0.7 21.088986 23.062541 14.8       0.054       (  0.00    1.93) 10.672853 12.84438 21.4       0.090       (  1.13    2.91) 9.127924 11.186454 35.9       0.255       (17.23    4.73) 

ANA 0.1 - 0.9 0.647718 0.646577 63.7       0.190       (  1.77    1.43) 0.107990 0.109300 67.1       0.267       (  3.67    1.94) 0.007488 0.009588 67.5       0.659       (59.50    1.98) 
0.2 - 0.8 0.871531 0.871570 54.9       0.151       (  0.27    1.19) 0.337729 0.336884 60.4       0.216       (  1.27    1.65) 0.007523 0.009669 65.6       0.585       (48.97    1.97) 
0.3 - 0.7 0.955815 0.960777 45.6       0.137       (  0.03    1.09) 0.438822 0.440663 50.6       0.195       (  0.70    1.52) 0.007551 0.009691 64.8       0.531       (41.37    1.96) 

ABA 0.1 - 0.9 7.613683 7.712487 15.2       0.083       (  2.00    2.58) 4.836747 4.858605 19.8       0.142       (  6.23    3.66) 4.753375 4.789237 26.5       0.225       (13.47    4.79) 
0.2 - 0.8 12.693606 12.611176 11.2       0.050       (  0.20    1.85) 5.533293 5.538769 15.3       0.090       (  2.17    2.81) 4.790064 4.817361 25.9       0.213       (12.17    4.73) 
0.3 - 0.7 14.830294 14.893969 10.3       0.044       (  0.00    1.66) 6.432483 6.432756 13.4       0.066       (  0.37    2.42) 4.821530 4.845469 23.1       0.184       (  9.37    4.39) 

CON 0.1 - 0.9 70.753300 76.129910 83.8       0.131       (  6.30  10.97) 55.1029 61.1530 71.5       0.169       (20.23    9.65) 50.3219 57.5966 59.9       0.219       (37.07    8.39) 
0.2 - 0.8 98.572969 104.99026 41.1       0.056       (  1.83    5.03) 55.8998 64.5417 42.2       0.093       (  9.70    5.87) 51.4730 58.4786 56.0       0.190       (30.87    7.70) 
0.3 - 0.7 128.97494 134.53928 25.9       0.030       (  0.03    3.06) 73.2893 83.2969 33.2       0.049       (  1.60    4.37) 52.9665 59.9898 60.0       0.198       (31.23    8.43) 

STP 0.1 - 0.9 3.708981 3.794866 25.7       0.061       (  3.20    5.04) 2.129880 2.227016 29.8       0.092       (  7.83    6.25) 2.052056 2.154450 36.7       0.139       (15.43    7.94) 
0.2 - 0.8 4.652642 4.674927 17.0       0.037       (  0.60    3.57) 2.321608 2.455662 23.8       0.064       (  3.83    5.06) 2.115639 2.209151 34.1       0.116       (11.53    7.15) 
0.3 - 0.7 8.334997 8.401997 10.5       0.024       (  0.07    2.44) 3.113456 3.240279 15.9       0.039       (  1.13    3.58) 2.191832 2.272137 33.8       0.106       (  9.67    6.91) 

WAN 0.1 - 0.9 6.463753 7.172746 38.8       0.115       (12.30  13.24) 6.033333 6.780082 43.1       0.146       (18.50  15.22) 5.983361 6.674879 48.6       0.190       (27.90  17.52) 
0.2 - 0.8 9.346113 10.098808 31.0       0.060       (  1.20    9.81) 6.214014 6.936514 38.5       0.092       (  5.40  13.06) 6.040380 6.706163 46.7       0.159       (19.83  16.73) 
0.3 - 0.7 16.437768 17.227865 19.2       0.029       (  0.03    5.03) 7.376043 8.159211 27.6       0.052       (  0.67    8.66) 6.130478 6.859088 46.0       0.140       (14.50  16.28) 

WIZ 0.1 - 0.9 3.846971 4.359892 30.5       0.147       (  7.90  10.00) 2.718277 3.149809 36.1       0.211       (14.73  12.86) 2.629827 3.068601 43.2       0.297       (27.57  15.13) 
0.2 - 0.8 7.513500 8.062620 24.5       0.079       (  0.87    6.87) 3.009577 3.614640 32.7       0.146       (  5.47  11.02) 2.675106 3.230414 43.8       0.279       (23.43  15.32) 
0.3 - 0.7 24.760387 25.488658 14.8       0.034       (  0.03    3.11) 5.940635 6.631707 19.3       0.062       (  0.73    5.35) 2.734843 3.302554 45.1       0.265       (20.30  15.39) 

MOR 0.1 - 0.9 1.590566 1.564395 9.2       0.042       (  0.77    2.97) 0.201851 0.219410 12.9       0.079       (  2.83    4.83) 0.153782 0.165901 16.5       0.144       (  9.57    6.50) 
0.2 - 0.8 3.173316 3.214704 6.5       0.024       (  0.13    1.81) 0.321694 0.342161 10.6       0.053       (  1.37    3.54) 0.159248 0.171457 17.5       0.142       (  8.90    6.69) 
0.3 - 0.7 3.180415 3.323322 5.6       0.021       (  0.00    1.64) 0.551852 0.574422 8.5       0.039       (  0.43    2.86) 0.163368 0.175955 18.2       0.137       (  7.90    6.86) 

TRE 0.1 - 0.9 1.720608 1.786207 10.3       0.045       (  0.67    2.96) 0.248659 0.280729 14.2       0.086       (  3.10    4.75) 0.202813 0.232601 20.3       0.177       (12.23    7.00) 
0.2 - 0.8 3.553366 3.630207 6.5       0.028       (  0.00    2.07) 0.557518 0.555809 10.7       0.056       (  1.00    3.61) 0.208263 0.237011 19.0       0.154       (  9.67    6.58) 
0.3 - 0.7 4.611414 4.668308 5.5       0.025       (  0.00    1.80) 1.005509 1.023034 7.9       0.039       (  0.23    2.72) 0.212469 0.238197 18.9       0.144       (  7.93    6.68) 

Published by Atlantis Press 
      Copyright: the authors 
                   306



A.A.Márquez, F.A.Márquez, A.Peregrín 
 

Table 6. Results obtained by MO-ADI for different configurations of thresholds using the FS_MOGUL rule base 

  MAX INT MEDIAN (INT / ACC) MAX ACC 

Dataset MO-ADI MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) TL - TH 
PLA 0.1 - 0.9 1.574572 1.623150 21.9       0.130       (  4.80    4.68) 1.171741 1.207446 29.3       0.216       (11.57    6.61) 1.163733 1.201293 40.5       0.379       (28.03    9.16) 

0.2 - 0.8 3.278771 3.305375 11.5       0.051       (  0.23    2.37) 1.246104 1.273259 20.3       0.111       (  2.83    4.40) 1.164596 1.201882 36.9       0.298       (19.17    8.12) 
0.3 - 0.7 5.290166 5.346323 7.0       0.029       (  0.00    1.38) 1.754391 1.810790 13.2       0.063       (  0.10    2.97) 1.166274 1.204826 33.5       0.251       (14.87    7.24) 

QUA 0.1 - 0.9 0.021684 0.022334 199.7       0.292       (13.63  26.19) 0.017291 0.018149 177.8       0.385       (71.50  22.83) 0.017111 0.018167 170.8       0.553       (141.50  24.26) 
0.2 - 0.8 0.017468 0.018472 132.1       0.208       (20.67  16.32) 0.017125 0.018199 123.1       0.260       (43.27  16.55) 0.017071 0.018207 124.1       0.320       (65.73  17.58) 
0.3 - 0.7 0.017608 0.018610 86.4       0.129       (13.13  10.08) 0.017135 0.018257 98.0       0.174       (22.40  12.52) 0.017088 0.018183 117.2       0.268       (48.00  16.29) 

ELE 0.1 - 0.9 64241 67141 56.0       0.129       (  4.23    4.10) 42156 45526 49.5       0.228       (17.10    5.09) 39495 42072 52.0       0.352       (33.80    6.28) 
0.2 - 0.8 84698 87379 35.9       0.068       (  1.40    2.35) 46395 50173 40.8       0.126       (  6.07    3.57) 39976 42689 49.6       0.297       (26.70    5.68) 
0.3 - 0.7 108723 113721 23.2       0.048       (  0.07    1.85) 61099 65626 29.1       0.078       (  2.07    2.56) 40766 43063 48.5       0.258       (22.10    5.18) 

AU6 0.1 - 0.9 3.821884 6.764193 143.4       0.197       (  4.50  10.80) 3.296278 6.516126 129.9       0.266       (32.60    9.97) 2.941543 6.263927 111.0       0.389       (79.53    9.18) 
0.2 - 0.8 3.454157 7.474670 79.4       0.133       (10.20    6.07) 3.009759 6.955385 81.0       0.173       (21.03    6.51) 2.925950 6.544321 86.8       0.235       (38.40    7.15) 
0.3 - 0.7 4.202431 7.836509 58.7       0.083       (  3.43    4.31) 3.124690 7.149861 69.9       0.126       (10.77    5.52) 2.976153 6.502033 88.3       0.226       (34.93    7.27) 

AU8 0.1 - 0.9 10.610777 11.814385 24.6       0.120       (  3.97    3.30) 7.526326 9.129575 27.7       0.185       (11.33    3.95) 7.386325 9.000788 33.3       0.283       (22.67    4.81) 
0.2 - 0.8 16.296509 18.007791 18.0       0.069       (  0.63    2.28) 7.898196 9.633468 23.8       0.122       (  4.43    3.28) 7.435334 9.047838 31.6       0.250       (18.63    4.57) 
0.3 - 0.7 19.910480 20.495670 14.7       0.056       (  0.00    2.00) 9.872984 11.83105 19.3       0.081       (  0.37    2.76) 7.505406 9.082736 32.1       0.238       (17.17    4.52) 

ANA 0.1 - 0.9 0.044437 0.047909 174.4       0.188       (12.07    4.67) 0.013463 0.015529 154.4       0.250       (44.00    4.24) 0.007158 0.009335 133.0       0.358       (91.53    4.12) 
0.2 - 0.8 0.038210 0.040613 129.3       0.141       (12.93    3.22) 0.009456 0.011776 114.0       0.191       (27.63    3.68) 0.007033 0.009237 112.5       0.252       (50.90    3.84) 
0.3 - 0.7 0.126768 0.126480 85.7       0.094       (  8.33    2.16) 0.015763 0.018568 92.5       0.125       (10.17    2.93) 0.007180 0.009461 108.3       0.216       (34.20    3.92) 

ABA 0.1 - 0.9 10.034018 9.980401 15.6       0.098       (  1.10    2.33) 6.252071 6.261997 20.2       0.180       (  5.57    3.34) 6.198179 6.219666 24.9       0.311       (15.07    4.32) 
0.2 - 0.8 13.518071 13.474387 10.1       0.064       (  0.03    1.70) 6.450398 6.484010 15.2       0.115       (  1.40    2.69) 6.200991 6.221171 24.6       0.258       (10.83    4.02) 
0.3 - 0.7 13.471095 13.490648 9.1       0.058       (  0.00    1.56) 6.933849 6.956984 13.8       0.099       (  0.70    2.45) 6.204145 6.222632 22.9       0.220       (  7.90    3.77) 

CON 0.1 - 0.9 67.672232 71.789422 86.8       0.143       (  5.13  12.02) 59.010937 65.03955 66.0       0.201       (25.23    9.74) 56.380503 62.489223 62.6       0.257       (39.37    9.66) 
0.2 - 0.8 80.296355 88.380934 40.9       0.071       (  3.53    5.52) 58.333450 65.72600 45.4       0.113       (10.77    6.87) 56.679133 62.796797 55.0       0.195       (27.00    8.43) 
0.3 - 0.7 116.57328 123.10188 27.7       0.036       (  0.30    3.45) 66.961798 73.82797 36.8       0.066       (  2.67    5.44) 57.450287 63.305839 58.3       0.189       (24.53    8.79) 

STP 0.1 - 0.9 5.405339 5.474713 13.3       0.096       (  1.33    3.21) 4.259753 4.362481 18.6       0.167       (  4.63    4.54) 4.159594 4.255350 25.0       0.287       (11.73    6.19) 
0.2 - 0.8 7.052710 7.174048 9.1       0.063       (  0.13    2.41) 4.338720 4.473762 16.2       0.136       (  3.17    3.98) 4.179792 4.288358 25.0       0.268       (  9.90    6.25) 
0.3 - 0.7 8.748136 8.816542 7.9       0.058       (  0.00    2.25) 4.455629 4.560821 14.7       0.125       (  2.67    3.75) 4.194782 4.309624 24.9       0.252       (  8.50    6.22) 

WAN 0.1 - 0.9 26.310868 26.725976 9.6       0.088       (  0.53    2.86) 14.522565 14.77936 13.3       0.193       (  4.40    4.46) 13.774738 14.009191 16.1       0.361       (12.27    6.19) 
0.2 - 0.8 29.878818 30.684648 7.9       0.069       (  0.00    2.43) 15.051468 15.54537 12.1       0.150       (  2.43    4.00) 13.832013 14.079000 15.6       0.331       (10.67    5.96) 
0.3 - 0.7 32.988571 34.115293 7.9       0.065       (  0.00    2.26) 15.540758 16.02159 11.5       0.122       (  0.93    3.81) 13.948231 14.207306 15.2       0.302       (  9.47    5.61) 

WIZ 0.1 - 0.9 12.545764 13.543774 15.7       0.107       (  2.57    4.18) 3.881428 4.467590 19.7       0.193       (  7.50    6.11) 3.413844 3.856717 25.0       0.351       (19.80    8.12) 
0.2 - 0.8 34.049969 35.694754 11.6       0.059       (  0.13    2.93) 4.965794 5.631655 16.9       0.121       (  2.30    5.01) 3.463373 3.912941 24.4       0.314       (16.77    7.72) 
0.3 - 0.7 34.337238 36.299840 10.5       0.054       (  0.00    2.74) 6.706427 7.391861 14.5       0.091       (  0.87    4.18) 3.547122 4.014734 24.5       0.291       (14.73    7.61) 

MOR 0.1 - 0.9 3.056375 3.052106 6.0       0.060       (  0.03    1.89) 0.423308 0.439410 8.6       0.134       (  2.57    2.93) 0.267971 0.275199 12.8       0.305       (  9.03    5.06) 
0.2 - 0.8 3.325074 3.280224 5.6       0.055       (  0.00    1.74) 0.502724 0.495026 7.8       0.118       (  1.90    2.76) 0.275008 0.281564 13.0       0.302       (  8.77    5.12) 
0.3 - 0.7 3.689980 3.747015 5.8       0.050       (  0.00    1.58) 0.548342 0.553402 7.8       0.109       (  1.50    2.69) 0.283597 0.290467 13.0       0.293       (  8.13    5.15) 

TRE 0.1 - 0.9 4.887197 5.066371 5.8       0.054       (  0.17    1.80) 0.806103 0.792245 8.7       0.104       (  0.87    3.17) 0.448043 0.436540 10.4       0.229       (  7.20    4.17) 
0.2 - 0.8 5.307431 5.513163 5.4       0.048       (  0.00    1.67) 0.931746 0.905101 8.4       0.092       (  0.43    2.96) 0.450184 0.436108 10.3       0.218       (  6.60    4.10) 
0.3 - 0.7 4.886871 4.991007 5.7       0.046       (  0.00    1.62) 0.991394 0.975439 8.0       0.084       (  0.23    2.81) 0.455389 0.437021 10.3       0.211       (  6.17    4.10) 
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1. The best interpretability is obtained with the 
thresholds TL=0.3 and TH=0.7 (interpretability 
index and metrics, are better with them) while the 
best accuracy is obtained with the thresholds 
TL=0.1 and TH=0.9. We think that this is because 
the more aggressive setup (TL=0.3 and TH=0.7) lets 
the learning algorithm attack the interpretability 
index more strongly, reducing rules with weight 
and rules triggered together converging to zones 
with solutions more interpretable quickly. In 
contrast, the more conservative setup (TL=0.1 and 
TH=0.9) forces the learning algorithm to search in a 
less interpretable zone, favouring easier 
convergence with the most accurate solutions. This 
is a coherent result because a TH of 0.7 
considerably reduces the number of rules with 
weight, and a TL of 0.3 also reduces the number of 
rules powerfully, but there is a reduction in the 
range available for the rule weights from 0.3 to 0.7, 
which is thinner than the range from 0.1 to 0.9. 
Wider ranges of rule weights allow greater 
accuracy.  

2. Results obtained in the most accurate point (MAX 
ACC) by the three thresholds are similar regarding 
accuracy. As commented before, they are better 
with TL=0.1 and TH=0.9 but when using the other 
two thresholds setups, the accuracy is not strongly 
harmed while the interpretability is enhanced more 
substantially, e.g. the number of rules with weight 
is about the half of the total number of rules.  

Finally, Figure 2 shows the comparison between the 
Pareto fronts obtained with different thresholds, on this 
occasion from FRBSs obtained using the WM rule base, 
and particularly for the MOR and STO problems, as an 
example. Results are extensive to the rest of the datasets 
and FRBSs that use FS_MOGUL rule bases.  We 
plotted the three points, the MAX INT, the MEDIAN 
(INT/ACC) and the MAX ACC for each MOEA. The 
approximations of the Pareto fronts achieved by TL=0.1 
and TH=0.9 are in general more accurate than the Pareto 
fronts obtained by TL=0.3 and TH=0.7 which are more 
interpretable, as was expected. Moreover, it can be 
observed that the Pareto fronts obtained by MO-ADI(0.3-

0.7) are wider than those obtained with MO-ADI(0.1-0.9). It 
is coherent with the second main previous result 
obtained studying the tables: the best accuracies are 
reached by the MO-ADI(0.1-0.9) models, but MO-ADI(0.3-

0.7) are close to them in accuracy (MAX ACC), and also 
reach the greatest level in accuracy (MAX INT). 

 

C. Comparing the proposals against single-
objective approaches 

This subsection analyses the performance of our 
multi-objective proposal against the single-objective 
approach.  

We selected the set-up TL=0.1 and TH=0.9 because, 
as shown before, it has achieved the best results in 
accuracy, and the single-objective approaches also use a 
single-objective based on accuracy. 

 

   

 

Fig. 2.  Average Pareto fronts obtained for STO and MOR problems in the accurate-interpretability plane for WM. 
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Clearly it would make no sense to consider the 
interpretability index in the single-objective accuracy 
oriented, because this index affects the interpretability 
and the objective employed is accuracy only (assuming 
that accuracy oriented approaches have the worst values 
for RW_AvRTG ). However, with the aim of comparing 
the most accurate point in multi-objective approach with 
the single-objective approach, we also introduced these 
indexes in the single-objective approach (SO_ADI) in 
order to see how the accuracy of the index was affected. 

 Table 7 shows the result of the single-objective 
approaches, where SO-AD is the single-objective with 
adaptive defuzzification and SO-ADI(0.1-0.9) is the single-
objective approach with the mechanism to improve the 
interpretability, together with the results of the multi-
objective approach MO-ADI(0.1-0.9) for the most accurate 
point from Table 5 and 6.  

To compare the multi-objective approach against the 
single-objective ones, we performed a statistical 
analysis in the different measures to check if there are 

Table 7 Results obtained by standard single-objectives models accuracy oriented (SO-AD) vs single-objectives models with the 
interpretability improvement mechanism (SO-ADI(0.1-0.9)),and multi-objective models proposal (MO-ADI(0.1-0.9)), with both, WM 

and FS_MOGUL rule bases 

  WM FS_MOGUL 

Dataset FRBSs MSEtra MSEtst #RF RW_AvRTG (#RW  AvRT ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRT ) 

PLA 
SO-AD 1.694533 1.749531 14.80 0.913       (14.80     3.30) 1.274698 1.295137 75.40 0.904       (75.40   19.25) 
SO-ADI 1.705751 1.765311 14.33 0.813       (11.97     3.27) 1.252672 1.269589 58.97 0.645       (52.83   14.02) 
MO-ADI 1.699226 1.759935 14.0 0.771       (10.80     3.25) 1.163733 1.201293 40.5 0.379       (28.03     9.16) 

QUA SO-AD 0.021303 0.022412 53.60 0.892       (53.60     6.27) 0.017394 0.018187 227.60 0.829       (227.60  32.89) 
SO-ADI 0.021163 0.022351 42.40 0.633       (38.17     4.43) 0.017366 0.018170 205.97 0.720       (197.87  28.48) 
MO-ADI 0.020675 0.021944 32.6 0.448       (22.67     3.79) 0.017111 0.018167 170.8 0.553       (141.50  24.26) 

ELE SO-AD 36455 38917 65.00 0.880       (65.00   10.66) 43517 47035 88.80 0.759       (88.80   10.04) 
SO-ADI 36546 39295 58.17 0.738       (54.03     9.02) 43444 46938 80.43 0.662       (74.63     9.37) 
MO-ADI 32518 35633 45.2 0.469       (33.27     5.96) 39495 42072 52.0 0.352       (33.80     6.28) 

AU6 SO-AD 2.917724 6.002718 116.00 0.777       (116.00    9.10) 3.252887 6.565788 170.60 0.731       (170.60  13.54) 
SO-ADI 2.914147 6.034773 104.67 0.673       (99.17     8.06) 3.245635 6.629009 154.97 0.640       (146.47  12.36) 
MO-ADI 2.568845 6.457802 73.6 0.387       (48.77     5.77) 2.941543 6.263927 111.0 0.389       (79.53     9.18) 

AU8 SO-AD 9.222880 10.51600 70.60 0.771       (70.60     9.65) 7.804103 8.910248 78.80 0.812       (78.80   11.05) 
SO-ADI 9.204716 10.72178 59.90 0.621       (56.07     7.97) 7.796410 9.112414 66.13 0.648       (61.93     9.04) 
MO-ADI 8.897037 10.759520 36.2 0.303       (23.00     4.99) 7.386325 9.000788 33.3 0.283       (22.67     4.81) 

ANA SO-AD 0.008360 0.010359 72.40 0.752       (72.40     2.01) 0.023771 0.026515 211.20 0.740       (211.20   7.00) 
SO-ADI 0.010606 0.012647 70.30 0.698       (64.83     2.00) 0.020551 0.023209 189.73 0.617       (183.13   5.34) 
MO-ADI 0.007488 0.009588 67.5 0.659       (59.50     1.98) 0.007158 0.009335 133.0 0.358       (91.53     4.12) 

ABA SO-AD 5.101607 5.078695 68.20 0.912       (68.20   15.64) 6.374271 6.385199 50.20 0.854       (50.20     9.40) 
SO-ADI 5.077808 5.059224 56.57 0.707       (51.90   12.40) 6.235069 6.249418 40.30 0.614       (36.87     6.59) 
MO-ADI 4.753375 4.789237 26.5 0.225       (13.47     4.79) 6.198179 6.219666 24.9 0.311       (15.07     4.32) 

CON SO-AD 58.142348 62.98518 135.40 0.692       (135.40  19.63) 61.601930 65.901353 124.40 0.697      (124.40  19.30) 
SO-ADI 57.845984 62.69151 118.10 0.569       (110.30  16.45) 61.289333 65.672337 108.17 0.568      (100.80  15.99) 
MO-ADI 50.3219 57.5966 59.9 0.219       (37.07     8.39) 56.380503 62.489223 62.6 0.257      (39.37      9.66) 

STP SO-AD 3.784825 3.810319 122.80 0.849       (122.80  36.25) 4.371739 4.459575 45.60 0.870      (45.60    14.49) 
SO-ADI 3.556481 3.571853 98.40 0.643       (91.97   27.91) 4.302168 4.399084 34.57 0.567      (30.03      9.32) 
MO-ADI 2.052056 2.154450 36.7 0.139       (15.43     7.94) 4.159594 4.255350 25.0 0.287      (11.73      6.19) 

WAN SO-AD 7.775341 8.005151 156.00 0.845       (156.00  60.23) 14.300552 14.573703 33.40 0.864      (33.40    13.09) 
SO-ADI 7.626420 7.883073 136.73 0.713       (129.27  52.19) 14.194849 14.484166 25.43 0.622      (23.00    10.00) 
MO-ADI 5.983361 6.674879 48.6 0.190       (27.90   17.52) 13.774738 14.009191 16.1 0.361      (12.27      6.19) 

WIZ SO-AD 3.331755 3.574799 104.80 0.883       (104.80  35.21) 4.034584 4.544982 52.40 0.863      (52.40    18.26) 
SO-ADI 3.316957 3.583501 92.80 0.750       (87.43   30.59) 3.943292 4.418400 42.47 0.659      (39.60    14.19) 
MO-ADI 2.629827 3.068601 43.2 0.297       (27.57   15.13) 3.413844 3.856717 25.0 0.351      (19.80      8.12) 

MOR SO-AD 0.329428 0.328112 77.60 0.868       (77.60   29.29) 0.361349 0.364585 31.40 0.857      (31.40    11.25) 
SO-ADI 0.263595 0.273204 58.50 0.633       (54.50   22.42) 0.346304 0.347567 21.20 0.557      (19.43      7.80) 
MO-ADI 0.153782 0.165901 16.5 0.144       (  9.57     6.50) 0.267971 0.275199 12.8 0.305      (  9.03      5.06) 

TRE SO-AD 0.428898 0.432897 75.00 0.884       (75.00   28.12) 0.595556 0.587049 33.00 0.827      (33.00    11.39) 
SO-ADI 0.374909 0.378188 57.00 0.653       (53.30   21.73) 0.578306 0.573042 23.00 0.553      (20.63      8.36) 
MO-ADI 0.202813 0.232601 20.3 0.177       (12.23     7.00) 0.448043 0.436540 10.4 0.229      (  7.20      4.17) 
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significant differences. This study can be consulted in 
Appendix B.  

Thus, viewing Table 7 and the statistical analysis of 
Appendix B, we can conclude: 
• The multi-objective proposal, for the most accurate 

point, statistically overcomes the accuracy of the 
single-objective accuracy oriented approaches. This 
is an important result, because the use of the 
mechanism proposed to improve the interpretability 
of adaptive defuzzification methods together with 
the MOEA is improving not only their 
interpretability but also their accuracy.  

• As was expected, the interpretability measures of 
the multi-objective approach for the most accurate 
point are better than the ones for the single-
objective accuracy oriented approaches. 

• Taking into account only the single-objective 
approaches, SO-ADI(0.1-0.9) outperforms SO-AD. 
Thus, the mechanism to improve the interpretability 
also proposed for the single-objective methods, 
improves their accuracy when using TL=0.1 and 
TH=0.9 

Figure 3 shows the representative points for MO-
ADI(0.1-0.9), SO-AD and SO-ADI(0.1-0.9) for TRE dataset 
obtained using WM rule bases. It shows the 
approximations of the Pareto fronts achieved by MO-
ADI(0.1-0.9) and the relative position of the results 
obtained with the single-objective methods, SO-AD and 
SO-ADI(0.1-0.9). Similar results are obtained for all 
datasets and FS-MOGUL rule bases. 

Figure 4 shows a representative example on WIZ 
dataset in order to reveal that the #RF is moving in the 
same way as the RW_AvRTG index in the approximated 

Pareto fronts provided by MO-ADI(0.1-0.9). We plot the 
solutions from MO-ADI(0.1-0.9) two-dimensionally, and 
plot the projections of these solutions on the accuracy-
#RF and accuracy-RW_AvRTG planes jointly with the 
single-objective SO-AD and SO-ADI(0.1-0.9). In order to 
retain all the information, in this figure the dominated 
solutions obtained from the projections have not been 
removed. Some researchers have also used these kinds 
of projections for graphic representation when three 
objectives are optimized together28, 57. 

 

Fig. 4.  Example Pareto fronts obtained in WIZ problem. 

Fig. 3.  Average pareto fronts obtained for TRE data sets in 
the accuracy-interpretability plane using WM rule bases. 
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4.3. Second part of the experimental study 

In this subsection we analyse the practical behaviour 
of the second or adaptive thresholds model proposed. 

Table 8 summarizes the FRBSs considered. We 
compare the adaptive interpretability improvement 
mechanism approach against two of the previously 
employed fixed threshold approaches, TL=0.1 and 
TH=0.9, and TL=0.3 and TH=0.7. Regarding the MOEA 
set-up, the initial population was obtained initializing all 
the individuals randomly (between 0 to 1 in CD part and 
within the corresponding variation intervals defined in 
CT part) except those whose genes all have value ‘1’ in 
the CD part in order to begin the evolutionary process 
with all the rules activated and without weights, and the 
CT part with βT=1, which is TL=0 and TH=1. 

The rest of the set-up of the MOEA used is the same 
employed in section 4.1 for the first part of the 
experimental study. 

Table 8. FRBSs considered for comparison 

FRBSs Description 
 Multi-Objective FRBSs 
MO-ADI Adaptive Defuzzification with 

fixed mechanism to improve 
interpretability  

MO-ADI(A) Adaptive Defuzzification with 
adaptable mechanism to 
improve interpretability  

Results and analysis 

Tables 9 and 10 show the results for the three 
representative points: the most accurate, the median, 
and the most interpretable. Viewing them, we can see 
that the most accurate solution of the adaptive 
mechanism MO-ADI(A) is very close to the most 
accurate fixed thresholds approach MO-ADI(0.1-0.9) and 
usually, the most interpretable (using the index 
proposed) obtained by MO-ADI(A) is normally more 
interpretable than the most interpretable of MO-ADI(0.3-

0.7), but sometimes the most interpretable solution 
obtained may be unusable because its accuracy is very 
bad. 

However, we actually consider that the 
aforementioned three representative points do not show 
the usefulness of this adaptive approach. This time, we 
needed to use other tools to study the behaviour of the 
new adaptive interpretability improvement mechanism 

for adaptive defuzzification systems in order to compare 
it with the non adaptive approach.  

Figure 5 shows an example of the Pareto fronts 
obtained by the MO-ADI(A) , MO-ADI(0.1-0.9) and MO-
ADI(0.3-0.7). It reveals the interest of the solutions 
obtained by the MO-ADI(A) because the curve is below 
the two other in most of them, i.e. it has more 
interpretable solutions taking the same level of 
accuracy. 

For this reason, we used the Two Set Coverage57 
(CS) ratio previously cited. Their results are shown in 
Table 11. The best results obtained are highlighted in 
bold. It can be observed that MO-ADI(A) is better than 
both, MO-ADI(0.1-0.9) and MO-ADI(0.3-0.7) for almost all 
problems. 

Figure 6 shows an example of the thresholds found 
by the adaptive width mechanism. Probably the most 
interesting zones of solutions are those with the lower 
interpretability index (RW_AvRTG around 0.04) which 
keep the error at the lower values (close to 0) and 
thresholds are between TL=0.25 and TH=0.75, and 
TL=0.3 and TH=0.7. 

Therefore, we can conclude the following: 
• The proposal based on the use of adaptive 

mechanism to improve the interpretability of 
FRBSs with adaptive defuzzification, MO-ADI(A), 
allow us to obtain, in a single execution of the 
algorithm, a set of solutions ranging from the most 
interpretable to the most accurate without the need 
to set up thresholds to obtain a more interpretable 
or more accurate set of solutions. 

• The set of solutions obtained with the MO-ADI(A) 
approach improves on those obtained with the fixed 
thresholds mechanism approaches, thus constituting 
a preferable design option. 

5. Conclusions 

Classically, linguistic fuzzy modelling has focused 
on the improvement of system accuracy. Recently, there 
has been a growing interest in interpretability, initially 
in not significantly affecting the interpretability while 
improving the accuracy, and now improving the 
accuracy together with the interpretability.  

This evolution has also required an understanding of 
the different factors and slopes involving the 
interpretability, which is a subjective concept and thus 
difficult to evaluate. At present, some works30,31-33 
propose different taxonomies and key considerations to 
better achieve and deal with interpretability.  
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Table 9. Results obtained by MO-ADI for different configurations of thresholds using the WM rule base 

  MAX INT MEDIAN (INT / ACC) MAX ACC 

Dataset MO-ADI MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) TL - TH 
PLA 0.1 - 0.9 6.947800 6.940028 6.1       0.128     (  0.00    1.02) 2.073691 2.091053 10.6       0.385     (  2.23    2.48) 1.699226 1.759935 14.0       0.771     (10.80    3.25) 

0.3 - 0.7 7.042636 7.042633 6.0       0.125     (  0.00    1.00) 2.543587 2.545364 10.4       0.309     (  0.60    2.31) 1.830941 1.900387 12.4       0.551     (  6.13    2.75) 
Adaptive 3.516398 3.587155 5.00       0.132     (  0.00    1.05) 2.157240 2.168258 9.67       0.344     (  1.70    2.30) 1.690599 1.745825 14.07       0.783     (11.13    3.26) 

QUA 0.1 - 0.9 0.023570 0.024276 22.7       0.179     (  4.93    2.12) 0.020914 0.022153 27.2       0.287     (10.60    3.01) 0.020675 0.021944 32.6       0.448     (22.67    3.79) 
0.3 - 0.7 0.026361 0.027337 17.7       0.114     (  0.13    1.80) 0.021700 0.022975 24.7       0.193     (  3.13    2.62) 0.020897 0.022139 31.4       0.380     (17.37    3.49) 
Adaptive 0.071487 0.071611 6.10       0.018     (  0.00    0.28) 0.036666 0.037420 9.97       0.063     (  0.23    0.97) 0.020688 0.022138 32.97       0.450     (23.70    3.66) 

ELE 0.1 - 0.9 57867 60608 35.8       0.167     (  7.37    3.10) 35428 39094 38.6       0.285     (16.30    4.48) 32518 35633 45.2       0.469     (33.27    5.96) 
0.3 - 0.7 143152 150408 20.0       0.063     (  0.03    1.77) 64459 70994 27.6       0.086     (  1.17    2.16) 33433 35677 45.4       0.421     (25.97    6.19) 
Adaptive 4515380 4510411 13.03       0.014     (  0.00    0.39) 308668 326805 17.60       0.049     (  0.00    1.39) 32809 35539 45.00       0.482     (32.57    6.49) 

AU6 0.1 - 0.9 3.487613 6.568578 84.6       0.214     (  6.60    6.07) 2.746415 6.482094 73.4       0.293     (28.57    5.57) 2.568845 6.457802 73.6       0.387     (48.77    5.77) 
0.3 - 0.7 5.551319 9.068401 40.9       0.086     (  0.27    2.78) 3.326684 7.252765 52.2       0.132     (  3.43    3.84) 2.687347 6.430410 72.5       0.325     (35.53    5.61) 
Adaptive 4.825753 8.955610 47.60       0.109     (  1.70    3.33) 3.024116 7.687152 56.40       0.189     (13.70    4.26) 2.609892 6.387879 78.97       0.441     (58.43    6.20) 

AU8 0.1 - 0.9 11.281517 13.152617 32.1       0.132     (  3.00    3.93) 9.102294 11.28545 33.9       0.201     (10.80    4.45) 8.897037 10.759520 36.2       0.303     (23.00    4.99) 
0.3 - 0.7 21.088986 23.062541 14.8       0.054     (  0.00    1.93) 10.672853 12.84438 21.4       0.090     (  1.13    2.91) 9.127924 11.186454 35.9       0.255     (17.23    4.73) 
Adaptive 19.514876 20.801083 12.77       0.045     (  0.30    1.52) 9.739728 11.83919 22.57       0.120     (  5.23    2.97) 8.887143 10.698300 37.17       0.325     (25.63    5.13) 

ANA 0.1 - 0.9 0.647718 0.646577 63.7       0.190     (  1.77    1.43) 0.107990 0.109300 67.1       0.267     (  3.67    1.94) 0.007488 0.009588 67.5       0.659     (59.50    1.98) 
0.3 - 0.7 0.955815 0.960777 45.6       0.137     (  0.03    1.09) 0.438822 0.440663 50.6       0.195     (  0.70    1.52) 0.007551 0.009691 64.8       0.531     (41.37    1.96) 
Adaptive 0.360127 0.360551 38.87       0.054     (  0.00    0.43) 0.104234 0.110433 49.33       0.160     (  2.07    1.17) 0.007347 0.009452 66.80       0.656     (59.13    1.98) 

ABA 0.1 - 0.9 7.613683 7.712487 15.2       0.083     (  2.00    2.58) 4.836747 4.858605 19.8       0.142     (  6.23    3.66) 4.753375 4.789237 26.5       0.225     (13.47    4.79) 
0.3 - 0.7 14.830294 14.893969 10.3       0.044     (  0.00    1.66) 6.432483 6.432756 13.4       0.066     (  0.37    2.42) 4.821530 4.845469 23.1       0.184     (  9.37    4.39) 
Adaptive 11.779818 11.777811 5.30       0.027     (  0.03    1.01) 5.504223 5.571520 9.70       0.066     (  1.20    2.19) 4.761915 4.779487 25.87       0.232     (13.97    4.91) 

CON 0.1 - 0.9 70.753300 76.129910 83.8       0.131     (  6.30  10.97) 55.1029 61.1530 71.5       0.169     (20.23    9.65) 50.3219 57.5966 59.9       0.219     (37.07    8.39) 
0.3 - 0.7 128.97494 134.53928 25.9       0.030     (  0.03    3.06) 73.2893 83.2969 33.2       0.049     (  1.60    4.37) 52.9665 59.9898 60.0       0.198     (31.23    8.43) 
Adaptive 121.13485 127.93996 28.87       0.037     (  0.53    3.53) 62.424558 69.86624 38.17       0.071     (  4.97    5.38) 50.580760 57.292015 64.60       0.254     (44.00    9.34) 

STP 0.1 - 0.9 3.708981 3.794866 25.7       0.061     (  3.20    5.04) 2.129880 2.227016 29.8       0.092     (  7.83    6.25) 2.052056 2.154450 36.7       0.139     (15.43    7.94) 
0.3 - 0.7 8.334997 8.401997 10.5       0.024     (  0.07    2.44) 3.113456 3.240279 15.9       0.039     (  1.13    3.58) 2.191832 2.272137 33.8       0.106     (  9.67    6.91) 
Adaptive 15.327830 15.680952 11.33       0.019     (  0.00    1.96) 2.568037 2.731294 19.27       0.048     (  2.27    4.00) 2.080961 2.147385 36.77       0.135     (14.63    7.88) 

WAN 0.1 - 0.9 6.463753 7.172746 38.8       0.115     (12.30  13.24) 6.033333 6.780082 43.1       0.146     (18.50  15.22) 5.983361 6.674879 48.6       0.190     (27.90  17.52) 
0.3 - 0.7 16.437768 17.227865 19.2       0.029     (  0.03    5.03) 7.376043 8.159211 27.6       0.052     (  0.67    8.66) 6.130478 6.859088 46.0       0.140     (14.50  16.28) 
Adaptive 13.890007 13.886866 26.77       0.052     (  0.67    8.81) 6.702816 7.416840 34.43       0.085     (  5.10  11.93) 6.033621 6.791114 46.00       0.165     (21.27  16.96) 

WIZ 0.1 - 0.9 3.846971 4.359892 30.5       0.147     (  7.90  10.00) 2.718277 3.149809 36.1       0.211     (14.73  12.86) 2.629827 3.068601 43.2       0.297     (27.57  15.13) 
0.3 - 0.7 24.760387 25.488658 14.8       0.034     (  0.03    3.11) 5.940635 6.631707 19.3       0.062     (  0.73    5.35) 2.734843 3.302554 45.1       0.265     (20.30  15.39) 
Adaptive 19.506770 20.197547 17.27       0.056     (  0.23    5.01) 3.220616 3.690454 25.80       0.115     (  3.57    8.98) 2.643355 3.061785 44.60       0.311     (29.27  15.63) 

MOR 0.1 - 0.9 1.590566 1.564395 9.2       0.042     (  0.77    2.97) 0.201851 0.219410 12.9       0.079     (  2.83    4.83) 0.153782 0.165901 16.5       0.144     (  9.57    6.50) 
0.3 - 0.7 3.180415 3.323322 5.6       0.021     (  0.00    1.64) 0.551852 0.574422 8.5       0.039     (  0.43    2.86) 0.163368 0.175955 18.2       0.137     (  7.90    6.86) 
Adaptive 2.080311 2.089618 5.23       0.020     (  0.03    1.60) 0.339201 0.355028 8.27       0.041     (  0.53    3.01) 0.165634 0.186429 17.07       0.148     (  9.60    6.80) 

TRE 0.1 - 0.9 1.720608 1.786207 10.3       0.045     (  0.67    2.96) 0.248659 0.280729 14.2       0.086     (  3.10    4.75) 0.202813 0.232601 20.3       0.177     (12.23    7.00) 
0.3 - 0.7 4.611414 4.668308 5.5       0.025     (  0.00    1.80) 1.005509 1.023034 7.9       0.039     (  0.23    2.72) 0.212469 0.238197 18.9       0.144     (  7.93    6.68) 
Adaptive 3.887324 3.855478 5.20       0.019     (  0.00    1.41) 0.796229 0.820500 7.90       0.040     (  0.33    2.74) 0.223408 0.229770 22.17       0.199     (13.30    8.09) 
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Table 10. Results obtained by MO-ADI for different configurations of thresholds using the FS_MOGUL rule base 

  MAX INT MEDIAN (INT / ACC) MAX ACC 

Dataset MO-ADI MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) MSEtra MSEtst #RF RW_AvRTG (#RW  AvRTG ) TL - TH 
PLA 0.1 - 0.9 1.574572 1.623150 21.9       0.130     (  4.80    4.68) 1.171741 1.207446 29.3       0.216     (11.57    6.61) 1.163733 1.201293 40.5       0.379     (28.03    9.16) 

0.3 - 0.7 5.290166 5.346323 7.0       0.029     (  0.00    1.38) 1.754391 1.810790 13.2       0.063     (  0.10    2.97) 1.166274 1.204826 33.5       0.251     (14.87    7.24) 
Adaptive 3.231820 3.335011 12.67       0.059     (  0.50    2.65) 1.281801 1.301098 21.33       0.129     (  4.40    4.73) 1.163860 1.200922 41.47       0.387     (28.50    9.41) 

QUA 0.1 - 0.9 0.021684 0.022334 199.7       0.292     (13.63  26.19) 0.017291 0.018149 177.8       0.385     (71.50  22.83) 0.017111 0.018167 170.8       0.553     (141.50  24.26) 
0.3 - 0.7 0.017608 0.018610 86.4       0.129     (13.13  10.08) 0.017135 0.018257 98.0       0.174     (22.40  12.52) 0.017088 0.018183 117.2       0.268     (48.00  16.29) 
Adaptive 0.017483 0.018617 99.30       0.160     (16.63  12.46) 0.017136 0.018311 105.77       0.205     (28.47  14.31) 0.017086 0.018236 122.67       0.311     (62.93  17.35) 

ELE 0.1 - 0.9 64241 67141 56.0       0.129     (  4.23    4.10) 42156 45526 49.5       0.228     (17.10    5.09) 39495 42072 52.0       0.352     (33.80    6.28) 
0.3 - 0.7 108723 113721 23.2       0.048     (  0.07    1.85) 61099 65626 29.1       0.078     (  2.07    2.56) 40766 43063 48.5       0.258     (22.10    5.18) 
Adaptive 4026527 4027142 29.33       0.028     (  0.40    0.99) 157856 155209 34.07       0.076     (  1.97    2.51) 39974 42599 58.60       0.434     (43.93    7.25) 

AU6 0.1 - 0.9 3.821884 6.764193 143.4       0.197     (  4.50  10.80) 3.296278 6.516126 129.9       0.266     (32.60    9.97) 2.941543 6.263927 111.0       0.389     (79.53    9.18) 
0.3 - 0.7 4.202431 7.836509 58.7       0.083     (  3.43    4.31) 3.124690 7.149861 69.9       0.126     (10.77    5.52) 2.976153 6.502033 88.3       0.226     (34.93    7.27) 
Adaptive 4.124317 8.088891 66.67       0.104     (  6.47    4.94) 3.086823 7.151888 77.37       0.176     (24.03    6.14) 2.949025 6.371336 109.33       0.379     (77.10    8.94) 

AU8 0.1 - 0.9 10.610777 11.814385 24.6       0.120     (  3.97    3.30) 7.526326 9.129575 27.7       0.185     (11.33    3.95) 7.386325 9.000788 33.3       0.283     (22.67    4.81) 
0.3 - 0.7 19.910480 20.495670 14.7       0.056     (  0.00    2.00) 9.872984 11.83105 19.3       0.081     (  0.37    2.76) 7.505406 9.082736 32.1       0.238     (17.17    4.52) 
Adaptive 18.357268 19.391021 10.00       0.036     (  0.27    1.20) 8.196575 9.935652 19.33       0.106     (  4.20    2.76) 7.398018 8.961176 34.93       0.305     (24.73    5.10) 

ANA 0.1 - 0.9 0.044437 0.047909 174.4       0.188     (12.07    4.67) 0.013463 0.015529 154.4       0.250     (44.00    4.24) 0.007158 0.009335 133.0       0.358     (91.53    4.12) 
0.3 - 0.7 0.126768 0.126480 85.7       0.094     (  8.33    2.16) 0.015763 0.018568 92.5       0.125     (10.17    2.93) 0.007180 0.009461 108.3       0.216     (34.20    3.92) 
Adaptive 0.143600 0.143536 115.67       0.078     (  3.40    2.05) 0.033059 0.036042 122.23       0.119     (11.07    2.72) 0.007096 0.009207 125.23       0.321     (77.90    3.97) 

ABA 0.1 - 0.9 10.034018 9.980401 15.6       0.098     (  1.10    2.33) 6.252071 6.261997 20.2       0.180     (  5.57    3.34) 6.198179 6.219666 24.9       0.311     (15.07    4.32) 
0.3 - 0.7 13.471095 13.490648 9.1       0.058     (  0.00    1.56) 6.933849 6.956984 13.8       0.099     (  0.70    2.45) 6.204145 6.222632 22.9       0.220     (  7.90    3.77) 
Adaptive 11.046818 11.051219 5.73       0.036     (  0.07    0.94) 6.615973 6.628668 10.77       0.088     (  1.67    1.92) 6.197562 6.219388 22.13       0.276     (13.50    3.80) 

CON 0.1 - 0.9 67.672232 71.789422 86.8       0.143     (  5.13  12.02) 59.010937 65.03955 66.0       0.201     (25.23    9.74) 56.380503 62.489223 62.6       0.257     (39.37    9.66) 
0.3 - 0.7 116.57328 123.10188 27.7       0.036     (  0.30    3.45) 66.961798 73.82797 36.8       0.066     (  2.67    5.44) 57.450287 63.305839 58.3       0.189     (24.53    8.79) 
Adaptive 102.84723 110.31467 26.50       0.038     (  0.47    3.56) 61.63860 67.58694 37.37       0.078     (  4.90    5.72) 56.389478 62.40864 58.00       0.227     (33.40    9.06) 

STP 0.1 - 0.9 5.405339 5.474713 13.3       0.096     (  1.33    3.21) 4.259753 4.362481 18.6       0.167     (  4.63    4.54) 4.159594 4.255350 25.0       0.287     (11.73    6.19) 
0.3 - 0.7 8.748136 8.816542 7.9       0.058     (  0.00    2.25) 4.455629 4.560821 14.7       0.125     (  2.67    3.75) 4.194782 4.309624 24.9       0.252     (  8.50    6.22) 
Adaptive 12.726416 12.816972 5.17       0.028     (  0.00    1.07) 4.374793 4.494771 13.10       0.110     (  2.67    3.18) 4.165515 4.247484 24.87       0.284     (11.53    6.17) 

WAN 0.1 - 0.9 26.310868 26.725976 9.6       0.088     (  0.53    2.86) 14.522565 14.77936 13.3       0.193     (  4.40    4.46) 13.774738 14.009191 16.1       0.361     (12.27    6.19) 
0.3 - 0.7 32.988571 34.115293 7.9       0.065     (  0.00    2.26) 15.540758 16.02159 11.5       0.122     (  0.93    3.81) 13.948231 14.207306 15.2       0.302     (  9.47    5.61) 
Adaptive 63.395682 62.167748 5.17       0.036     (  0.03    1.20) 14.83103 15.04641 9.77       0.141     (  2.57    3.46) 13.770163 13.98595 15.83       0.363     (12.60    6.25) 

WIZ 0.1 - 0.9 12.545764 13.543774 15.7       0.107     (  2.57    4.18) 3.881428 4.467590 19.7       0.193     (  7.50    6.11) 3.413844 3.856717 25.0       0.351     (19.80    8.12) 
0.3 - 0.7 34.337238 36.299840 10.5       0.054     (  0.00    2.74) 6.706427 7.391861 14.5       0.091     (  0.87    4.18) 3.547122 4.014734 24.5       0.291     (14.73    7.61) 
Adaptive 68.862557 68.324376 7.23       0.029     (  0.03    1.50) 11.29783 11.72132 11.77       0.093     (  1.80    3.86) 3.419498 3.854768 24.50       0.358     (20.27    8.28) 

MOR 0.1 - 0.9 3.056375 3.052106 6.0       0.060     (  0.03    1.89) 0.423308 0.439410 8.6       0.134     (  2.57    2.93) 0.267971 0.275199 12.8       0.305     (  9.03    5.06) 
0.3 - 0.7 3.689980 3.747015 5.8       0.050     (  0.00    1.58) 0.548342 0.553402 7.8       0.109     (  1.50    2.69) 0.283597 0.290467 13.0       0.293     (  8.13    5.15) 
Adaptive 2.081246 2.046311 5.07       0.044     (  0.00    1.38) 0.364971 0.368820 7.30       0.137     (  3.07    2.77) 0.293933 0.306642 12.93       0.321     (  9.23    5.47) 

TRE 0.1 - 0.9 4.887197 5.066371 5.8       0.054     (  0.17    1.80) 0.806103 0.792245 8.7       0.104     (  0.87    3.17) 0.448043 0.436540 10.4       0.229     (  7.20    4.17) 
0.3 - 0.7 4.886871 4.991007 5.7       0.046     (  0.00    1.62) 0.991394 0.975439 8.0       0.084     (  0.23    2.81) 0.455389 0.437021 10.3       0.211     (  6.17    4.10) 
Adaptive 3.762724 3.686490 5.00       0.043     (  0.00    1.49) 0.906458 0.912706 6.73       0.080     (  0.17    2.68) 0.449993 0.436562 10.90       0.246     (  7.93    4.38) 
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The most spread adaptive defuzzification, based on 

the use of rule weights, improves significantly the 
accuracy of the FRBSs, but reduces the system 
interpretability noticeably. In this work, and making use 
of an important instrument nowadays in the 
development of accurate and interpretable FRBSs such 
as multi-objective evolutionary algorithms, we propose 
a way to improve the interpretability of this kind of 
adaptive defuzzification systems also improving their 
accuracy. This is carried out by introducing a 
mechanism to reduce the number of rules, the number of 
rules with weights and proposing an interpretability 
index that also involves the measure of rules triggered 

 
Fig. 5.  Example Pareto fronts and Thresholds obtained in MOR problem  

 
Fig. 6.  Example of thresholds found by the adaptive width 
mechanism in MOR problem. 

Table 11 CS ratios obtained in the accuracy-interpretability plane  

 WM FS_MOGUL 
Datasets Adaptive 

vs. 

0.1_0.9 

0.1_0.9 

vs. 

Adaptive 

Adaptive 

vs. 

0.3_0.7 

0.3_0.7 

vs. 

Adaptive 

Adaptive 

vs. 

0.1_0.9 

0.1_0.9 

vs. 

Adaptive 

Adaptive 

vs. 

0.3_0.7 

0.3_0.7 

vs. 

Adaptive 
PLA 0.733 0.205 0.788 0.119 0.825 0.373 0.363 0.708 
QUA 0.278 0.671 0.416 0.491 0.815 0.200 0.381 0.875 
ELE 0.263 0.554 0.243 0.641 0.563 0.321 0.144 0.815 
AU6 0.675 0.445 0.811 0.211 0.605 0.502 0.299 0.815 
AU8 0.683 0.363 0.709 0.447 0.806 0.337 0.803 0.399 
ANA 0.830 0.051 0.966 0.001 0.904 0.008 0.613 0.227 
ABA 0.726 0.157 0.906 0.079 0.822 0.140 0.922 0.112 
CON 0.643 0.182 0.554 0.424 0.912 0.063 0.678 0.397 
STP 0.470 0.329 0.595 0.420 0.675 0.307 0.845 0.180 

WAN 0.654 0.267 0.531 0.478 0.910 0.149 0.937 0.099 
WIZ 0.613 0.297 0.591 0.253 0.807 0.198 0.886 0.105 
MOR 0.627 0.187 0.794 0.164 0.792 0.154 0.860 0.125 
TRE 0.439 0.292 0.677 0.297 0.772 0.105 0.802 0.127 
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jointly, to reach different slopes of the interpretability 
together. The methodology proposed can be self-
adaptive, and produces a set of solutions with different 
balance, from the most interpretable to the most 
accurate, also improving the accuracy of this kind of 
classical adaptive defuzzification accuracy oriented 
methods, as shown by developing an experimental study 
with thirteen data sets, two different rule bases, 
statistical tests and a measure to compare multi-
objective Pareto fronts. 

It is important to note that adaptive defuzzification, 
and thus the proposal developed in this paper, can be 
combined with other methodologies to design or 
improve the accuracy or interpretability of fuzzy rule 
based systems. It may be viewed as an additional 
element to use within this context.    

We consider that together with interpretability 
comprehension and advances, methods to improve 
interpretability could be enhanced in the near future, 
based on the fine balanced combination of measures and 
slopes of interpretability. 
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Appendix A.  

Statistical analysis of the comparison between the 
different thresholds  

Tables A.1 to A.6 show the rankings of the different 
methods considered in this study for WM and 
FS_MOGUL rule bases, respectively. This study also 
took into account the #RF measure in order to confirm 
the relation between RW_AvRTG index and #RF measure. 
The Friedman test tells us that there are significant 
differences among the results observed in all data-sets 
when the p-fried <0.05. Indeed, for MAX ACC, 
MEDIAN INT/ACC and the MAX INT there are 
significant differences between the uses of different 
thresholds. However, in all points the best ranking is 
obtained by MO-ADI(0.1-0.9) for the accuracy and the                    
MO-ADI(0.3-0.7)for the index of RW_AvRTG  and #RF 
measure.  

In almost all cases (excepting MAX ACC for #RF) 
 
 
 

 
 
 

we now can apply Finner post-hoc procedure to 
compare the best ranking method in each case with the 
remaining methods. Tables A.7 to A.12 present these 
results. In these tables, the algorithms are ordered with 
respect to the p-value obtained with respect to control 
algorithm. Finner’s test rejects the hypothesis of 
equality when the p-Finner is < 0.05. Indeed, the 
Finner’s test rejects the hypothesis of equality for 
MSETST for MAX ACC, MAX INT and MEDIAN 
INT/ACC point when the control algorithm is           
MO-ADI(0.1-0.9). It also rejects the hypothesis with      
MO-ADI(0.3-0.7) methods in RW_AvRTG for all 
representative points.  

On the other hand, it also rejects the hypothesis with 
MO-ADI(0.3-0.7) methods in #RF in MAX INT and 
MEDIAN INT/ACC point but not in MAX ACC. 
Nevertheless, in all cases the best algorithm (control 
algorithm) is MO-ADI(0.3-0.7)..  

Table A.1 Rankings obtained through Friedman’s test for different values of thresholds on MSETST, RW_AvRTG and #RF  
measures using WM rule bases for MAX ACC point. 

Algorithm Ranking on MSETST 
(p-fried: 0,000196) 

Ranking RW_AvRTG  (p-
friedn:0,000006) 

Ranking on RF 
(p-fried: 0,125315) 

MO-ADI(0.1-0.9) 1.1538 3 2.4615 

MO-ADI(0.2-0.8) 2.0769 1.9231 1.7692 

MO-ADI(0.3-0.7) 2.7692 1.0769 1.7692 

Table A.2 Rankings obtained through Friedman’s test for different values of thresholds on MSETST, RW_AvRTG and #RF  
measures using FS_MOGUL rule bases for MAX ACC point. 

Algorithm Ranking on MSETST 
(p-fried: 0,0000091) 

Ranking RW_AvRTG   
(p-fried: 0,000002) 

Ranking on RF 
(p-fried: 0,001366) 

MO-ADI(0.1-0.9) 1.1538 3 2.8077 

MO-ADI(0.2-0.8) 2 2 1.7308 

MO-ADI(0.3-0.7) 2.8462 1 1.4615 

 

Table A.3 Rankings obtained through Friedman’s test for different values of thresholds on MSETST, RW_AvRTG and #RF  
measures using WM rule bases for MAX INT point. 

Algorithm Ranking on MSETST 
(p-fried: 0,000004) 

Ranking RW_AvRTG   
(p-fried: 0,000004) 

Ranking on RF 
(p-fried: 0,000004) 

MO-ADI(0.1-0.9) 1 3 3 

MO-ADI(0.2-0.8) 2.0385 1.9615 1.9615 

MO-ADI(0.3-0.7) 2.9615 1.0385 1.0385 
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Table A.4 Rankings obtained through Friedman’s test for different values of thresholds on MSETST, RW_AvRTG and #RF  
measures using FS_MOGUL rule bases for MAX INT point. 

Algorithm Ranking on MSETST 
(p-fried: 0,000912) 

Ranking RW_AvRTG   
(p-fried: 0,000002) 

Ranking on RF 
(p-fried: 0,000012) 

MO-ADI(0.1-0.9) 1.3077 3 3 

MO-ADI(0.2-0.8) 1.9231 2 1.8462 

MO-ADI(0.3-0.7) 2.7692 1 1.1538 

Table A.5 Rankings obtained through Friedman’s test for different values of thresholds on MSETST, RW_AvRTG and #RF  
measures using WM rule bases for MEDIAN INT/ACC point. 

Algorithm Ranking on MSETST 
(p-fried: 0,000002) 

Ranking RW_AvRTG   
(p-fried: 0,000002) 

Ranking on RF 
(p-fried: 0,000002) 

MO-ADI(0.1-0.9) 1 3 3 

MO-ADI(0.2-0.8) 2 2 2 

MO-ADI(0.3-0.7) 3 1 1 

Table A.6 Rankings obtained through Friedman’s test for different values of thresholds on MSETST, RW_AvRTG and #RF  
measures using FS_MOGUL rule bases MEDIAN INT/ACC point. 

Algorithm Ranking on MSETST 
(p-fried: 0,000006) 

Ranking RW_AvRTG   
(p-fried: 0,000002) 

Ranking on RF 
(p-fried: 0,000002) 

MO-ADI(0.1-0.9) 1.0769 3 3 

MO-ADI(0.2-0.8) 1.9231 2 2 

MO-ADI(0.3-0.7) 3 1 1 

Table A.7 Finner Table with α = 0.05 for the methods on MSETST, RW_AvRTG and #RF  on MAX ACC point  using WM rule 
bases.  

MSETST RW_AvRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 MO-ADI(0.3-0.7) 0.000076 Rejec. 1 MO-ADI(0.1-0.9) 0.000002 Rejec. 1 MO-ADI(0.1-0.9) 0.149097 Accep. 
2 MO-ADI(0.2-0.8) 0.018603 Rejec. 2 MO-ADI(0.2-0.8) 0.030984 Rejec. 2 MO-ADI(0.2-0.8) 1 Accep. 

Table A.8 Finner Table with α = 0.05 for the methods on MSETST, RW_AvRTG and #RF  measures on MAX ACC point using  
FS_MOGUL rule bases  

MSETST RW_AvRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 MO-ADI(0.3-0.7) 0.000032 Rejec. 1 MO-ADI(0.1-0.9) 0.000001 Rejec. 1 MO-ADI(0.1-0.9) 0.001179 Rejec. 
2 MO-ADI(0.2-0.8) 0.030984 Rejec. 2 MO-ADI(0.2-0.8) 0.010187 Rejec. 2 MO-ADI(0.2-0.8) 0.492457 Accep. 

Table A.9 Finner Table with α = 0.05 for the methods on MSETST, RW_AvRTG and #RF  measures on MAX INT point using 
WM rule bases  

MSETST RW_AvRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 MO-ADI(0.3-0.7) 0.000001 Rejec. 1 MO-ADI(0.1-0.9) 0.000001 Rejec. 1 MO-ADI(0.1-0.9) 0.000001 Rejec. 
2 MO-ADI(0.2-0.8) 0.008107 Rejec. 2 MO-ADI(0.2-0.8) 0.018603 Rejec. 2 MO-ADI(0.2-0.8) 0.018603 Rejec. 
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Table A.10 Finner Table with α = 0.05 for the methods on MSETST, RW_AvRTG and #RF  measures on MAX INT point  using 
FS_MOGUL rule bases  

MSETST RW_AvRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 MO-ADI(0.3-0.7) 0.000389 Rejec. 1 MO-ADI(0.1-0.9) 0.000001 Rejec. 1 MO-ADI(0.1-0.9) 0.000005 Rejec. 
2 MO-ADI(0.2-0.8) 0.116664 Accep 2 MO-ADI(0.2-0.8) 0.010187 Rejec. 2 MO-ADI(0.2-0.8) 0.047556 Rejec. 

Table A.11 Finner Table with α = 0.05 for the methods on MSETST, RW_AvRTG and #RF  measures on MEDIAN INT/ACC 
point using WM rule bases  

MSETST RW_AvRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 MO-ADI(0.3-0.7) 0.000001 Rejec. 1 MO-ADI(0.1-0.9) 0.000001 Rejec. 1 MO-ADI(0.1-0.9) 0.000001 Rejec. 
2 MO-ADI(0.2-0.8) 0.010187 Rejec. 2 MO-ADI(0.2-0.8) 0.010187 Rejec. 2 MO-ADI(0.2-0.8) 0.010787 Rejec. 

Table A.12 Finner Table with α = 0.05 for the methods on MSETST, RW_AvRTG and #RF  measures on MEDIAN INT/ACC 
point using FS_MOGUL rule bases  

MSETST RW_AvRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 MO-ADI(0.3-0.7) 0.000002 Rejec. 1 MO-ADI(0.1-0.9) 0.000001 Rejec. 1 MO-ADI(0.1-0.9) 0.000001 Rejec. 
2 MO-ADI(0.2-0.8) 0.030984 Rejec. 2 MO-ADI(0.2-0.8) 0.010187 Rejec. 2 MO-ADI(0.2-0.8) 0.010787 Rejec. 
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Appendix B.  

Statistical analysis of the comparison between 
single-objective and multi-objective approaches. 

Tables B.1 and B.2 show the rankings (through 
Friedman’s test) for both WM and FS_MOGUL rule 
bases, respectively. The p-value computed using the  

 
 
 
Friedman test implies that there are statistical 

differences among the results on MSETST, RW_AvRTG, 
and #RF respectively. In all cases MO-ADI(0.1-0.9) is the 
best in the ranking. In all cases, Finner test (Tables B.3, 
B.4 and B.5) rejects the null hypothesis with all single-
objective methods. 

Table B.1 Rankings obtained through Friedman’s test for different values of thresholds on MSETST, RW_AvRTG and #RF 
measures using WM rule bases 

Algorithm Ranking on MSETST 
(p-fried: 0,024914) 

Ranking on RW_MRTG 
(p-fried: 0,000002) 

Ranking on RF 
(p-fried: 0,000002) 

MO-ADI(0.1-0.9) 1.3846 1 1 

SO-ADI(0.1-0.9) 2.3077 2 2 
SO-AD 2.3077 3 3 

Table B.2 Rankings obtained through Friedman’s test for different values of thresholds on MSETST, RW_AvRTG and #RF 
measures using FS_MOGUL rule bases 

Algorithm Ranking on MSETST 
(p-fried: 0,000072) 

Ranking on RW_MRTG 
(p-fried: 0,000002) 

Ranking on RF 
(p-fried: 0,000002) 

MO-ADI(0.1-0.9) 1.0769 1 1 

SO-ADI(0.1-0.9) 2.1538 2 2 
SO-AD 2.7692 3 3 

Table B.3 Finner Table with α = 0.05 for the methods on MSETST , RW_AvRTG and #RF measures on MAX ACC point using 
WM rule bases  

MSETST RW_MRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 SO-AD 0.03686 Rejec. 1 SO-AD 0.000001 Rejec. 1 SO-AD 0.000001 Rejec. 
2 SO-ADI(0.1-0.9) 0.03686 Rejec. 2 SO-ADI(0.1-0.9) 0.010787 Rejec. 2 SO-ADI(0.1-0.9) 0.010787 Rejec. 

 

Table B.4 Finner Table with α = 0.05 for the methods on MSETST , RW_AvRTG and #RF measures on MAX ACC point using 
FS_MOGUL rule bases 

MSETST RW_MRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 SO-AD 0.000032 Rejec. 1 SO-AD 0.000001 Rejec. 1 SO-AD 0.000001 Rejec. 
2 SO-ADI(0.1-0.9) 0.00604 Rejec. 2 SO-ADI(0.1-0.9) 0.010787 Rejec. 2 SO-ADI(0.1-0.9) 0.010787 Rejec. 

Table B.5 Finner Table with α = 0.05 for the methods on MSETST , RW_AvRTG and #RF measures on MAX ACC point using 
FS_MOGUL rule bases 

MSETST RW_MRTG #RF 
i Algorithm p-finner Hypot i Algorithm p-finner Hypot i Algorithm p-finner Hypot 
1 SO-AD 0.000032 Rejec. 1 SO-AD 0.000001 Rejec. 1 SO-AD 0.000001 Rejec. 
2 SO-ADI(0.1-0.9) 0.00604 Rejec. 2 SO-ADI(0.1-0.9) 0.010787 Rejec. 2 SO-ADI(0.1-0.9) 0.010787 Rejec. 
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