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Abstract 

Traditional quantum-inspired genetic algorithm (QGA) has drawbacks such as premature convergence, heavy 
computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-
inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar 
approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed 
algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process) 
and simulation results show its efficiency in nonlinear data reconciliation problems. 
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1. Introduction 

Due to the influence of many factors in the 
petrochemical manufacture process, the data obtained 
through chemical manufacture devices or measuring 
meters may be corrupted by kinds of noises, which 
impose great impacts on the decision-makings of 
control process. Therefore, the collected data should be 
preprocessed before been applied to manufacture 
process analysis and data reconciliation technique 
receives widespread applications in the petrochemical 
industry. The nonlinear data reconciliation has always 

been the research focus of data reconciliation techniques. 
Normally, there are two major directions, i.e. two-steps 
matrix projection method1 and independent logistics 
based Simpson method2. Zhou et al.3 proposed a 
modified outlier detection method to efficiently 
decrease the effect of outliers on the reconciled results 
through distinguishing the outliers of each variable 
individually and modifying the weight accordingly. LI 
and Rong4 improved the efficiency and accuracy of 
mixed integer linear programming (MILP) approach by 
reducing the number of binary variables and giving 
accurate weights for suspected gross errors candidates. 
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Gao et al.5 proposed a new nonlinear dynamic data 
reconciliation method to get high robustness and simple 
calculation by introducing a penalty function matrix in a 
conventional least-square objective function and 
assigning small weights for outliers and large weights 
for normal measurements. Mei et al.6 overcame the 
defects of the nodal test (NT) and the measurement test 
(MT). Their method avoided some artificial 
manipulation and more than one gross error problems 
by combining NT and MT. Zhou et al.7 solved 
efficiently gross error effect on data reconciliation by 
using several technologies including linearization 
method, penalty function, virtual observation equation, 
and equivalent weights method. Jiang et al.8 proposed a 
new bias detection strategy which reduced greatly the 
number of parameters to be estimated and avoided 
sequential detections and iterations by detecting the 
presence of measurement bias and its occurrence time. 
As discussed above, although there are many nonlinear 
data reconciliation techniques, most of the existing 
approaches require complicated matrix calculation and 
transformation. Moreover, when the matrix cannot or is 
difficult to be solved, the data reconciliation process 
will become extremely complex. Fortunately, the 
evolutionary algorithms (EAs) provide new solutions to 
this problem, which can improve the optimization 
efficiency and avoid the complex matrix computation 
process. For instance, genetic algorithms (GAs) were 
applied into the data reconciliation and achieved 
satisfactory performance9-11. Although, GA ensures 
colony evolves and solutions change continually, it 
lacks a strong capacity of producing better offspring and 
causes slow convergence near global optimum, 
sometimes may be trapped into local optimum. In this 
paper, the concepts of quantum computing are adopted 
to improve the performance of GA. 

The quantum-inspired evolutionary algorithms 
(QEAs)12 are based on the principles of quantum 
computing, which can strike right balance between 
exploration and exploitation more easily when 
compared with conventional EAs. Meanwhile, the 
QEAs can explore search space with a smaller number 
of individuals and exploit global solution within a short 
span of time13-15. Due to the distinguished 
characteristics, several sub-branches appear in the 
recent years, i.e. Quantum-inspired Genetic Algorithm 
(QGA)16, Quantum-inspired Immune Clone Algorithm 
(QICA)17, and Quantum-inspired Particle Swarm 

Optimization (QPSO)18. QGA combines the advantages 
of quantum computing and GA, which is designed to 
address some intrinsic problems of genetic algorithms, 
and has been widely used in many fields19-24. Generally, 
QGA has the characteristics of small population size, 
fast convergence speed, and robust searching ability. 
However, in QGA, the chromosome is usually 
represented by binary code, which has the disadvantage 
of low computation efficiency due to the repeated 
encoding and decoding process. 

As a sequence, in this paper, following the research 
of QEAs and GAs, a novel real-coded QGA is proposed. 
This method adopts real numbers instead of binary code 
in order to improve algorithm searching ability and 
population diversity. Therefore, the complex coding and 
decoding processes can be avoided. Furthermore, the 
interval division approach is used, which can improve 
the searching capabilities and reduce computation cost 
by interval parallel computing. 

This paper is organized as follows. Section 1 is the 
introduction; the QGA will be reviewed in detail. In 
section 2, the principles and procedures of the proposed 
algorithm will be discussed, followed by the numerical 
case studies before being applied into two nonlinear 
data reconciliation cases. The results and future work 
will be summarized in the last section. 

2 Real-coded Quantum-inspired Genetic 
Algorithm 

2.1. Quantum-inspired Genetic Algorithm (QGA) 

It will be very instructive to review the classical QGA 
first before introducing the proposed algorithm. QGA 
has stronger search ability and quicker convergence 
speed since it introduces the concepts of quantum bit 
and quantum rotation gate. In the QGA, the state of a 
unit is depicted by quantum bit and angle, which are 
defined as below. 

Quantum bit, the smallest unit in the QGA, is 
defined as a pair of numbers as shown in Eq. (1), 

α
β
⎡ ⎤
⎢ ⎥
⎣ ⎦

                                     (1) 

The modulus 2α  and 2β  give the probabilities 
that the quantum bit exists in states “0” and “1”, 
respectively, which satisfies Eq. (2), 

2 2 1α β+ =                            (2) 
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A string of quantum bits consists of a quantum bit 
individual, which can be defined by Eq. (3), 

1 2

1 2
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L

L
⎟                          (3) 

Therefore, a chromosome can be represented as a 
string of quantum bit individuals as shown in Eq. (4), 
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A quantum bit individual is able to represent a linear 
superposition of all possible solutions due to its 
probabilistic representation. This quantum bit 
representation has better characteristic of generating 
diversity in population than other representations. 

Because of the normalization condition, the 
quantum angle can be represented by Eq. (5), 
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             (5) 

The fundamental update mechanism of QGA is 
evolving quantum bits and angles, by which the updated 
quantum bits should still satisfy the normalization 
condition. The quantum rotation gate update equation 
could be calculated by Eq. (6), 

1 1 1

1 1 1

cos sin
sin cos

t t t
j j j
t t t

j
t

j j j j

α θ θ α
β θ θ

+ + +

+ + +

⎡ ⎤ ⎡ ⎤ ⎡Δ − Δ
=⎢ ⎥ ⎢ ⎥ ⎢Δ Δ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣β

⎤
⎥
⎥⎦

         (6) 

Although the quantum bit and rotation gate 
representation has better characteristics of population 
diversity, the premature convergence problem could still 
appear because of the poor performance of binary 
representations. Therefore, in this paper, a novel 
quantum-inspired genetic algorithm is proposed, which 
will be discussed extensively in the next section. 

2.2. The Proposed Algorithm 

The proposed algorithm in this section adopts real 
numbers instead of chromosome in order to improve 
algorithm searching ability and population diversity. 
The detailed encoding rules and procedures are 
presented as follows. 

2.2.1. Encoding rules 

Suppose the boundaries of variable X  as 
[ ]min max,X X , and divide this interval into L  
consecutive subintervals such as,     

( )1 min min max min: ,R X X X X L+ −⎡ ⎤⎣ ⎦ , 

( ) ( )(2 min max min min max min: , 2*R X X X L X X X L+ − + − ⎦⎤,  

LLLLL 
( ) ( ) ( )( min max min min max min: 1 * , *iR X i X X L X i X X L+ − − + − ⎤⎦ , 

LLLLL 
( ) ( )( min max min max: 1 * , . LR X L X X L X+ − − ⎤⎦

then algorithm will works on these L  subintervals 
simultaneously. 

 For subintervals 1 2, , LR R RL , the chromosomes can 
be coded by Eq. (7), 

( )
( )
( )

min

max min

min max min

max min

[ ]

i

i

i

i

R
R

R
R

X X
X X L

X X X L X
X X L

α

β

⎧ −
⎪ =

−⎪⎪
⎨

+ − −⎪
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         (7) 

Here, ( ) ( ) ( )( min max min min max min1 * , *
iRX X i X X L X i X X L∈ + − − + − ⎦⎤

L

. 

As a sequence, an individual  can be expressed by 
Eq. (8), 

p

1 2

1 2

1 2
, , ,

i L

i

L

R R R R

R R R R

R R R

p

p p p

L L

L L

L

α α α α

β β β β
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= ⎣ ⎦

               (8) 

Compared with Eqs. (3)-(4), Eqs. (7)-(8) not only 
greatly reduces the length of individual coding, but also 
uses overall interval division covering the entire 
searching space. The searching efficiency could be 
improved when subinterval number increases, but 
algorithm will become more complicated and the 
associated computational cost (CPU time) will also 
increase and this result will be seen in the posterior case 
studies.. So, the number of subintervals which can be 
adjusted manually or automatically by the program is an 
important factor for algorithm performance.   

2.2.2. Procedures 

There are six steps in the proposed algorithm. 
Step-1(initialization). Set n as the population size, g as 
iteration variable ( 1g = when algorithm starts), maG as 
the maximum iteration number, 1 2

x

{ , , , }g g gp L=
n

gpnp p  as the 
initial population.  denotes the j-th 
individual of the s-th generation as shown in Eq. (9),  

, 1p j= ,2,Lg
j

Published by Atlantis Press 
      Copyright: the authors 
                   415



1 2

1 2

1 2

, , , ,

, , , ,

, , , ,

i L

i

i L

g g g g
j R j R j R j Rg

j g g g g
j R j R j R j R

g g g g
j R j R j R j R

p

p p p p

L L

L L

L L

α α α α

β β β β

⎡
= ⎢
⎢⎣
⎡= ⎣

L

⎤
⎥
⎥⎦
⎤⎦

L

⎤
⎥
⎥

         (9) 

Initially, all the values are set as the median of 
subintervals, that is, 
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1 2

1 1 1 1
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         (10) 

where ( ) ( )max min / 2 .h X X L= −  
Step-2(Fitness Evaluation). Suppose the subinterval 

evaluation of one individual is the best, fitness 
evaluation strategy is shown in Eq. (11)25, 

arcsin a b
c b

θ −⎛= ⎜ −⎝ ⎠
⎞
⎟                         (11) 

where  is the real value of the corresponding 
chromosome derived, and  are the corresponding 
upper and lower boundaries, 

a
,b c
θ is the corresponding 

angle of the best individual. 
Step-3(Judgement). If the satisfactory solution is 

acquired or the iteration number reaches , then the 
algorithm stops. Otherwise, go to Step-4. 

maxG

Step-4(Crossover). Suppose g
jp  is the best 

individual stored in { }1 2 , 1,2, , .g g g
np p p jL =, , ,gp= nL  

, i

s
j Rp  and , i

s
j Rθ are the component of subinterval and 

corresponding angle respectively. Crossover operation 
is implemented only in the subintervals where this 
subinterval located. Then the subinterval component of 
each individual of next generation will be obtained by 
Eqs. (12) and (13), 

( ), , , , 1, 2, ,
i i i

g g g
k R k R j R k Lθ θ θΔ = − = n         (12) 

( ) ( )2 2
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,
,

cos sin ,
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m

m
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k R

p p
p

p m

θ θ
+

⎧ Δ + Δ =⎪= ⎨
≠⎪⎩

m i

i
     (13) 

Step-5(Mutation). This operation will be used for 
poor individuals (unideal fitness values), and can be 
expressed by Eq. (14), 

( ) ( )
( ) ( )

1 cos sin
sin cos

g gp p
θ θ
θ θ

+ ⎡ Δ − Δ
= ⎢ Δ Δ⎣

Step-6(Updating). Let , and jump to Step-2. 1g g= +
In the next section, the proposed algorithm will be 

tested with several benchmark functions before being 
applied into real industrial process data reconciliation. 

3. Benchmark Functions Test 

In this section, the proposed algorithm will be compared 
with two QGAs using several benchmark functions 
listed in Tab.1.  

Table 1.  Benchmark functions 

Function Boundary Global 
Optimum Variable

10
2

1
1

i
i

F x
=

= ∑  [-100, 100] 0 0 

( )
20

2
2

1
200 10cos 2i

i
iF x π

=

x⎡ ⎤= + −⎣ ⎦∑  [-5.12, 5.12] 0 0 

( )
30

3
1

418.9829 sini
i

iF n x x
=

= −∑  [-500, 500] 0 -420.97

( ) ( )
49 2 22

4 1
1

100 1i i i
i

F x x x+
=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑
 

[-30, 30] 0 1 

For these QGAs, Parameters are selected samely as 
follows, maximum iteration number max 1000G = , 
population dimension 50n = , population size 10N = , 
limit probability 0.01δ = . The stop criterion of 
algorithm is the evolvement reaches the maximum 
iteration number. If the absolute error between the 
results and global optimal value is less than 0.001, the 
optimization process will be considered as success. 
Besides, for testing subinterval number effect on the 
final performance of the proposed algorithm, three 
intervals 2, 3, and 5 are selected respectively. The tested 
results are shown in Tab.2. 

 
 
 
 
 
 
 
 
 

⎤
⎥
⎦

       (14) 
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Table 2.  Benchmark functions testing results 

OV-Optimum Value, MIN-Mean Iteration Number,  
CT-CPU Time  

From Tab.2 it can be seen that the proposed 
algorithm has better performance that QGA, and if the 
number of initial subintervals chosen appropriately 
(such as L=3) it also has better general performance 
(less MIN and CT) than RCQGA25. These results not 
only illuminate validity of the proposed algorithm, but 
also indicate the number of initial subintervals effect on 
it. 

4. Nonlinear Data Reconciliation With The 
Proposed Algorithm 

4.1 Distilling Process Data Reconciliation 

Conventional distilling process is shown in Fig.1. 

J

D

T0

W

Tc

TB

 

Fig. 1.  Conventional distilling process schematic diagram 
J-input quantity(kmol·h-1), D-distillate quantity(kmol·h-1), 
W-residue quantity(kmol·h-1), T0-ambient temperature( ),℃  
TB-reboiler temperature(℃), TC-condenser temperature( ).℃  

There are 10 constraint equations in this typical 
bilinear process, which are listed in Tab.3. 

Table 3.  Constraint equations of rectification process 

No Equation 
Number 

of 
Equations

1 1 0F J D W= − − =  1 

2 0, 2 7, 1j i i iF Jz Dy Wx j i j= − − = = = −K 6 

3 8 1 0iF x= − =∑  1 

4 9 1 0iF y= − =∑  1 

5 10 1 0iF z= − =∑  1 

ix -residue component, -distillate component,  iy
iz -input component 

There are 21 variables in this process; the actual 
experiential values of each variable are as follows, 

1

4

1

4

1

4

450.96
0
0

0.0726
0.5037
0.0315
0.2185

J
x
x

y
y
z
z

=
=
=

=
=
=
=

   

2

5

2

5

2

5

196
0
0

0.0517
0.2407
0.0068
0.1044

D
x
x

y
y
z
z

=
=
=

=
=
=
=

   

3

6

3

6

3

6

254.96
0
1

0.1674
0

0.0726
0.5662

W
x
x

y
y

z
z

=
=
=

=
=

=
=

 

Intervals of every variable are, 

1

4

1

4

1

4

450 451
0 0.00
0 0.002

0.06 0.08
0.5 0.52
0.02 0.04
0.2 0.23

J
x
x

y
y
z

z

05
≤ ≤

≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤

   

2

5

2

5

2

5

195 197
0 0.002
0 0.002
0 0.06

0.24 0.25
0.005 0.007
0.09 0.11

D
x
x
y

y
z
z

≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤

    

3

6

3

6

3

6

254 256
0 0.0002

0 1.1
0.16 0.18

0 0.0
0.06 0.08
0.56 0.57

W
x

x
y

y
z
z

≤ ≤
≤ ≤
≤ ≤
≤ ≤

≤ ≤
≤ ≤
≤ ≤

1

A group of measurement data collected randomly 
from actual process is, 

'

'
1
'
4
'
1
'
4
'
1
'
4

450.63
0.0014
0.0007
0.0713
0.5055
0.0336
0.2109

J
x
x
y
y
z
z

=
=
=
=
=
=
=

       

'

'
2
'
5
'
2
'
5
'
2
'
5

196.52
0.0013
0.0011
0.0526
0.2434
0.0059
0.1022

D
x
x
y
y
z
z

=
=
=
=
=
=
=

'

'
3
'
6
'
3
'
6
'
3
'
6

255.09
0
0.9993
0.1694
0.0003
0.0737
0.5671

W
x
x
y
y
z
z

=
=
=
=
=
=
=

The objective function is defined by Eq. (15), 

Function Algorithm OV MIN CT(s) Intervals

QGA 89.3 --- 907.1 --- 
RCQGA 3.8*10-5 860 189.6 --- 

1.93*10-4 890 200.3 2 
3.7*10-5 800 167.9 3 

1F  the 
proposed 
algorithm 1.83*10-5 817 175.6 5 

QGA 33.58 --- 1869.3 --- 
RCQGA 2.5*10-5 870 453.2 --- 

1.48*10-4 920 600.4 2 
5.7*10-5 850 450.9 3 

2F  the 
proposed 
algorithm 2.1*10-5 812 476.1 5 

QGA 25.3 --- 2312.6 --- 
RCQGA 6.2*10-5 830 878.3 --- 

1.58*10-4 900 1005.2 2 
6.3*10-5 780 917.6 3 

3F  the 
proposed 
algorithm 4.9*10-5 801 941.3 5 

QGA 56.87 --- 3245.4  
RCQGA 8.7*10-5 890 1468.2  

2.21*10-4 900 1656.3 2 
1.9*10-4 820 1472.2 3 

4F  the 
proposed 
algorithm 5.3*10-5 855 1486.8 5 

Published by Atlantis Press 
      Copyright: the authors 
                   417



( ) ( ) ( ) ( )
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1 2

1
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T

Z i
i
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− −

−

=

⎡= − − + − −⎢⎣
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⎦

∑
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Where , ,X Y Z  are the measured value vector, 
ˆ ˆ ˆ, ,X Y Z  are the reconciled value vector, 1 1, , 1

X Y ZQ Q Q− − −  
are the covariance matrixes of measurement errors of 

, ,X Y Z  which are assumed to be given or estimated. 
The number of subintervals is 4, and maximum 

iteration number is . The results are shown 
in Tab.4 and Fig.2. 

max 1000G =

Table 4.  Data reconciliation results with the proposed 
algorithm 

Variable 0 300 500 800 1000 
J  450.63 450.45 450.65 450.87 450.87 

D  196.52 196.55 196.33 196.11 196.11 
W  255.09 255.21 255.11 255 255 

1x  0.0014 0.0010 0.0008 0.0004 0.0004 

2x  0.0013 0.0010 0.0008 0.0001 0.0001 

3x  0 0 0 0 0 

4x  0.0007 0 0 0 0 

5x  0.0011 0.0014 0.0008 0.0002 0.0002 

6x  0.9993 0.9993 0.9997 0.9997 0.9997 

1y  0.0713 0.0717 0.0727 0.0730 0.0730 

2y  0.0526 0.0520 0.0517 0.0514 0.0514 

3y  0.1694 0.1655 0.1662 0.1666 0.1666 

4y  0.5055 0.5050 0.5041 0.5032 0.5032 

5y  0.2434 0.2437 0.2424 0.2411 0.2411 

6y  0.0003 0 0 0 0 

1z  0.0336 0.0321 0.0317 0.0314 0.0314 

2z  0.0059 0.0066 0.0066 0.0068 0.0068 

3z
z

 0.0737 0.0733 0.0729 0.0722 0.0722 

4

z
 0.2109 0.2177 0.2196 0.2205 0.2205 

5

z
 0.1022 0.1021 0.1029 0.104 0.104 

6

E
 0.5671 0.5673 0.5670 0.5666 0.5666 

 90.7819 65.7062 57.6636 50.7454 50.7454
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         Fig. 2.  Evolutionary progress of the proposed algorithm 

The simulation results denote that the reconciled 
value of each amount is no longer change positively 
after 786 generations. According to the criteria of data 
reconciliation, reconciled value of every variable 
satisfies balance equations, the objective function 
decreased and stabilized after 786 generations (4.3 
seconds), reconciliation goal is achieved. Besides, from 
the results, it is possible to use a great number of 
generations to obtain good results. 

4.2 Extraction Process of Composing Juice Data 
Reconciliation 

Extraction process of composing juice is shown in Fig.3. 

1

2

3

5

6

7

10

11

8

9

4

1 2

3

4

 

Fig. 3.  Extraction progress of composing juice 

The process has 4 equipments, 7 components and 88 
variables which are 11 matter flow variables 

( 1, 2, ,11jF j L )= and 77 component variables 

, ( 1, 2, ,11. 1j kx j kL , 2, ,7).L= =                                              

Parameters of the proposed algorithm are as follows, 
the number of subintervals is 3, and maximum iteration 
number is max 1000G = . The reconciliation results 
compared with Crowe1 and NLP26 are shown in Tab.5 (a 
part of variables are listed, * represents unmeasured 
variable) and Tab.6. 
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Table 5.  Reconciliation results using Crowe, NLP and the 
proposed algorithm 

Variable Measured 
Value 

Standard 
Deviation Crowe NLP 

The 
Proposed
Method 

F1 3707 37.07 3611.9 3642.8 3639.5 
C(1,1) 1.64 0.0164 1.5743 1.5822 1.5841 
C(1,2) 17.66 0.1766 18.653 18.31 18.472 
C(1,3) 0.38 0.01 0.3739 0.3774 0.3821 
C(1,4) 3.44 0.0344 3.4132 3.3503 3.4255 
C(1,5) 61.47 0.6147 61.137 61.374 61.333 
C(1,6) 15.39 0.1539 14.423 14.681 14.711 

C(1,7)* --- --- 0.3264 0.325 0.3391 
C(2,1) 1.64 0.0164 1.5743 1.5822 1.562 
C(3,1) 1.64 0.0164 1.5744 1.5822 1.5617 

F4 2910 29.1 2846.5 2883.1 2879.7 
C(4,1) 0.0052 0.01 0.0283 0.0298 0.0319 
C(4,2) 0.003 0.01 0.0037 0.0031 0.004 
C(4,3) 0.19 0.01 0.1787 0.1847 0.1912 
C(4,4) 3.68 0.0368 3.9126 3.8145 3.8423 

C(4,5)* --- --- 77.256 77.226 77.177 
C(4,6) 18.01 0.1801 18.428 18.549 18.557 

C(4,7)* --- --- 0.1925 0.1928 0.1899 
F7 7.6 0.076 7.5991 7.6024 7.6031 

C(7,1) 4.19 0.0419 4.2359 4.1924 4.2025 
C(7,2) 43.65 0.4365 43.652 43.642 43.641 
C(7,3) 7.91 0.0791 7.9116 7.9103 7.9046 
C(7,4) 9.05 0.0905 9.0517 9.0513 9.0528 
C(7,5) 30.3 0.303 30.305 30.3 30.33 
C(7,6) 0 0.01 0 0 0 

C(7,7)* --- --- 4.8438 4.9042 4.8507 
F9* --- --- 2741.6 2779.7 2757.8 

C(9,1) 0.0013 0.01 0.0248 0.0268 0.0267 
C(9,2) 0.0016 0.01 0.0008 0.0002 0.0007 
C(9,3) 0.18 0.01 0.1809 0.1871 0.1788 
C(9,4) 0.25 0.01 0.2497 0.2462 0.2471 

C(9,5)* --- --- 80.211 80.1 80.086 
C(9,6) 19 0.19 19.133 19.239 19.245 
C(9,7) 0.2 0.01 0.1999 0.2 0.1973 
F11* --- --- 672.95 666.06 663.77 

C(11,1) 0.006 0.01 0.0149 0.0124 0.016 
C(11,2) 98.75 0.9875 97.523 97.527 97.5 
C(11,3) 0 0.01 0.0004 0.0007 0.0005 
C(11,4) 0.88 0.01 0.8802 0.8806 0.8798 
C(11,5) 0.7 0.01 0.7001 0.6997 0.6875 
C(11,6) 0 0.01 0 0 0.0003 
C(11,7) 0.88 0.01 0.8798 0.8801 0.8728 

Table 6.  Compare results of Crowe, NLP and the proposed 
algorithm  

No Crowe NLP the proposed algorithm
TA 330.59 191.25 249.36 

Te(s) 1.031 8.281 3.035 
' *
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1
( ) .

n
i i

i i

x xT A
σ=

−
= ∑

'
ix -measured value of ix ,  

*
ix -reconciliation value of ix , iσ -standard deviation of ix , 

n -number of measurable variables. 

1

/ .
N

e j
j

T t
=

= ∑ tN j -algorithm run time of each loop. 

From the above simulation results, it can be seen that 
in the three methods, NLP has the best reconciliation 
precision, but its run time is so longer. Crowe has the 
shortest run time, but unideal precision. The proposed 
algorithm obtains better reconciliation results with 
shorter run time, and shows that it has the best global 
performance in nonlinear data reconciliation. 

5. Conclusions 

A novel quantum-inspired genetic algorithm with real-
coded, interval division thinking was proposed in this 
paper, and some benchmark functions simulation 
illustrated that it could avoid some drawbacks of 
traditional QGA. Furthermore, the proposed algorithm 
was applied in industrial manufacture process data 
reconciliation, and simulation results showed that it had 
global performance in nonlinear data reconciliation and 
could be used in the relevant researches and applications. 
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