Specificity for interval-valued fuzzy sets

Ramón González-del-Campo¹, Luis Garmendia², Ronald R. Yager³

 ¹ DSIC, Universidad Complutense de Madrid, Spain E-mail: rgonzale@estad.ucm.es
 ² DISIA, Universidad Complutense de Madrid, Spain E-mail: lgarmend@fdi.ucm.es
 ³ Iona College, USA E-mail: yager@panix.com
 Received 30 November 2011

Accepted 1 December 2011

Abstract

In this paper some axiomatic definitions about specificity for interval-valued fuzzy sets are proposed. Some examples of measures of specificity for interval-valued fuzzy sets are showed. It is also defined a extension of the notion of alpha cut for interval-valued fuzzy sets and a generalized similarity for intervalvalued fuzzy relations. An axiomatic definition of specificity of interval-valued fuzzy sets under the knowledge of a generalized similarity is given.

Keywords: Specificity measure, Interval-valued fuzzy set, Similarity, T-indistinguishability.

1. Introduction

Interval-valued fuzzy sets (\mathscr{IVFS}) were introduced in the 60s by Grattan-Guinness ⁷, Jahn ⁸, Sambuc ⁹ and Zadeh ¹⁶. They are extensions of classical fuzzy sets where the membership degree of the elements on the universe of discourse (between 0 and 1) is replaced by an interval in $[0,1] \times [0,1]$. They easily allow to model uncertainty and vagueness generalizing the fuzzy sets. Sometimes it is easier for experts to give a "membership interval" than a membership degree to a characteristic of objects on a universe. \mathscr{IVFS} are a special case of type-2 fuzzy sets that simplifies the calculations while preserving their richness as well.

The concept of specificity provides a measure of the amount of information contained in a fuzzy set. It is strongly related to the inverse of the cardinality of a set. Specificity measures were introduced by Yager ^{10,11} showing its usefulness as a measure of tranquility when making a decision. The output information of expert systems and other knowledgebased system should be both specific and correct to be useful.

Measures of specificity have been widely analyzed ^{3,4,5}, for intuitionistic fuzzy sets ¹⁴, for interval-valued fuzzy sets and for type 2 fuzzy sets ¹³.

2. Preliminaries

Let $X = \{e_1, \dots, e_n\}$ be a finite set.

Definition 2.1 A fuzzy set μ on X is normal if there exists an element $x \in X$ such that $\mu(x) = 1$.

Definition 2.2 ¹¹ Let a_j be the j^{th} greatest membership degree of μ . A measure of specificity is a func-

tion $Sp: \{a_j\} \rightarrow [0,1]$ such that:

- $Sp(\mu) = 1$ if and only if μ is a singleton.
- $Sp(\emptyset) = 0$
- $Sp(\mu)$ depends on a_i in that way:

$$1. \quad \frac{\partial S_{p}(\mu)}{\partial a_{1}} > 0$$
$$2. \quad \frac{\partial S_{p}(\mu)}{\partial a_{j}} \leq 0 \text{ for all } j \geq 0$$

It is also defined a weaker measure of specificity: **Definition 2.3** ¹¹ Let $[0,1]^X$ be the class of fuzzy sets of X. A weak measure of specificity is a function $Sp:[0,1]^X \rightarrow [0,1]$ such that:

2

- $Sp(\mu) = 1$ if and only if μ is a singleton.
- $Sp(\emptyset) = 0$
- If μ and η are normal fuzzy sets in X and $\mu \subset \eta$, then $Sp(\mu) \ge Sp(\eta)$.

Definition 2.4 Let Sp and Sp' be two measures of specificity. Sp is more strict than Sp', denoted by $Sp \leq Sp'$, if for all sets, μ , it verifies: $Sp(\mu) \leq Sp'(\mu)$.

Yager introduced ¹¹ the linear measure of specificity on a finite space X as:

$$Sp_{\overrightarrow{w}}(\mu) = a_1 - \sum_{j=2}^n w_j a_j$$

where a_j is the j^{th} greatest membership degree of μ and $\{w_j\}$ is a set of weights verifying:

- $w_j \in [0,1]$
- $\sum_{i=2}^{n} w_i = 1$
- $\{w_i\}$ is not increasing.

Definition 2.5 ¹⁵ A fuzzy relation $R : X^2 \rightarrow [0,1]$ is a similarity relation if it is reflexive, symmetric and transitive under the t-norm minimum $(Min(R(a,b),R(b,c)) \leq R(a,c) \text{ for all } a,b,c \text{ in } X).$

Yager also a defines a measure of specificity under the knowledge of a similarity to solve the Yager's jacket problem ¹².

Definition 2.6 ¹² Let μ be a fuzzy set on X and let S be a similarity $S : X \times X \rightarrow [0,1]$. Let π_{α} be the set of classes of equivalence of the α -cut of S. The set of classes of equivalence under the knowledge of S μ_{α}/S is the subset of equivalence classes of the α -cut of S defined in that way: a equivalence class of the α -cut of S belongs to μ_{α}/S if its intersection with the α -cut of μ_{α} is not empty.

Definition 2.7 ¹² Let $[0,1]^X$ be the set of fuzzy sets on X. Let μ be a fuzzy set on X and let S be a similarity $S : X \times X \to [0,1]$. The specificity of μ under S is defined as follows:

$$Sp(\mu/S) = \int_0^{\alpha_{max}} \frac{1}{card(\mu_{\alpha}/S)} d\alpha$$

Definition 2.8² *It is denoted by* L *and* \leq_L *the following set and an order relation:*

- *1.* $L = \{ [x_1, x_2] \in [0, 1]^2 \text{ with } x_1 \leq x_2 \}.$
- 2. $[x_1, x_2] \leq_L [y_1, y_2]$ if and only if $x_1 \leq y_1$ and $x_2 \leq y_2$

Also by definition:

$$[x_1, x_2] <_L [y_1, y_2] \Leftrightarrow x_1 < y_1, x_2 \leqslant y_2$$
 or
 $x_1 \leqslant y_1, x_2 < y_2$
 $[x_1, x_2] =_L [y_1, y_2] \Leftrightarrow x_1 = y_1, x_2 = y_2.$

 $0_L =_L [0,0]$ and $1_L =_L [1,1]$ are the smallest and the greatest elements in *L* respectively.

L is a complete lattice and the supremum and infimum are defined as follows:

Definition 2.9 ¹ Let $\{[v_i, w_i]\}$ be a set of intervals on *L*. Then

- 1. $Meet\{[v_i, w_i]\} \equiv [infimun\{v_i\}, infimun\{w_i\}]$
- 2. Joint { $[v_i, w_i]$ } \equiv [supremun{ v_i }, supremun{ w_i }]

Definition 2.10 ² *An interval-valued fuzzy set A on a universe X can be represented by the mapping:* $A: X \rightarrow [0, 1]^2$

Definition 2.11 ² Let X be a universe and A and B two interval-valued fuzzy sets. The equality between A and B is defined as: $A =_L B$ if and only if $A(a) =_L B(a) \forall a \in X$.

Definition 2.12 ² Let X be a universe and A and B two interval-valued fuzzy sets. The inclusion of A in to B is defined as: $A \subseteq_L B$ if and only if $A(a) \leq_L B(a)$ $\forall a \in X$.

Definition 2.13 ² *An interval-valued negation* \mathcal{N} *is a decreasing function,* $\mathcal{N} : L \to L$ *, that satisfies:*

1.
$$\mathscr{N}(0_L) =_L 1_L$$

2. $\mathscr{N}(1_L) =_L 0_L$

If $\mathcal{N}(\mathcal{N}([x_1,x_2])) =_L [x_1,x_2]$ then \mathcal{N} is called an *involutive negation.*

Definition 2.14 *A strong interval-valued negation* \mathcal{N} *is a strictly decreasing and involutive function,* $\mathcal{N} : L \to L$, that satisfies:

1.
$$\mathscr{N}(0_L) =_L 1_L$$

2. $\mathscr{N}(1_L) =_L 0_L$

Example 2.1 Let \mathcal{N} be the involutive mapping defined by:

$$\mathcal{N}: L \to L$$

$$\mathcal{N}([x_1, x_2]) =_L [1 - x_2, 1 - x_1]$$

Then \mathcal{N} is a negation operator for interval-valued fuzzy sets. It is trivial to prove that: $\mathcal{N}(0_L) =_L 1_L$, $\mathcal{N}(1_L) =_L 0_L$ and $\mathcal{N}(\mathcal{N}([x_1, x_2])) =_L [x_1, x_2]$.

Definition 2.15 ² *A* generalized t-norm function \mathcal{T} is a monotone increasing, symmetric and associative operator, $\mathcal{T} : L^2 \to L$, that satisfies: $\mathcal{T}(1_L, [x_1, x_2]) =_L [x_1, x_2]$ for all $[x_1, x_2]$ in *L*.

Example 2.2 Let Inf_L be defined as follows:

 $Inf_L([x_1, x_2], [y_1, y_2]) = Meet\{[x_1, x_2], [y_1, y_2]\}$ It easy to prove that Inf_L is a generalized t-norm.

3. Specificity for Interval-valued Fuzzy Sets

Definition 3.1 A operator $G : [0,1]^n \rightarrow [0,1]$ is an operator of specificity if it is continuous and it is increasing for the first argument and decreasing for the others and satisfies:

• G(1, 0...0) = 1

•
$$G(0, 0...0) = 0$$

Lemma 3.1 Let μ be a fuzzy set on X. Let $\{\mu(a_i)\}$ for all i = 1..n the list of membership degrees of μ decreasing order. Let $G : [0,1]^n \to [0,1]$ be an operator of specificity. Then $G(\mu(a_1),...,\mu(a_n))$ is a measure of specificity for \mathscr{FS} .

Proof. trivial by definition 2.2
$$\Box$$

Definition 3.2 An operator $f(x,y) : [0,1]^2 \rightarrow [0,1]$ with $x \leq y$ is called transformation operator if it is continuous, increasing and verifies:

- 1. f(1,1) = 1
- 2. f(0,0) = 0
- 3. f(0,x) > 0 for all $x \in (0,1]$

4.
$$f(x,1) < 1$$
 for all $x \in [0,1)$

Some examples of transformation operators are the following:

Example 3.1

$$f(x,y) = \frac{x+y}{2}$$

Example 3.2

$$f(x,y) = \alpha * x + \beta * y$$

with $\alpha + \beta = 1, \alpha > 0, \beta > 0$ Example 3.3

$$f(x,y) = \frac{x^2 + y^2}{2}$$

Definition 3.3 Let μ be an interval-valued fuzzy set on X and let $\{[x_{1_q}, x_{2_q}]\}$ for all q : 1..n be its membership intervals. Let f be a transformation operator. Then, the f-list of μ is the set of all the membership intervals of elements of X, ordered decreasingly through the operator f, that is, $[x,y] \leq_f [z,t]$ if and only if $f(x,y) \leq f(z,t)$.

Example 3.4 Let X be the universe with cardinality 5 and let μ be the following interval-valued fuzzy set:

$$\mu = \{ [0.8, 0.9]/e_1, [0.2, 0.4]/e_2, [0.8, 1.0]/e_3, \\ [0.1, 0.2]/e_4, [0.0, 0.1]/e_5 \}$$

Then, if f(x, y) = (x + y)/2 *then:*

	[<i>x</i> , <i>y</i>]	f(x,y)
	[0.8,0.9]	0.85
	[0.2,0.4]	0.30
	[0.8,1.0]	0.90
	[0.1,0.2]	0.15
	[0.0,0.1]	0.05

The f-list of μ is:

 $\{[0.8, 1.0], [0.8, 0.9], [0.2, 0.4], [0.1, 0.2], [0.0, 0.1]\}$

Definition 3.4 An interval-valued fuzzy set μ on X is a singleton if there exists an element $a_i \in X$ such that $\mu(a_i) = 1_L$ and $\mu(a_j) = 0_L$ (for all $j \neq i$) for the others.

Definition 3.5 Let $([0,1]^2)^X$ be the set of intervalvalued fuzzy sets on X. Let f be a transformation operator. Let $\{[x_{1_q}, x_{2_q}]\}$ for all q = 1...n be the f-list of μ . A f-measure of specificity for interval-valued fuzzy sets is a function $Sp_f : ([0,1]^2)^X \to [0,1]$ such that:

- $Sp_f(\mu) = 1$ if and only if μ is a singleton.
- $Sp_f(\emptyset) = 0.$
- If $[x_{1_1}, x_{2_1}]$ increases (according to \leq_L) then $Sp_f(\mu)$ increases.
- If $[x_{1_q}, x_{2_q}]$ increases (according to \leq_L) then $Sp_f(\mu)$ decreases for all q: 2..n.

Definition 3.6 An interval-valued fuzzy set μ on X is normal if there exists an element $a \in X$ such that $\mu(a) = 1_L$.

Definition 3.7 ⁶ Let $([0,1]^2)^X$ be the set of membership degrees of interval-valued fuzzy sets on X. A weak measure of specificity for interval-valued fuzzy sets is a function $Sp:([0,1]^2)^X \rightarrow [0,1]$ such that:

- $Sp(\mu) = 1$ if and only if μ is a singleton.
- $Sp(\emptyset) = 0$
- If μ and η are normal fuzzy sets in X and $\mu \subseteq_L \eta$, then $Sp(\mu) \ge Sp(\eta)$.

Lemma 3.2 If Sp_f is an f-measure of specificity for interval-valued fuzzy sets then Sp_f is a weak measure of specificity for interval-valued fuzzy sets.

Proof. Let $\{[x_{1_q}, x_{2_q}]\}$ and $\{[y_{1_q}, y_{2_q}]\}$ for all q = 1..n be the f-list of μ and η respectively. If μ and η are normal and $\mu \subseteq_L \eta$ then $[x_{1_q}, x_{2_q}] \leq_L [y_{1_q}, y_{2_q}]$ for all q = 2..n. According to the fourth axiom of the definition 3.5 $Sp_f(\mu) \ge Sp_f(\eta)$

Example 3.5 In ¹³ Yager shows a particular case of function of transformation, f, (called Q_F). Let μ be an interval-valued fuzzy set on X with $\mu(a_q) = [x_{1_q}, x_{2_q}]$ for all q : 1..n.

$$Q_F(a_i) = f(x_{1_q}, x_{2_q})$$
 such that $x \leq f(x, y) \leq y$ for
all x, y .

Let a_i be the element of X which maximizes Q_F . Then, the following expression is a measure of specificity for interval-valued fuzzy sets:

$$Sp = Q_F(a_i) - \frac{1}{n-1} \sum_{\forall k \neq i} Q_F(a_k)$$

Lemma 3.3 Let μ be an interval-valued fuzzy set on X and let Sp_f be any f-measure of specificity over μ . Let $\{[x_{1_q}, x_{2_q}]\}$ for all q : 1...n the f-list of μ . Then, there exists an operator of specificity $G: [0, 1]^n \rightarrow [0, 1]$ such that:

$$Sp_f(\mu) = G(f(x_{1_1}, x_{2_1}), \dots, f(x_{1_n}, x_{2_n}))$$
(1)

Corollary 3.1 Let G be a measure of specificity for \mathscr{FSs} . Let f a transformation operator. Then $G(f(x_{1_1}, x_{2_1}), ..., f(x_{1_n}, x_{2_n}))$ is a f-measure for \mathscr{IVFSs}

Definition 3.8 Let Sp_f and Sp'_g be two measures of specificity. Sp_f is more strict than Sp'_g , denoted by $Sp_f \leq Sp'_g$, if for all set, μ , it verifies: $Sp_f(\mu) \leq Sp'_g(\mu)$.

Theorem 3.1 Sp_f is more strict than Sp'_g if and only if $f(x,y) \leq g(x,y)$ for all x, y.

Proof. Trivial

Theorem 3.2 Let f be a transformation operator and $\{\alpha_i\}$ a set of weights that satisfies:

- $\alpha_j \in (0,1]$
- $\sum_{i=2}^{n} \alpha_i = 1$
- $\{\alpha_i\}$ is not increasing.

Let T, T', S and N be, two t-norms, a t-conorm and a negation (in $[0,1], \leq$) respectively. Let $\{f(x_{1_k}, x_{2_k})\}$ be the f-list of an interval-valued fuzzy set μ . Then

$$Sp_f(\mu) = T(f(x_{1_1}, x_{2_1}), N(S(T'(\alpha_2, f(x_{1_2}, x_{2_2}))), \dots$$
$$\dots, T(\alpha_n, f(x_{1_n}, x_{2_n})))))$$

is a f-measure of specificity for interval-valued fuzzy set.

This expression is a generalization of the t-norm based measure of specificity given in ³ but extended for \mathcal{IVFS} .

Proof.

- 1. $Sp_f(\mu) = 1$ if and only if μ is a singleton:
 - If μ is a singleton then $[x_{1_1}, x_{2_1}] = [1, 1]$ and $[x_{1_k}, x_{2_k}] = [0, 0]$ for all k > 1. Then $f(x_{1_1}, x_{2_1}) = 1$ and $f(x_{1_k}, x_{2_k}) = 0$ for all k > 1.

Specificity for interval-valued fuzzy sets

• If $Sp_f(\mu) = 1$, it is necessary that $f(x_{1_1}, x_{2_1}) = 1$ and

$$S(T(\alpha_2, f(x_{1_2}, x_{2_2}))), \dots, T(\alpha_n, f(x_{1_n}, x_{2_n})) = 0$$

Then $T(\alpha_k, f(x_{1_k}, x_{2_k}))) = 0$ for all k and $f(x_{1_k}, x_{2_k}) = 0$ for all k.

- 2. $Sp_f(\emptyset) = 0$: trivial.
- 3. Trivial due to the fact T, T' and S are monotonic

Let $\{\alpha_i\}$ be a set of weights which satisfies the conditions of theorem 3.2.

Example 3.6 With $T(a,b) = Max\{0, a+b-1\}$, N(a) = 1 - a, $S(a,b) = Min\{1, a+b\}$, T'(a,b) = a * b and $f(x,y) = \frac{x+y}{2}$, it is obtained:

$$Sp_f(\mu) = \frac{1}{2}(x_{1_1} + x_{2_1}) - \sum_{j=2}^n \alpha_j(x_{1_j} + x_{2_j})$$

Example 3.7 With $T(a,b) = Max\{0, a+b-1\}$, N(a) = 1 - a, $S(a,b) = Min\{1, a+b\}$,

T'(a,b) = a * b and $f(x,y) = \alpha * x + \beta * y$ with $\alpha + \beta = 1, \alpha > 0, \beta > 0$, it is obtained:

$$Sp_f(\mu) = \alpha * x_{1_1} + \beta * x_{2_1} - \sum_{j=2}^n \alpha_j (\alpha * x_{1_j} + \beta * x_{2_j})$$

Example 3.8 With $T(a,b) = Max\{0, a+b-1\}$, N(a) = 1 - a, $S(a,b) = Min\{1, a+b\}$, T'(a,b) = a * b and $f(x,y) = \frac{x^2+y^2}{2}$, it is obtained:

$$Sp_f(\mu) = \frac{1}{2}(x_{1_1}^2 + x_{2_1}^2) - \frac{1}{2}\sum_{i=2}^n \alpha_i * (x_{1_j}^2 + x_{2_j}^2)$$

Examples 3.6 and 3.7 are extensions of R. Yager's linear measure of specificity ¹¹ for \mathscr{IVFS} .

4. Alpha cuts for interval-valued fuzzy sets

Definition 4.1 Let μ be an interval-valued fuzzy set on X. The α_1, α_2 cuts of μ are subsets of X defined as follows:

$$\mu_{\alpha_1,\alpha_2} = \{a_i \mid \mu(a_i) \geq_L [\alpha_1,\alpha_2]\}$$

Definition 4.2 Let *R* be an interval-valued relation $R: X^2 \to L$. The α_1, α_2 cut of *R*, R_{α_1,α_2} , is a crisp relation defined for all α_1, α_2 in [0,1] as follows:

$$R_{\alpha_1,\alpha_2}(a_i,a_j) = \begin{cases} 1 & R(a_i,a_j) \ge_L [\alpha_1,\alpha_2]; \\ 0, & otherwise. \end{cases}$$

Lemma 4.1 Let $R = [R_{down}, R_{up}]$ be an intervalvalued fuzzy relation on X where R_{down} and R_{up} are fuzzy relations on X, it is, $R(a_i, a_j) = [R_{down}(a_i, a_j), R_{up}(a_i, a_j)]$ for all a_i , a_j in X. Then, $R_{\alpha_1,\alpha_2}(a_i, a_j) = 1$ if and only if $R_{down \alpha_1}(a_i, a_j) = 1$ and $R_{up \alpha_2}(a_i, a_j) = 1$

Proof. Trivial due to definition
$$4.2$$

Lemma 4.2 Let R, S be two fuzzy relations. If $R_{\alpha}(a_i, a_j) = S_{\alpha}(a_i, a_j)$ for all a_i, a_j on X and for all α in [0, 1] then $R(a_i, a_j) = S(a_i, a_j)$.

Proof. Let's suppose that there exist *r*, *s* such that: $R(a_r, a_s) \neq S(a_r, a_s)$. If $R(a_r, a_s) > S(a_r, a_s)$ then $R_p(a_r, a_s) = 1$ and $S_p(a_r, a_s) = 0$ where $p = R(a_r, a_s)$ which is a contradiction. If $R(a_r, a_s) < S(a_r, a_s)$ a similar contradiction can be found.

Proposition 4.1 *The set of all* α_1, α_2 *cuts of an interval-valued fuzzy relation R determine R.*

Proof. By lemma 4.1 the α_1 , α_2 cuts of an intervalvalued fuzzy relation *R* are determined by the α cuts of R_{down} and the α cuts of R_{up} , which by lemma 4.2 are determined by the fuzzy relations R_{down} and R_{up} , that define $R = [R_{down}, R_{up}]$, so the α_1 , α_2 cuts of *R* determine *R*.

Corollary 4.1 Let R, S be two interval-valued fuzzy relations. If $R_{\alpha_1,\alpha_2}(a_i,a_j) = S_{\alpha_1,\alpha_2}(a_i,a_j)$ for all a_i, a_j on X and for all α_1, α_2 in [0,1] then $R(a_i,a_j) = S(a_i,a_j)$.

Proof. Trivial due to proposition 4.1

Definition 4.3 Let \mathcal{T} be a generalized t-norm². An interval-valued relation $R: X^2 \to L$ is a generalized \mathcal{T} -indistinguishability if it is reflexive, symmetric and \mathcal{T} -transitive, it is:

1.
$$R(a,a) =_L 1_L$$
 for all a in X .

2.
$$R(a,b) =_L R(b,a)$$
 for all a, b in X .

3. $\mathscr{T}(R(a,b),R(b,c)) \leq_L R(a,c)$ for all a,b,c in X.

Lemma 4.3 Let $R : X^2 \to L$ be a generalized Inf_L indistinguishability. Then, for each $\alpha_1, \alpha_2, R_{\alpha_1, \alpha_2}$ is an equivalence relation.

Proof.

- 1. $R_{\alpha_1,\alpha_2}(a_i,a_i) = 1$ trivially.
- 2. $R_{\alpha_1,\alpha_2}(a_i,a_j) = R_{\alpha_1,\alpha_2}(a_j,a_i)$ trivially.
- 3. Due to the fact that R is a Inf_L -indistinguishability:

$$Inf_L(R(a_i, a_k), R(a_k, a_j)) \leq_L R(a_i, a_j) \text{ for all } a_i, a_j, a_k \text{ in } X$$

If $R_{\alpha_1,\alpha_2}(a_i,a_k) = 1$ and $R_{\alpha_1,\alpha_2}(a_k,a_j) = 1$ then $R(a_i,a_k) \ge_L [\alpha_1,\alpha_2]$ and $R(a_k,a_j) \ge_L [\alpha_1,\alpha_2]$ and

$$[\alpha_1, \alpha_2] \leq_L Inf_L(R(a_i, a_k), R(a_k, a_j)) \leq_L R(a_i, a_j)$$

therefore: $[\alpha_1, \alpha_2] \leq_L R(a_i, a_j)$ and so R_{α_1, α_2} is transitive

Lemma 4.4 Let $R : X^2 \to L$ be an interval-valued relation. If for each $\alpha_1, \alpha_2, R_{\alpha_1,\alpha_2}$ is an equivalence relation, then R is a Inf_L -indistinguishability.

Proof.

- 1. $R(a_i, a_j) = 1$ by contradiction.
- 2. $R(a_i, a_j) = R(a_j, a_i)$ by contradiction.
- 3. It is supposed that R is not a Inf_L -indistinguishability:

$$Inf_L(R(a_i, a_k), R(a_k, a_j)) >_L R(a_i, a_j)$$
 for
some a_i, a_j, a_k in X

Then, it is found a R_{α_1,α_2} that is not a equivalence relation: Let ε and δ be two real number arbitrarily small such that $\alpha_1 = \underline{R(a_i, a_j)} - \varepsilon$ and $\alpha_2 = \overline{R(a_i, a_j)} - \delta$. Then $R_{\alpha_1,\alpha_2}(a_i, a_k) = 1$ and $R_{\alpha_1,\alpha_2}(a_k, a_j) = 1$ but $R_{\alpha_1,\alpha_2}(a_i, a_j) = 0$, i.e R_{α_1,α_2} is not transitive

Theorem 4.1 Let $R : X^2 \to L$ be an interval-valued relation. If for each $\alpha_1, \alpha_2, R_{\alpha_1,\alpha_2}$ is an equivalence relation if and only if R is a Inf_L -indistinguishability.

Proof. Trivial due to the lemmas 4.3 and 4.4

Corollary 4.2 Let $R: X^2 \to L$ be an interval-valued relation. Then, R is a Inf_L -indistinguishability if and only if $\frac{R_{\alpha_1,\alpha_2}}{\alpha_1,\alpha_2}$ and $\overline{R_{\alpha_1,\alpha_2}}$ are equivalence relations for all $\overline{\alpha_1,\alpha_2}$.

Theorem 4.2 Let $R: X^2 \to L$ be a generalized \mathcal{T} indistinguishability (with $\mathcal{T} \neq Inf_L$). Then, there exists some α_1, α_2 , such that R_{α_1, α_2} is not an equivalence relation.

Proof. Let $R : X^2 \to L$ be a generalized \mathscr{T} -indistinguishability (with $\mathscr{T} \neq Inf_L$). Let a_i, a_j, a_k be elements of the universe X such that: $\mathscr{T}(R(a_i, a_k), R(a_k, a_j)) =_L R(a_i, a_j)$. Let $[\alpha_1, \alpha_2]$ be such that: $[\alpha_1, \alpha_2] = Inf_L R(a_i, a_k), R(a_k, a_j)$. Then, due the fact that Inf_L is the greatest of the generalized t-norms :

$$R(a_i, a_j) = \mathscr{T}(R(a_i, a_k), R(a_k, a_j)) \leq_L \\ Inf_L R(a_i, a_k), R(a_k, a_j)$$

Then $R_{\alpha_1,\alpha_2}(a_i,a_k) = 1$, $R_{\alpha_1,\alpha_2}(a_k,a_j) = 1$ but $R_{\alpha_1,\alpha_2}(a_i,a_j) = 0$

5. Specificity for Interval-valued Fuzzy Sets under generalized similarities

Proposition 5.1 Let μ be an interval-valued fuzzy set on X. Let $[\widehat{\alpha_1}, \widehat{\alpha_2}] = Joint\{\mu(a_i)\}$ for all i:1..n. Then:

$$\begin{split} Sp(\mu) &= 2*\int_0^{\widehat{\alpha}_2} \int_0^{\alpha_2} \frac{1}{card(\mu_{\alpha_1,\alpha_2})} d\alpha_1 \ d\alpha_2 + \\ &\int_{\widehat{\alpha}_1}^{\widehat{\alpha}_2} \int_0^{\widehat{\alpha}_1} \frac{1}{card(\mu_{\alpha_1,\alpha_2})} d\alpha_1 \ d\alpha_2 \end{split}$$

It is a measure of specificity for \mathscr{IVFS} .

Note that the integration area guarantees that $card(\mu_{\alpha_1,\alpha_2})$ is not zero.

Proof.

• Axiom 1:

1. If μ is a singleton then $Sp(\mu/S) = 1$:

- Let a_k be the only element on X such that $\mu(a_k) = 1_L$.
- Then $\mu_{\alpha_1,\alpha_2} = a_k$ for all α_1,α_2 and $card(\mu_{\alpha_1,\alpha_2}) = 1$ for all α_1,α_2 and $[\widehat{\alpha_1},\widehat{\alpha_2}] = [1,1].$
- Then

$$2 * \int_0^1 \int_0^{\alpha_2} 1 d\alpha_1 d\alpha_2 = 1$$

- 2. So that $Sp(\mu) = 1$ it is necessary that $[\widehat{\alpha_1}, \widehat{\alpha_2}] = [1, 1]$ and $card(\mu_{\alpha_1, \alpha_2}) = 1$. Otherwise $Sp(\mu) < 1$. Hence μ is a singleton.
- Axiom 2:
 - Trivial.
- Axiom 3: Let $\{[x_{1_q}, x_{2_q}]\}$ for all q = 1..n be the f-list of μ .
 - 1. If $[x_{1_1}, x_{2_1}]$ increases then $[\widehat{\alpha_1}, \widehat{\alpha_2}]$ increases and *card*(μ_{α_1, α_2}) does not change.
 - 2. If $[x_{1_q}, x_{2_q}]$ for all q : 2..n increases then $1/card(\mu_{\alpha_1,\alpha_2})$ decreases

In ⁴ a set of axioms that generalize the specificity of a fuzzy set under T-indistinguishabilities is given. **Definition 5.1** ⁴ Let Sp a measure of specificity for \mathscr{IVFS} . Sp (μ/S) is a measure of specificity under a generalized similarity S if it verifies:

- 1. $Sp(\mu/S) = 1$ if and only if μ is a singleton.
- 2. $Sp(\emptyset/S) = 0$.
- 3. $Sp(\mu/Id) = Sp(\mu)$.
- 4. $Sp(\mu/S) \ge Sp(\mu)$.

Definition 5.2 An interval-valued relation R: $X^2 \rightarrow L$ is a generalized similarity if it is reflexive, symmetric and Inf_L -transitive where $Inf_L([x_1, x_2], [y_1, y_2]) = [min(x_1, y_1), min(x_2, y_2)]$, it is, R is an Inf_L -indistinguishability.

Definition 5.3 Let μ be a fuzzy set on X and let S be a similarity $S: X \times X \rightarrow [0,1]$. Let π_{α_1,α_2} be the set of classes of equivalence of the α_1, α_2 cut of S. The set of classes of equivalence under the knowledge of $S \mu_{\alpha_1,\alpha_2}/S$ is the subset of equivalence classes of the α_1, α_2 cut of S defined in that way: a equivalence class of the α_1, α_2 cut of S belongs to $\mu_{\alpha_1,\alpha_2}/S$ if its intersection with μ_{α_1,α_2} is not empty. **Example 5.1** Let $E = \{e_1, e_2, e_3, e_4\}$. Let $\mu = \{[0.6, 0.8]/e_1 + [0.7, 0.8]/e_2 + [0.8, 0.8]/e_3 + [0.9, 1.0]/e_4\}$ and

$$S = \begin{pmatrix} 1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 1 & 0.8 & 0.6 \\ 0.1 & 0.8 & 1 & 0.6 \\ 0.1 & 0.6 & 0.6 & 1 \end{pmatrix}$$
$$R_{0.7,0.8} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Then, $\pi_{0.7,0.8} = \{\{e_1\}, \{e_2, e_3\}, \{e_4\}\}$ $\mu_{0.7,0.8} = \{e_2, e_3, e_4\}$ and $\pi_{0.7,0.8}/S = \{\{e_2, e_3\}, \{e_4\}\}$

Proposition 5.2 *Let* μ *be an interval-valued fuzzy set on* X *and let* S *be a similarity* $S : X \times X \rightarrow [0, 1]$ *. Then:*

$$Sp(\mu/S) = 2 * \int_0^{\widehat{\alpha}_2} \int_0^{\alpha_2} \frac{1}{card(\mu_{\alpha_1,\alpha_2/S})} d\alpha_1 d\alpha_2 + \int_{\widehat{\alpha}_1}^{\widehat{\alpha}_2} \int_0^{\widehat{\alpha}_1} \frac{1}{card(\mu_{\alpha_1,\alpha_2/S})} d\alpha_1 d\alpha_2$$

It is a measure of specificity for \mathscr{IVFS} .

Note that the integration area guarantees that $card(\mu_{\alpha_1,\alpha_2/S})$ is not zero.

Proof. Let $\{\pi_{\alpha_1,\alpha_2}^i\}$ for all *i* be the set of equivalence classes of π_{α_1,α_2} .

- Axiom 1:
 - 1. If μ is a singleton then $Sp(\mu/S) = 1$:
 - Let a_k be the only element on X such that $\mu(a_k) = 1_L$.
 - Then $\mu_{\alpha_1,\alpha_2} = a_k$ for all α_1, α_2 .
 - There exists only a πⁱ_{α1,α2} such that a_k belongs to it.
 - And $card(\mu_{\alpha_1,\alpha_2}/S) = 1$ for all α_1, α_2 .
 - Then $2 * \int_0^1 \int_0^{\alpha_2} 1 d\alpha_1 d\alpha_2 = 1$
 - 2. If $Sp(\mu/S) = 1$ then μ is a singleton: If $Sp(\mu/S) = 1$ then $card(\mu_{\alpha_1,\alpha_2}/S) = 1$ for all α_1, α_2 and μ is a singleton.
- Axiom 2: Trivial.

• Axiom 3:

Remember that $X = \{a_1, ..., a_n\}$, then if *R* is the relation identity then $\{\pi_{\alpha_1,\alpha_2}^i\} = a_i$ for all i: 1..n and $card(\mu_{\alpha_1,\alpha_2}/S) = card(\mu_{\alpha_1,\alpha_2})$.

• Axiom 4:

For a relation S there will exist α_1, α_2 such that $card(\pi^i_{\alpha_1,\alpha_2}) > 1$ and $card(\mu_{\alpha_1,\alpha_2}/S) < card(\mu_{\alpha_1,\alpha_2})$

6. Conclusion

Several expression for t-norm based measure of specificity for \mathscr{IVFS} have been proposed and studied.

An generalized expression for measures of specificity have been proposed for \mathscr{IVFSs} and the measures of specificity under the knowledge of generalized similarities have also been defined following the Yager's jacket ideas.

Acknowledgment

This research is partially supported by the Spanish Ministry of Science and Technology, grant number TIN2009-07901, the Research Group CAM GR58/08 at Complutense University of Madrid.

References

- 1. C. Cornelis, G. Deschrijver, and E. Kerre. Advances and challenges in interval-valued fuzzy logic. *Fuzzy Sets and Systems*, 157(5):622–627, 2006.
- C. Cornelis, G.Deschrijver, and E. Kerre. Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. *Int. J. Approx. Reasoning*, 35(1):55–95, 2004.
- L. Garmendia, R.R. Yager, E. Trillas, and A. Salvador. On t-norms based specificity measures. *Fuzzy Sets* and Systems, 133(2):237–248, 2003.

- L. Garmendia, R.R. Yager, E. Trillas, and A. Salvador. General measures of specificity of fuzzy sets under t-indistinguishabilities. *IEEE Transactions on Fuzzy Systems*, 14(4):568–572, 2006.
- L. Garmendia, R.R. Yager, E. Trillas, and A. Salvador. A t-norm based specificity for fuzzy sets on compact domains. *International Journal of General Systems*, 35(6):687–698, 2006.
- 6. R. González-del Campo and L. Garmendia. Specificity, uncertainty and entropy measures of intervalvalued fuzzy sets. *Proceedings EUROFUSE Workshop Preference Modelling and Decision Analysis*, pages 273–278, 2009.
- I. Grattan-Guiness. Fuzzy membership mapped onto interval and many-valued quantities. *Math. Logik. Grundladen Math*, 22:149–160, 1975.
- K.U. Jahn. Intervall-wertige mengen. Math. Nach., 68:115–132, 1975.
- E. Sanchez and R. Sambuc. Fuzzy relationships. phi -fuzzy functions. application to diagnostic aid in thyroid pathology. *Proceedings of an International Symposium on Medical Data Processing*, pages 513–524, 1976.
- R.R. Yager. Measuring tranquility and anxiety in decision-making - an application of fuzzy-sets. *International Journal of General Systems*, 8:139–146, 1982.
- 11. R.R. Yager. Ordinal measures of specificity. International Journal of General Systems, 17:57–72, 1990.
- R.R. Yager. Similarity based measures of specificity. International Journal of General Systems, 19:91–106, 1991.
- R.R. Yager. Containment and specificity for type-2 fuzzy sets. *International Journal Of Fuzzy Systems*, 9:55–66, 2007.
- R.R. Yager. On the measure of specificity of intuitionistic fuzzy sets. NAFIPS 2008 - Annual Meeting of the North American Fuzzy Information Processing Society, pages 677–682, 2008.
- 15. L. A. Zadeh. Similarity relations and fuzzy orderings. *Inform. Sci. 3*, pages 177–200, 1971.
- L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning i. *Information Sciences*, 8:199–249, 1975.