
 

Artificial Neural Network for Compositional Ionic Liquid Viscosity Prediction 

Yiqing Miao, David W. Rooney, and Quan Gan 

School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, UK 

 

 

 

Abstract 

Being a new generation of green solvents and high-tech reaction media of the future, ionic liquids have increasingly 

attracted much attention. Of particular interest in this context are room temperature ionic liquids (in short as ILs in 

this paper). Due to the relatively high viscosity, ILs is expected to be used in the form of solvent diluted mixture 

with reduced viscosity in industrial application, where predicting the viscosity of IL mixture has been an important 

research issue. Different IL mixture and many modelling approaches have been investigated. The objective of this 

study is to provide an alternative model approach using soft computing technique, i.e., artificial neural network 

(ANN) model, to predict the compositional viscosity of binary mixtures of ILs [Cn-mim][NTf2] with n=4, 6, 8, 10 

in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0-

328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity 

successfully with highly improved accuracy and also show its potential to be extensively utilized to predict 

compositional viscosity taking account of IL alkyl chain length, as well as temperature and compositions 

simultaneously, i.e., more complex intermolecular interactions between components in which it would be hard or 

impossible to establish the analytical model. This illustrates the potential application of ANN in the case that the 

physical and thermodynamic properties are highly non-linear or too complex. 

Keywords: artificial neural network; room temperature ionic liquids; viscosity; viscosity compositions. 

 

1. Introduction 

Ionic liquids were originally developed with the aim of 

producing a salt which melts around room temperature, 

so it is generally defined as a salt consisting only of ions 

and existing in liquid state under room temperature,1 

such as organic nitrogen-containing heterocylic cations 

and inorganic anions.2 Since the first dedicated work on 

ionic liquids, which was carried out between 1950 and 

1990, an extensive number and range of ionic liquids 

have been prepared and reported. Numerous sub-

categories have been defined. The most common sub-

category is that of room temperature ionic liquids, salts 

with melting points of 25 °C or below. Room 

temperature ionic liquids (RTILs, in short as ILs in this 

paper), have enormous potential as alternative green 

solvents for a wide range of applications due to their 

important and unique properties, such as non-volatile 

and solvating properties. The rising scientific interest in 

ILs and their potential applications has triggered an 

explosive progress in the field of IL synthesis and 

fundamental research.3, 4 The rapidly increasing research 

activity is reflected in the exponentially growing 

number of publications per year. It is remarkable that 

papers appear faster than 40 per week underlining the 

extreme growing interest in this field.5 
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Although a wide range of research regarding ILs has 

been conducted, there are still a number of challenges 

on the way to apply ILs in large scale chemical 

processes. Among them, the separation, transportation 

and recycling of relatively highly viscous ILs have to be 

taken into consideration for process development. It 

should be noted that in most applications, ILs will be 

used in mixtures with other compounds. For instance, 

when used as a reaction solvent, the IL will contain both 

the reactants and the products. The presence of other 

compounds may significantly reduce the viscosity of the 

mixture, somewhat ameliorating the disadvantages of 

the intrinsically higher viscosities of ionic liquids. 

Consequently, viscosity of IL mixture is important in 

many future applications and it is imperative to develop 

knowledge of fluid and transport properties of ILs in 

mixtures with reactants, products or other co-solvents. 

Therefore, in addition to the study of fluid and transport 

properties of pure ionic liquids, studies of viscosity of 

mixtures of ionic liquids with different class of solvents 

in binary or tertiary systems are necessary and essential. 

However, reported studies of rheological behavior of 

binary mixture of ILs in aqueous, polar or non-polar 

phase are limited even for some well characterized ionic 

liquids.6 

 

In industrial applications, such as in organic synthesis 

and extraction processes, an efficient ILs mixture 

viscosity estimation model can help to facilitate 

processing development prediction with less 

measurement work. Although various methods are 

developed for predicting pure compounds viscosities 

with varying thermodynamic variables,7-12 when dealing 

with mixtures, the modelling to predict viscosity of IL 

is, by far, a much more complicated problem,13 and is 

still on the way of investigation. In most of 

investigations, predictive compositional viscosity 

models are proposed to correlate viscosity of the binary 

mixtures with corresponding viscosity of the pure 

components. The models are kinds of semi-empirical 

models to predict the thermodynamic and the physical 

properties of the compositional viscosity based on 

theoretical relations and relying on data regression to 

obtain some empirical parameters, from the 

experimental data of the binary combinations of the 

components. The compositional viscosity models have 

shown worked well from different aspects. Parameters 

affecting viscosity may vary, many different 

components (e.g., more than two) can be found in 

mixtures of ILs and creating a model that accounts for 

all of them may be unrealistic. For a wide range of 

temperatures and viscosity compositions, i.e., more 

complex intermolecular interactions between 

components, it would be hard to establish analytical 

model. So in this paper, an ANN is utilized to predict 

compositional viscosity over a wide range of 

temperatures and viscosity compositions. 

 

ANNs present significant advantages over conventional 

data regression models as there is no need to provide a 

model function, needs no previous knowledge of the 

data relationship before predicting the desired property. 

The learning capability of ANNs allows the discovery 

of more complex and subtle interactions between 

variables and ANNs are intrinsically more robust when 

it comes to handling noisy or inaccurate data.14-15 

 

Neural networks have particularly proved their ability to 

solve complex problems with nonlinear relationships. 

This background makes ANN one of the most 

perspective techniques of nonlinear data analysis in 

almost all the fields of chemistry (from quantitative 

structure-property relationship studies16-17 to petroleum 

chemistry.18 

 

ANN has been widely applied to predict the physical 

and thermodynamic properties of chemical compounds. 

Recently a few researches have been performed by 

artificial neural networks for prediction of pure 

substances and petroleum fraction's properties19; activity 

coefficients of isobaric binary systems20; 

thermodynamic properties of refrigerants21-24; activity 

coefficient ratio of electrolytes in amino acid's 

solutions
25

; the phase stability problem
26

; and dew point 

pressure for retrograde gases.27 Other ANN applications 

include density predication of ionic liquids28; modeling 

flow boiling heat transfer of pure fluids29; predicting 

slag viscosity over a broad range of temperatures and 

slag compositions30; –T–P prediction for ionic 

liquids31; prediction of simple physical properties of 

mixed solvent systems,32 etc. Those work demonstrated 

that neural networks can dramatically reduce the 

numerical errors and eliminate systematic deviation 

between predicted values and experimental values. 

Furthermore, industrial application of multivariate data 

Published by Atlantis Press 
      Copyright: the authors 
                   461



 ANN for Ionic Liquid Viscosity Prediction 

 

analysis methods is already observed in a number of 

fields.33-35  

 

A complete list of properties has been presented that 

have been analyzed in the literature using different 

approaches to artificial neural networks.36 Properties 

such as boiling point, critical temperature, critical 

pressure, vapor pressure, heat capacity, enthalpy of 

sublimation, heat of vaporization, density, surface 

tension, viscosity, thermal conductivity, and acentric 

factor, among others, were thoroughly reviewed. 

Applications of neural networks to mixture properties 

(PTV properties, vapor liquid equilibrium, activity 

coefficients) have been also presented in other 

publications.22, 24, 37-38  

 

There are numerous viscosity measurements available in 

the literature. Unfortunately, the techniques used to 

obtain them vary greatly and the sources of potential 

errors are numerous. To the best of the author 

knowledge there is not much application for IL viscosity 

prediction; and on the prediction of these properties for 

IL’s using ANN.  

 

In this research work, the application of ANNs to the 

prediction of compositional viscosity of IL mixture is 

investigated.  The work has been briefly outlined in Ref. 

39. This paper aims at extending, refining, completing 

and systematizing the results in Ref. 39. The paper is 

organized as follows: ANN is briefly overviewed firstly 

in Section 2. Some fundamentals and modeling steps of 

ANN for this application are introduced in Section 3. 

Materials and experimental approaches are outlined in 

Section 4. Detailed results and discussion are reported 

in Section 5. The paper is concluded in Section 6. 

2. Short Overview of ANN 

The overview of fundamentals of ANN methodology 

was provided in this section. Additional specific 

information regarding the application of ANN in the IL 

predication is provided in Section 3. 

 

ANN is a mathematical model or computational model 

that is inspired by the structure and/or functional aspects 

of biological neural networks. A neural network consists 

of an interconnected group of artificial neurons. It is a 

parallel distributed processing system and based on the 

principle that a highly interconnected system of simple 

processing elements (neruons) can learn complex 

interrelationships between independent and dependent 

variables. The reader is referred to Refs. 40-42 which all 

provide a good description and introduction of ANNs 

including their efficacies and limitations. Some brief 

introductions are given as follows.  

 

In different ANNs model proposed, the most basic 

architecture normally involves a feed-forward 

backpropagation (BP) neural network consisting of 

three layers. A simple BP-ANN consists of an input 

layer, one or more hidden layers, and an output layer, 

and connected by neurons. Each neuron, receives one or 

more inputs and produces an output signal through an 

activation function, is linked to its neighbors with a 

varying weights that represents the connections’ 

strength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Architecture of a three-layered neural network. 

 

Fig. 2.1 illustrates a typical three-layered neural 

network structure with an input layer, a hidden layer and 

an output layer. Each neuron as a processing element in 

the hidden layer receives an activation signal, which is 

the weighted sum of all the input units from the external 

environment, i.e., each of the input units are multiplied 

by a connection weight: 


i

ijij WIx              (2.1) 

and generates an output through an activation function, 

here Wij is the weight of the connection between the 

neurons i and j among the input neurons with the hidden 

layer, respectively. The output layer consists of neurons 

that communicate the system’s output to the external 

environment. The process continues until a certain 

condition is satisfied and fires the output to the external 
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environment. There are several choices of activation 

functions in different form and may be linear or 

nonlinear, the sigmoid function is the most commonly 

used one, whose general form is given as: 

jxjj
e

xfh





1

1
)(              (2.2) 

such that 

)](1)[( jj
j

xfxf
dx

df
              (2.3) 

An activation function or also called a transfer function 

plays an important role to prevent the output value from 

being too large beyond the data range. The outputs of 

the hidden neurons are calculated using a transfer 

function associated with the neurons of this layer. The 

neurons in the output layer then receive the activation 

signals from the hidden neurons as follows: 


j

jkjj Why              (2.4) 

where Wjk is the weight of the connection between the 

neurons j and k in the hidden and output layers, 

respectively. Similar calculations are carried out to 

obtain the results of each neuron of the following layer 

until the output layer. These activation signals are 

transformed again to produce the outputs of the neural 

network by using a sigmoid function (2.5) or a liner 

transfer function: 

kykk
e

xfo





1

1
)(              (2.5) 

which are the ANN system predicted values and then 

compared with their actual values to minimize the error. 

The error function at the output neurons is defined as 

 
K

kk odWE 2)(
2

1
)(              (2.6) 

where dk and ok are the desired and predicted values of 

the outputs, respectively. This process repeats for the 

ANN structure to be trained. For a successful process 

the objective of the algorithm is to train all the weights 

of the neural network minimizing the total mean 

squared error so that the neural network achieves the 

best performance. 

 

Among others, ANN’s most advantage is that no need 

of knowing the concrete functional relationship (i.e., 

mathematical modeling) between outputs and inputs. An 

ANN such as a three-layer BP-ANN can be used to 

learn and approximate any relationship, linear or 

nonlinear with sufficient large number of neurons in the 

hidden layer. With a specific approach to determine the 

number of neurons of the hidden layer not existing, 

many alternative combinations are possible. In the case 

that the mathematical modelling of functional 

relationship between outputs and inputs is unknown or 

rather difficult or even impossible to be determined, 

ANN could be more suitable than multiple regression 

analysis (MRA), which requires the relationship 

between output and inputs be known or specified.  

 

Another remarkable advantage is that ANN has no 

restriction on the number of output. It is able to model 

the multiple inputs and multiple outputs data.  

 

Apart from the fact that ANN has been successfully and 

widely used in a variety of applications and become 

very popular, there are also some obvious 

disadvantages, for example: 

 

1) The subjectivity in designing an ANN and 

determining its parameters, e.g., the number of hidden 

layers, the number of neurons each hidden layer, the 

learning rate parameter determination, momentum 

factor and epoch, and the learning rule and transfer 

function determination are purely subjective rather than 

objective. Accordingly, different people may get 

different results for the same problem because they may 

design different networks and choose different 

parameters for training and testing.  

 

2) ANN’s connection weights (can either be positive or 

negative) are not easy to be explained in some special 

application context.   

 

3) ANN is usually used for no constraint problem. If 

there are any constraint conditions on inputs and/or 

outputs, it will be difficult for an ANN to be trained to 

satisfy those constraints.  
 

Although ANN has the above mentioned disadvantages, 

its advantages, especially the ability on learning and 
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approximate linear or nonlinear relationship far 

outweigh the disadvantages. 

3. ANN Modeling for Viscosity Prediction of ILs 

Mixture 

3.1.  Dataset and input variable selection 

In the work, we have done test for viscosities of binary 

[Cn-mim][NTf2]-methanol and [Cn-mim][NTf2]-ethanol 

mixtures measured at temperatures between 293.0K to 

313.0K. Further analysis of the data reveals a 

compositional dependency of the viscosity, with a 

negative nonlinear departure from a linear 

compositional dependency based on viscosity of 

individual components.  

 

The inputs selected for the ANN are elemental mole 

fractions and temperature, in Kelvin, normalized as 

follows: 

TT minmax

minT - eTemperatur
input eTemperatur


          (3.1) 

Here minT and maxT are the minimal and maximal 

temperatures respectively. Molar fractions were 

normalized to have a sum of 1. 

3.2. Performance function 

The proper selection of the function which is minimized 

when adjusting the parameters of a model, the 

performance function, is important. In this study, we use 

the standard deviation of the correlation which is 

calculated using the following equation. 

  


N

i
iical

N
TD

1

2
exp,,

1
S                    (3.2) 

for both IL-methanol and IL-ethanol mixtures, where N 

is the total number of experimental points, ηcal the value 

calculated using a given model, and ηexp the measured 

viscosity. STD represents the standard deviation of the 

correlation. 

3.3.  Architecture and training 

There are many different types of neural networks. Each 

differs from the others in network topology and/or 

learning algorithm. In this work, a simple feed forward 

networks using back propagation (BP-ANN) learning 

algorithm is one of the commonly algorithm which is 

used for prediction, which is a multilayer feed-forward 

network with hidden layers between the input and 

output layer. The simplest implementation of BP 

learning updates the network weights and biases in the 

direction of the negative gradient which the 

performance function decreases most rapidly. 
 

The topological structure of the ANN was shown in Fig. 

2.1. The number of input neurons was based on the 

analysis purpose, which is equal to the number of 

parameters affecting viscosity. The output layer 

consisted of one neuron, i.e., viscosity.  
 

The determination of the number of neurons in the 

hidden layer is more art than science. A very rough rule 

of thumb is given by Ref. 43: 

)(5

cases  trainingofNumber 

nm
h


            (3.3) 

where h is the number of neurons in the hidden layer, m 

the number of neurons in the output layer, and n the 

number of neurons in the input layer. In this study, a 

trial-and error method is performed to optimize the 

number of neurons in the hidden layer. Fig. 3.1 shows 

the STD of the viscosity prediction for [C4-mim][NTf2]-

ethanol binary mixtures in correlating with the number 

of neurons in the hidden layer). It is observed that the 

number of neurons in hidden layer was systematically 

varied to obtain a good estimate of the data being 

trained. However, too many neurons in the hidden layer 

may cause over-fitting problem, which results in the 

network can learn and memorize the data very well 

(good at training), but lacks the ability to generalize 

(bad at testing). But no sufficient number of neurons in 

hidden layer will lead to the lack of learning ability for 

the network. Based on the experimental analysis, a BP-

ANN with 4 or 5 neurons in the hidden layer seems to 

be appropriate for this application in most of cases. A 

BP-ANN with 4 neurons is the best for this case. 
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Fig. 3.1 SDT versus number of neurons in the hidden layer 

for: () during the training, and () during the prediction. 
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In addition, over-fitting is a problem sometimes appears 

in ANN application, there have been different 

approaches for preventing over-fitting, for example, 

training a network by supplying the validation data or 

early stopping, or training a neural network using 

regularization. In this application, due to the fact that 

the total number of sample data is not that big, to aovid 

over-fitting the data, we choose to use the regularization 

approach. Accordingly, the training function 

(trainbr) was used. This function applies the 

Levenberg–Marquardt algorithm with Bayesian 

regularization44 (trainbr is a network training 

function that updates the weight and bias values 

according to Levenberg-Marquardt optimization. It 

minimizes a combination of squared errors and weights, 

and then determines the correct combination so as to 

produce a network which generalizes well. The process 

is called Bayesian regularization). The output values for 

training were the viscosity values in Pa s. All other 

settings were by default the newff function in Neural 

Network tool book44 under MATLAB 7 (to create a 

feed-forward backpropagation network) which were 

used for ANN creation and training, respectively. By 

default the inputs are normalized to values between −1 

and 1, the hidden neurons use tansigmoid transfer 

functions,44 and the output neurons use a linear transfer 

function. 

4. Materials and Experimental Methods 

The work is focused specially on analysis of viscosities 

of IL series [Cn-mim][NTf2] (n=4, 6, 8, 10) in polar 

solvents, methanol and ethanol, with concentration 

between 0M to 1M measured at temperatures ranged 

from 293.0 to 328.0K under atmospheric pressure.  

 

The ionic liquids used in this work were synthesized by 

a metathesis reaction between halide (1-alkyl-3-

methylimidazolium bromide) and lithium 

bis(trifluoromethylsulfonyl)imide.45 The basic 

molecular and fluid properties of the synthesized ionic 

liquids are listed in Table 4.1. Synthesized ionic liquids 

were kept in a glove box after being dried at 70 oC 

under vacuum for two days, and the water contents of 

the samples were regularly checked by Karl–Fischer 

titration or Coulometry. Water content of the dried ionic 

liquids was 35050 ppm. It has been reported 46 that 

water contents of 350ppm to 700ppm could result in 

viscosity values that are 3 % and 6 % lower than the 

absolute dry ILs, respectively. While 3% to 6% change 

in viscosity of pure ionic liquid is relatively significant, 

the trace water impact on the binary compositional 

viscosity is negligible after the addition of methanol or 

ethanol which results in exponential decrease of 

viscosity at even the lowest methanol/ethanol molar 

ratio examined in this study. 

Table 4.1 Physical-chemical properties of pure ILs [Cn-

mim][NTf2] used in this work. 

IL C4 C6 C8 C10 

Molecular weight 

(g/mol) 419.01 447.32 475.38 503.40 

Molar volume  

(cm3 mol-1) 291.10 326.20 359.40 391.52 

Viscosity at 
298.15 K (mPas) 56.2 86.3 115 146 

Molecular 
structure  

imidazolium [Cn-mim]+  bis-
trifluoromeththylsulfonyl-imide 
NTf2 

 

Analytical grade methanol and ethanol were used to 

make up the binary ionic liquid-solvent mixtures. These 

two polar solvents were chosen for their simplicity, 

widespread use as industrial solvents, and solvating 

ability for both hydrophobic and hydrophilic ionic 

liquids. They are also easily removable from the 

mixture by evaporation as the ionic liquids have near 

zero vapour pressure. The viscosities of pure methanol 

and ethanol at 298.15 K are 0.5514 mPas and 1.0784 

mPas respectively.47 Binary ionic liquid and 

methanol/ethanol mixtures were prepared by directly 

weighing constituent components according to 

predetermined compositional molar ratio. 

Measurements of viscosity or molar volume were 

carried out immediately after sample preparation. A 

cone and plate rheometer (Brookfield programmable 

DV-II+ Viscometer) was used for viscosity 

measurement. Digital density meter DMA 4500 (Anna 

ParrR) was used for the measurement of molar volume. 

Temperature control for the viscosity and density 

N 
F 

F 
F O 

O 

O 

O 
F 

F 
F 

S S 
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measurement is within the precision 0.1K. A minimum 

five sets of readings were taken for each sample, and the 

arithmetic mean, with standard deviation less than 3%, 

was used for further analysis and calculations. 

5. Results and Discussions 

The ANN was implemented using under MATLAB 7.0 

environment. ANN has been trained and test for 

viscosity of [Cn-mim][NTf2]-ethanol binary mixtures 

with n=4, 6, 8, and [Cn-mim][NTf2]-Methanol binary 

mixtures with n=4, 6, 8, and 10, at the temperature 

range T=293-328K in terms of different molar ratios, 

respectively, where 1/2 of data set has been used for 

training and 1/2 of data have been used for test purpose 

to evaluate their accuracy and trend stability. 

5.1.  ANN to predict compositional viscosity over a 

broad range of temperatures 

After training the ANN, the models become ready for 

testing and evaluation by unseen data with network. To 

examine the predictive ability of the ANNs, it is useful 

to look at plots of the predicted property value versus 

the measured value. A scatter plot of typically measured 

experimental data against the ANN model predictions 

for [C4-mim][NTf2]-ethanol binary mixtures was shown 

in Figure 5.1. 3-D plot of viscosity for [C4-mim][NTf2]-

ethanol binary mixtures at the temperature range 

T=293-328K in terms of different molar ratios is shown 

in Fig. 5.2 (with training scheme) and Fig. 5.3 

(standalone figure to be more clear). 
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Fig. 5.1: Evaluation of ANN performance; A scatter plot of 

typically measured experimental viscosity data (mPas) against 

the ANN model for unseen viscosity data for [C4-mim][NTf2]-

ethanol binary mixtures 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 5.2. Viscosity for [C4-mim][NTf2]-ethanol binary 

mixtures at the temperature range T=293-328K in terms of 

different molar ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 5.3. Viscosity for [C4-mim][NTf2]-ethanol binary 

mixtures at the temperature range T=293-328K in terms of 

different molar ratios. 

 

Results show a good agreement between experimental 

data and the predicted by ANN, while the artificial 

neural network has the overall agreement between 

experimental and prediction values in all of temperature 

ranges.  

 

The standard deviation of ANN predictions are 

presented in Table 5.1 for the binary IL-methanol and 

IL-ethanol mixture respectively. 
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Table 5.1 Standard deviation of ANN prediction in 

compositional viscosity for each individual binary [Cn-

mim][NTf2]-ethanol and methanol system at temperature 

range T=293-328K 

ethanol methanol 

Cn STD(ANN) Cn STD(ANN) 

C4 0.0495 C4 0.0889 

C6 0.0814 C6 0.1722 

C8 0.1180 C8 0.1393 

C10 0.1316 C10 0.2433 

 

From Table 5.1, ANN achieves good performance. This 

is mainly attributed to the strong ability of BP neural 

network to learn nonlinear relationships among outputs 

and inputs.  

 

In addition, the scatter plots for [Cn-mim][NTf2]-ethanol 

binary mixtures with n=4, 6, 8, 10 were summarized in 

Fig. 5.4.  

 

It is obvious from this figure that the ANN provides 

results very close to process measurements. The 

predictions which match measured values should fall on 

the diagonal line. Almost all data lay on this line, which 

confirms the accuracy of the ANN model. ANN's results 

showed acceptable estimation performance for 

prediction of the viscosity. 

 

All results exhibit that neural networks can predict the 

viscosity satisfactory as a new method instead of 

approximate and complex analytic equations or 

thermodynamic models. 

5.2. The effects of various amounts of fluxing 

components at the wide range of temperatures 

Compositional viscosity predictions of liquid mixtures 

were evaluated to determine the effect of various 

amounts of fluxing components at the wide range of 

temperatures. 
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Fig. 5.4  A scatter plot as an evaluation of ANN performance 

for [Cn-mim][NTf2]-ethanol mixture with n=4, 6, 8, 10. 

 

Liquid viscosity strongly depends on temperature due to 

changes in thermal/kinetic energy at molecular level and 

changing activation energy of viscous flow. 

Temperature change may also significantly alter the 

nature of molecular interactions in binary mixtures, 

thereby increasing or decreasing the effect of molecular 

interactions on compositional viscosity. At elevated 
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temperatures, the compositional viscosity usually 

decreases logarithmically with increasing temperature. 

At lower temperatures, a dramatic viscosity will 

decrease and non-Newtonian behaviour may occur.  
 

Viscosity predictions were made via ANN assuming 

that the viscosity composition is uniform. Fig. 5.5 

showed the effect of adding polar solvent respectively 

under a broad range of temperatures T=293-328K. 
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Fig. 5.5  Viscosity predictions with varying amounts of molar 

ratio for [C4-mim][NTf2]-ethanol mixture at temperature range 

T=293-328K. 

 

Firstly, Fig. 5.5 shows dramatic decrease of 

compositional viscosity value with increasing 

temperatures for different fraction of component, 

suggesting the influence of molecular structure and 

chemical/physical interactions on compositional 

viscosity is much reduced at elevated temperature when 

molecules acquire large thermal and kinetic energy, 

becoming more mobile and less bound by chemical 

forces.  

 

In addition, the effect of IL concentration on 

compositional viscosity also decreases with increasing 

temperature, as can be seen by the reduction in slope 

with increasing temperature in Fig. 5.5, the addition of 

polar solvent molar dose seems to reduce the viscosity 

sensitivity to temperature at higher temperatures. When 

the temperature is over 340K, the addition of molar has 

very little effect on the viscosity. 

 

The results could also suggest that if different fluxing 

component is added, operation would have to be kept 

about how much temperature to have the viscosity 

below the recommended maximum. 

 

For example, if we take 12 Pa s as the recommended 

maximum viscosity, if the molar ratio is 50%, operation 

would have to be kept above 300K to have the viscosity 

below the recommended minimum. 

 

Addition of 70% molar increases the required 

temperature to 320K, while addition of 100% molar 

further increases the required temperature to 340K.  

 

This kind of analysis is more useful to show the effect 

of adding each component under a broad range of 

temperatures when investigating more than two 

component mixtures. For the different components 

additions may yield different results about the required 

temperatures.  

 

Furthermore, as can be seen by the reduction in slope 

with increasing temperature in Fig. 5.5, the addition of 

molar dose seems to reduce the viscosity sensitivity to 

temperature at higher temperatures. Consequently, if the 

viscosity threshold is set to a higher limit, addition of a 

fluxing agent may reduce the required operation 

temperature.  

 

Viscosity predictions with varying amounts of molar 

ratio for [C4-mim][NTf2]-methanol mixture at 

temperature range T=293-328K yields similar results. 

5.3. ANN to predict compositional viscosity for 

different ILs over a broad range of 

temperatures 

In Section III-A, we discussed the ANN prediction for 

each individual [Cn-mim][NTf2]-ethanol  (also 

methanol) system when n=4, 6, 8, 10, in which the three 

input node are the temperature and the two molar ratio. 

The question would be that if we can predict viscosity 

of [C4-mim][NTf2] based on the measured data of [Cn-

mim][NTf2]-ethanol (also methanol) when n=6, 8, and 

10. Now the input node increase into 4, i.e., the 

temperature, the two molar ratios, and also the number 

indicate the IL alkyl chain length.  

 

The standard deviation of ANN predictions are 

presented in Table 5.2 for the binary IL-methanol and 

IL-ethanol mixture respectively. Again, the resulting 

ANN was tested statistically and found to be of quality 

predictive power. These results confirmed that the 
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trained ANN could be effective in predicting the 

viscosity providing valuable tool. 

Table 5.2 Standard deviation of ANN prediction in 

compositional viscosity for binary [Cn-mim][NTf2]-ethanol 

and methanol system at temperature range T=293-328K 

ethanol methanol 

Cn STD(ANN) Cn STD(ANN) 

C4 from C6, C8, C10 0.0895 

C4 from 

C6, C8, 
C10 0.2003 

C6 from C4, C8, C10 0.1192 

C6 from 
C4, C8, 

C10 0.1989 

C8 from C4, C6, C10 0.1215 

C8 from 
C4, C6, 

C10 0.1492 

C10 from C4, C6, C8 0.1288 

C10 from 
C4, C6, 

C8 0.2433 

 

In addition, the scatter plots for [Cn-mim][NTf2]-ethanol 

binary mixtures with n=4, 6, 8, 10 were summarized in 

Fig. 5.6. 

 

The obtained results indicated that ANN can be very 

useful to predict IL mixture viscosity with varied alkyl 

chain length. As far as we know, there is no viscosity 

prediction methodology being able to take account of 

varied alkyl chain length and compositional 

temperatures at this same time. 
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Fig. 5.6  A scatter plot as an evaluation of ANN performance 

for [Cn-mim][NTf2]-ethanol mixture with n=4, 6, 8, 10. 

6. Conclusions 

In this work, the ability of ANN for modeling and 

prediction of viscosity prediction of ILs mixture has 

been investigated. The STD analysis based results are 

used for verification of the suggested approach. Results 

showed a good agreement between experimental data 
and the predicted by ANN. An important feature of the 

model is it doesn't require any theoretical knowledge 

during the training process. The results show that the 

presented new neural network models that provide 

better predictions and higher accuracy than the existing 

and proposed model. In each case, the ANN does not 

require a data relationship to predict the compositional 

viscosity but rather relies on the field data obtained for 

training. Since the ANN does not rely upon theoretical 

relations, it can easily be expanded to include other 

factors such as extra new components.  

 
The work proposed only considered binary mixtures, 

but since the ANN does not rely upon theoretical 

relations, it can easily be expanded to the case for 

ternary and quaternary mixtures and even more new 

components. In addition, it can also be expanded to 

include other factors such as IL alkyl chain length, 

different type of IL or solvent, shear rate for non-

Newtonian IL. For example, an attempt has been made 

to account for ionic liquid alkyl chain length. None of 

the conventional regression models mentioned 

previously directly account for both the carbon chain 
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length and measurement condition. With neural 

networks, the alkyl chain length can be accounted for by 

one or more additional inputs. 

 

For this reason, although there are some obvious 

disadvantages of ANN as stated in literatures, it is still 

recommended that the ANN approach could be applied 

in ILs fields for reduction in error, computational time, 

and cost of overproduction and underproduction, 

because its advantages such as the ability to handle 

nonlinear data far outweigh the disadvantages. 
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