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Abstract 

Universal gravitation is a natural phenomenon. Inspired by Newton's universal gravitation model and based on 

binary differences strategy, we propose an algorithm for global optimization problems, which is called the binary 

difference gravitational evolution (BDGE) algorithm. BDGE is a population-based algorithm, and the population is 

composed of particles. Each particle is treated as a virtual object with two attributes of position and quality. Some 

of the best objects in the population compose the reference-group and the rest objects compose the floating-group. 

The BDGE algorithm could find the global optimum solutions through two critical operations: the self-update of 

reference-group and the interactive-update process between the reference-group and floating-group utilizing the 

gravitational evolution method. The parameters of BDGE are set by a trial-and-error process and the BDGE is 

proved that it can converge to the global optimal solution with probability 1. Benchmark functions are used to 

evaluate the performance of BDGE and to compare it with classic Differential Evolution. The simulation results 

illustrate the encouraging performance of the BDGE algorithm with regards to computing speed and accuracy. 

Keywords: Optimization; Binary Difference; Differential Evolution; Gravitation. 

1. Introduction 

Evolutionary algorithms are a series of problem-solving 

methods that based on simulation of the natural 

evolution system, and its development can be traced 

back to 1950s. Compared with the classic optimization 

methods, an evolutionary algorithm has many 

advantages. For example, it is unconstrained by the 

search space limitations; it is unconstrained by the 

function types; and function gradient information is not 

essential, etc. Evolutionary algorithms have been widely 

used for optimization problem. Biological evolution 

theory inspired the emergence and development of 

bionics, which motivated many types of evolutionary 

algorithms, such as Genetic Algorithm [1-2], Simulated 

Annealing [3], Immune Algorithm [4-6], Particle 

Swarm Optimization [7-9], Ant Colony Optimization 

[10-11] and Bacterial Foraging Optimization [12], etc. 

All these contributions have gained great achievements 

on the field of optimization. 

Chris and Tsang firstly proposed the concept and 

frame of GELS (Gravitational Emulation Local Search) 

[13] in 1995, which was then further developed by 

Webster [14]. Balachandar and Kannan [15] proposed 

RGES (Randomized Gravitational Emulation Search) 

algorithm in 2007, which overcame some weak points 

of GELS, such as a relatively slow convergence rate and 

low quality of solutions. The three gravitational 

emulation search methods above were initially applied 

to solve combinatorial optimization problems such as 

Traveling Salesman Problem (TSP). 

Hsiao and Chuang et. al. proposed the SGO (Space 
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Gravitational Optimization) [16], which was based on 

Einstein’s theory and Newton’s law of gravitation. The 

SGO simulated the process that a number of planets 

shift in the space to search for the planet with the most 

massive. The geometric transformation of the space 

generates a force to make the planets shifting faster or 

slower. In 2007, Chuang and Jiang proposed an 

algorithm named IRO (Integrated Radiation 

Optimization) [17], based on the phenomenon that the 

movements of one planet in the gravitational field were 

compositively effected by the sum of all the other 

planets’ gravitational radiation forces. Rashedi proposed 

the GSA (Gravitational Search Algorithm) in 2007 and 

it was continuously improved thereafter [18-20]. In 

GSA, a particle’s total gravitation was a sum of all other 

particles’ gravitations with random weights, and the 

total gravitation generated the acceleration to move. 

GPSO (Particle Swarm Optimization based on 

Gravitation) [21] was proposed by Kang and Wang et. 

al in 2007, which introduced an acceleration into 

Particle Swarm Optimization. All the four algorithms 

above were methods based on the position and 

displacement, and inspired by gravitation, each of which 

has different update formulas, respectively. 

In this paper, the proposed algorithm Binary-

Difference Gravitational Evolution (BDGE) shares the 

same point with the algorithms above, that is, all these 

algorithms utilize the concept of gravitation. However, 

BDGE does not simulate the physical movement 

processes as above, but via a clustering process based 

on elitist strategy. In BDGE, objects in the population 

are clustered into two different groups: the reference-

object group and the floating-object group. Objects of 

different groups are updated independently or 

cooperatively, and the binary difference [25] strategy is 

adopted to update objects in the updating processes 

independently or cooperatively, i.e. the self-update of 

reference-group and the interactive-update group and 

interacting process between the two groups. 

This paper is organized as follows. Section 2 presents 

both the details and ensemble of BDGE. Experimental 

study is given in Section 3, where benchmark functions 

are used to evaluate the performance. Section 4 gives an 

analysis on the parameters, and the convergence of 

algorithm is analyzed in Section 5, followed by the 

conclusion in Section 6. 

 

2. Binary Difference Gravitational Evolution 

Algorithm 

2.1. Binary Difference Strategy 

The Differential Evolution (DE) [22-23] algorithm 

emerged as a very competitive form of evolutionary 

algorithm more than a decade ago, and was first 

proposed by R. Storn and K. Price in 1995, which was a 

simple and efficient heuristic algorithm for global 

optimization over continuous spaces and its feature is a 

mutation with a differential strategy. The selection of 

differential strategies would make significant influence 

on the performance of the algorithm. In consideration of 

diversity, there are at least three individuals involved in 

mutation in DE [23-24]. To simplify the mutation 

operation, the binary difference strategy was introduced, 

which is similar to the traditional but with only two 

individuals involved. As discussed in [25], binary 

difference using a sorted population could improve the 

performance of DE, especially in the aspect of 

convergence speed for low-dimensional problems. 

Because the objects of the reference-object group in 

BDGE are sorted by their qualities, binary difference is 

appropriate to be introduced into BDGE. 

In binary difference, two objects are selected as 

candidates, of which the one with better fitness value is 

selected as the central object, and the objects with 

relative worse fitness values are involved in mutation. 

The process of producing new objects is as follows. A 

central object is temporarily fixed and the worse-fitness 

objects are updated one after another according to the 

central object. The new objects are more likely to be 

close to the central object.  

The binary difference strategy not only is simpler, but 

also takes advantages of the gravitation clustering. The 

population is divided into two groups by gravitation 

clustering, and the binary difference is used for the 

interactive update of the two groups. The dimensional 

update of an object with binary difference strategy is as 

follows: 

1( ) ( ) (0,1) ( ) ( )kk kk kk kkX new X i csign c U X i X j       

where ( )X i and ( )X j are two objects in a population, 

and ( )X new represents the newly produced individual. 

The subscript kk means dimension kk, csign is a random 

symbol, 1c is a constant, and (0,1)U  is a random value 

uniformly distributed in [0,1] . Binary difference uses a 
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random and variable factor 
1 (0,1)csign c U   to keep 

diversity of the population. 

2.2. Gravitational Grouping Mode 

Gravitation is an attractive force between two objects, 

which exists between any two objects with masses. The 

value of gravitation is in proportion to the mass of either 

object, while in inverse proportion to the distance 

between them. Calculation of gravitation can be 

described as follows: 

1 2

2

m m
F G

r


       (1) 

where 6.672G  is the gravitational constant, 
1m and 

2m  are qualities of two objects, and r represents the 

distance between two objects. 

Without loss of generality, we consider only the 

maximization problem as optimization problem 

considered in this paper: 

max ( )
X S

Z f X


  

The search space is { | , 1,2,..., }i i iS X l x u i n    , 

where
1 2( , , , )T

nX x x x . , (1 )i il u i n   are the lower 

and upper bound. ( )f  is the objective function. We 

treat a particle in the search space S as an object, using 

gravitation for optimization. For any two objects 

1A and
2A in the space S , their physical positions are 

represented by 1( )X A and
2( )X A , and their qualities are 

represented by 
1( )m A and

2( )m A . Then the gravitation 

of 
1A and

2A is simply described as: 

1 2 1 2

1,2

1,2 0 1,2 0

( ) ( ) ( ( )) ( ( ))m A m A h f A h f A
F

r K r K

 
 

 
      (2) 

where 1,2r means distance measurement, and 
0K is a 

small-valued constant to ensure denominator unequal to 

zero in Formula (2). ( )h  is a one-dimensional scale 

transformation function satisfied ( , )x    , 

( ) 0h x  , which strictly increase monotonically. For 

convenience, ( )h   is set as the absolute value here, in 

accordance with the concept that quality is a non-

negative value. ( ) ( ( ))m h f   represents the quality of 

an object, which is scale transformed from objective 

function. Formula (2) is essentially equal to Formula (1), 

though the form is changed. In this paper, we calculate 

the gravitation measurements, but not the true 

gravitation values. 

For convenience, the fitness of an object we 

mentioned in this paper indicates the quality, which is a 

scale transformation of the objective function. 

2.3. Binary Difference Gravitational Evolution 

Summary 

The population denoted by RN is assemble of all 

objects, which are clustered into two groups, i.e. the 

reference-object group R , and the floating-object group 

N . Followings are the symbols used in the BDGE 

descriptions. ( )iX R represents the position of the thi  

reference-object
iR , 

,( )i kX R represents its thk  

dimension and ( )im R represents the quality of the 

reference-object
iR . Similarly, ( )jX N represents the 

position, 
,( )j kX N represents its thk dimension and 

( )jm N represents the quality of the floating-object jN . 

( , )U a b is a random value uniformly distributed in 

interval [ , ]a b . 

Binary Difference Gravitational Evolution algorithm 

can be summarized as follows: 

Step1 The reference-object group R , and the 

floating-object group N are randomly generated: 

1

2

{ ,1 }

{ ,1 }

i

j

R R i n

N N j n

   


  

 

where
1n and

2n are two integer numbers, and represent 

the group sizes of two groups, respectively. 

Step2 If the halt conditions are satisfied, then halt. 

Otherwise resort the population RN , which should 

satisfy the following rules: 

1

1 2

( ) ( ),  1

( ) ( ),  1 ,  1

i ii

i j

m R m R i ii n

m R m N i n j n

   


    
 

Step3 Binary difference strategy is applied to any 

two reference-objects 1 (1 )iR i n  and 1 ( )iiR i ii n  , 

and a new object / 1(1 )i iiC i ii n    is generated: 
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, ,

/ , , 1 , ,

1,  (0,1) 0.5
,  1

1,  (0,1) 0.5

( , ),             if ( ) ( )

( ) ( ) (0,1) ( ) ( ) ,

                              otherwise

k

k k i k ii k

i ii k i k kk i k ii k

U
csign k n

U

U l u X R X R

X C X R csign c U X R X R



  
  

 
   


      



 

where
/( )i iiX C ,

/ ,( )i ii kX C and
/( )i iim C represent the 

position, the thk  dimension and the quality of the 

newly generated object 
/i iiC , respectively. 

, ,( ) ( )i k ii kX R X R   represents the distance of two 

objects. 
/i iiC replaces

1nR if 
1/( ) ( )i ii nm C m R , and then 

resort the reference-object group R , which should 

satisfy the following rules: 

1( ) ( ),  1i iim R m R i ii n    ； 

Step4 The gravitation measurement
/i jF and distance 

measurement /i jr (Euclidean distance measurement is 

used here) between any
1(1 )iR i n  and 

2(1 )jN j n   

is calculated as follows: 

/ 2

/

/ 0

 || ( ) ( ) ||

( ) ( )

i j i j

i j

i j

i j

r X R X N

m R m N
F

r K

 



 

 

Then a bidirectional selection runs: 

(1) For every floating-object 2(1 )jN j n  , to select a 

reference-object
_1( )index jR , which has the maximal 

gravitation with jN , where 

max

/ / 1

max

/ / 1

max( ,1 )

_1( ) min({ | ,1 })

i j i j

i j i j

F F i n

index j i F F i n

   


   

 

(2) For every reference-object 1(1 )iR i n  , to select a 

floating-object _ 2( )index iN ,which has the minimum 

gravitation with
1(1 )iR i n  , and then it is 

thorough eliminated, which means it would be 

replaced and do not participate in generating the 

next generations, where 

2

min

/ /

min

/ /

( ) { | _1( ),  1 }

min({ , ( )})

_ 2( ) min({ | , ( )})

i j i j

i j i j

set i j i index j j n

F F j set i

index i j F F j set i

    


 


  

 

The eliminated object
_ 2( )index iN  does not exist, if 

( )set i  . 

Step5 There are two situations for update of 

floating-objects based on step4. 

(1) For the floating-objects which have not been 

eliminated 2 1{ | _2( ),  1 ,  1 }jN j index i j n i n     , 

binary difference is applied to update them: 

_1( ), ,

_1( ),

,

1 _1( ), ,

1,  (0,1) 0.5
,  1

1,  (0,1) 0.5

( , ),           if ( ) ( )

( )
( )

(0,1) ( ) ( ) ,

                           otherwise

k

k k index j k j k

index j k

j k

k index j k j k

U
csign k n

U

U l u X R X N

X R
X N

csign c U X R X N



 
  

 

  



 
    















 

(2) For the eliminated floating-objects
_ 2( ){ ,index iN  

1 1 }i n  , we randomly select a reference-object 

to replace it. 

Then go to Step2. 

2.4. Algorithm Illustrations 

2.4.1. Sorting Operation 

The population is divided into the reference-object 

group and the floating-object group in BDGE, where the 

reference-objects have the better fitness values, thus 

they are objects with bigger qualities. The reference-

objects are arranged according to their qualities in the 

group. 

Reference-objects

Ordering Rules

① ② ③ ④

m(①)≥ m(②)≥m(③)≥ m(④)
 

Fig. 1 Ordering of Reference-object Group 

The sorting operation is applied to the reference-

object group only, and the rules of sorting is illustrated 

in Figure 1, where ( )m   represent quality of an object, 

and objects are sorted in a proper sequence by their 

values of qualities. The other part of population, i.e. the 

floating-object group, does not need to be sorted, and 

the only requirement we need to ensure is that any 

floating-object’s fitness value should never be better 

than the worst reference-object’s. 
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2.4.2. Method of Update 

There are two types of update methods in BDGE, i.e. 

the self-update of reference-group and the interactive-

update process between the reference-group and 

floating-group. 

① ④ ⑤ ⑥③②Reference-objects

Update of Reference-

objects Themselves
C1/2 C1/3 C2/5 C4/6

 

Fig. 2 An Example of Reference-objects Self-update 

As it is showed in Figure 2, the self-update process of 

the reference-objects occurred after objects are sorted. 

Reference-objects ①  and ② , ①  and ③ , ②  and 

③ …are used to produce new objects one pair after 

another by binary difference. Thus, any two reference-

objects are selected in the process above. The rule of 

new objects’ selection is that we select the superior with 

bigger quality and eliminate the inferior. The purpose of 

a reference-object is to keep a high level on quality as 

well as fitness, which to a certain degree ignores the 

diversity of the reference-group but speed up the 

convergence rate only. 

Reference-objects

Floating-object ①

① ② ③

④ ⑤ ⑥ ⑦ ⑧③②
 

Fig. 3 An Example of Gravitation Clustering 

After the self-update process of reference-group, an 

interactive-update of reference-objects and floating-

objects are performed. Figure 3 shows an example of 

gravitation clustering, the essential of which is the 

interactive-update. Compared with reference-objects ② 

and ③, floating-object ① has a bigger gravitation 

measurement with reference-object ①, so floating-

object ① selects reference-object ①, the lines of 

reference-object ① and floating-object ① shows their 

relationship. The similar progress occurs on other 

objects. For the reference-object ①, there has four 

floating-objects (①, ③, ④ and ⑧) selected, among 

which floating-object ③ (with a dot) has the minimum 

gravitation measurement with reference-object ①, then 

floating-object ③ would be eliminated from population. 

Similarly, other reference-objects eliminate floating-

objects as above to finish the interactive-update process 

between the reference-group and floating-group.  

The positions of eliminated floating-objects are 

regenerated in a random way as initialization. The 

regeneration is called forced-update, which means being 

replaced and not participate in generating the next 

generations. The forced-update step of interactive-

update contributes a lot in the goal of keeping 

population diversity. 

2.4.3. Physical Meanings 

As showed in both Formula (1) and (2), if two objects 

have a large value of gravitation, that may be caused by 

either a small distance in the denominator or big quality 

of each object in the numerator. The second case is what 

we expected, while the former may lead to a trap of 

local optimum. To solve this problem, we introduce a 

threshold parameter  , the value of which will be 

discussed in another paragraph. 

2.4.4. Advantages of Gravitation Clustering: 

 

Fig. 4 Searching Method  

Figure 4 shows an example of one dimension, as shown 

reference -objects
1R ,

2R , and floating-objects
1N ,

2N , 

according to Formula (2), 
1 1 1 1 0( ) ( ) / ( )F m R m N r K   , 

2 2 2 2 0( ) ( ) / ( )F m R m N r K   . Both 
1F and

2F  are large 

(when
iF is small, the relationship of 

iR and
iN  is 

ignored), where
1F is caused by big qualities of 

1R , and 

it is good for exploring on new region, which increases 

diversity. On the contrary, 
2F may be caused by the 

small distance
2r . This is good for exploiting in the 

current region, which increases accuracy, but may cause 

a risk of being trapped in local optimums. 

3. Experiments 

3.1. Comparison Methods 

We choose Differential Evolution to compare BDGE 

with because both use difference vector to generate new 

individuals. The parameters of the two algorithms are 

set as follows: 
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DE: The parameters are set as that proposed by Yang 

et al.[26], that is the population size 10NP D  , where 

D is the dimension of variable in solution space, 

0.9CR  , 0.5F  , and a mutation strategy of 

DE/rand/1. The halting condition is: 1. The number of 

fitness function evaluations overstepped 2,000,000. 2. 

Supposed Minf  is the global optimum value, bestf  is 

the searched optimum value, and 610   is the 

accuracy value, if Min bestf f   , the running stops. 

BDGE: The reference-object group size
1 10n  and 

the floating-object group size
2 20n  .And 910  , 

1 2c  , 10

0 10K  . The halting condition is set the same 

as that in DE. 

3.2. Benchmark Functions 

There are 9 benchmark functions presented in table 1, 

which are used to evaluate the performance of BDGE, 

and to compare it with the classic Differential Evolution. 

Table. 1 Benchmark Functions 

Test Function Domain Range Optimal Point 

Sphere Model 

2

1

1

D

i

i

f x


  
[-100,100]

D
 

1

1

Min 

(0,0, ,0) 0

f

f




 

Schwefel's Problem 2.22 

2

1 1

| | | |
DD

i i

i i

f x x
 

    
[-10,10]

D
 

2

2

Min 

(0,0, ,0) 0

f

f




 

Schwefel's Problem 2.21 

3 max{| |,  1 }i
i

f x i D    [-100,100]
D
 

3

3

Min 

(0,0, ,0) 0

f

f




 

Step Function 

2

4

1

( 0.5 )
D

i

i

f x


     
[-100,100]

D
 

4

4

Min 

(0,0, ,0) 0

f

f




 

Quartic Function i.e. Noise 

4

5

1

[0,1)
D

i

i

f ix random


   
[-1.28,1.28]

D
 

5

5

Min 

(0,0, ,0) 0

f

f




 

Generalized Schwefel's Problem 2.26 

2

6

1

( sin( | |))
D

i i

i

f x x


   
[-500,500]

 D
 

6

6

Min 

(420.9687,420.9687,

,420.9687) 12569.5

f

f



 

 

Generalized Rastrigin Function 

 2

7

1

10cos(2 ) 10
D

i i

i

f x x


    
[-5.12,5.12]

 D
 

7

7

Min 

(0,0, ,0) 0

f

f




 

Generalized Penalized Function I 

1
2 2

8 1

1

2 2

1

1

{10sin ( ) ( 1)

[1 10sin ( )] ( 1) }

( ,10,100,4)

D

i

i

i D

D

i

i

f y y
D

y y

u x














  

   







 

where 

[-50,50]
 D

 
8

8

Min 

(1,1, ,1) 0

f

f




 

( ) ,   

( , , , )  0,       

( ) ,

m

i i

i i

m

i i

k x a x a

u x a k m a x a

k x a x a

  


   
   

 

1
1 ( 1)

4
i iy x    

Generalized Penalized Function II 

1
2 2

9 1

1

2

1

2 2

1

0.1{sin (3 ) ( 1)

[1 sin (3 )]

( 1) [1 sin (2 )]}

( ,5,100,4)

D

i

i

i

D D

D

i

i

f x x

x

x x

u x














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3.3. Simulation Results 

We run each algorithm 50 times independently on each 

benchmark function above. The dimension of problems 

is set to be 10. Successful run means the difference 

between the obtained solution and the true value to be 

less than 610 before the number of function evaluations 

reaches the maximum value, which is set to be 

2,000,000. 

Table. 2 Comparison of results on 50-time independent 

random testing with benchmark functions 

Test 

Function 

BDGE DE 

Best/Worst Std FEs Best/Worst Std FEs 

f1 3.77e-7/9.86e-6 e-6 6678 3.94e-6/9.98e-6 e-6 22210 

f2 2.79e-6/9.97e-6 e-6 7289 7.07e-6/9.94e-6 e-7 32738 

f3 0/0 0 180 0/0 0 552 

f4 0/0 0 5239 0/0 0 8656 

f5 4.04e-6/3.19e-4 e-5 1875528 1.44e-5/1.01e-4 e-5 2000000 

f6 -12569.499/-12569.498 e-6 8867 -12569.499/-12569.498 e-6 99408 

f7 2.92e-9/9.83e-6 e-6 22491 4.83e-6/0.99 e-1 371198 

f8 5.81e-8/9.96e-6 e-6 8002 2.49e-6/9.91e-6 e-6 19870 

f9 1.41e-9/9.93e-6 e-6 12478 3.01e-6/9.98e-6 e-6 21092 

As shown in Table 2, where Best /Worst mean the 

best and worst solutions in the testing based on the 

average of 50 times of independent runs; Std and FEs is 

short for standard deviation and function evaluations. 

According to the data in Table 2, Differential Evolution 

cannot always find the optimal value of f7, for the worst 

solution in the 50 runs is 0.9949, dissatisfying the 

precision. We define when the obtained solution which 

has the precision less then 410 as a successful run. 

There are 46 successful runs in 50 total runs while 
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optimizing f7 utilizing DE, while for other functions in 

this test, the successful runs are all 50, i.e. DE can solve 

the rest problems and the proposed BDGE can optimize 

all the functions with relative smaller Std and FEs 

values, which means a higher precision and fast 

convergence speed, Table 2 shows BDGE has a better 

performance than DE due to a smaller number of 

function evaluations, of which a maximal disparity was 

that DE got a more than 10-time function evaluations 

than BDGE, that means the latter is 10 times faster than 

the former. 

Figure 5 shows the comparison between DE and 

BDGE, which illustrate the fitness values decreased as 

iteration increasing for optimizing the functions. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 Comparison of BDGE and DE in Testing of (a)f1, 

(b)f4, (c)f8. 

As can be observed clearly from the figures, BDGE 

reached the global optimum requiring less number of 

iteration than DE. During the optimizing process, the 

blue solid line declines faster than the red dotted line, 

which illustrates that the BDGE converges faster than 

DE does. 

4. Experimental Study of Parameters 

4.1. The group sizes 
1n and 

2n  

The values of group size
1n and

2n may influence the 

performance of BDGE a lot. Here we discuss these two 

parameters, using Schaffer 1 Problem (SF1) as an 

example, which was a classical deceptive problem. 

2
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1 1Min (0,0, 0) 0SF SFf f   

We optimize 
1SFf  with 2-dimension and 5-dimension 

utilizing BDGE to test different settings of group 

size 1n and 2n . The halt condition is set as either 

6

1Min 10SFf f   or the number of fitness function 

evaluations overstepped the Max-FEs, which was set to 

be 150,000 for 2-dimension problem and 2,000,000 for 

5-dimension problem, respectively. Other parameters of 

BDGE are set as follows, 910  , 1 2c  , 10

0 10K  . 

1n and 2n are experimentally set to be 1, 2, ..., 20, 
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respectively. For each pair of 
1n and

2n , 50 runs are 

conducted independently, and a total of 20 20 50   

times of runs are conducted for the two problems. 

Figure 6 shows the influences on optimization 
1SFf  of 

2-dimension and Figure. 7 shows that of 5-dimension. 

According to the halt condition, we adopt success as 

operation stopped when 6

1Min 10SFf f    other than 

the number of fitness function exceeds Max-FEs. 

It can be seen from Figure 6 that for a 2-dimension 

problem, when
1 2n n , it has a higher success rate, 

while a lower rate when
1 2n n . From Figure 6(b), 

when
1 2n n , it has a lower number of average function 

evaluation, while an opposite result when 
1 2n n . As an 

observation from Figure 6, a selection of 
1 2n n is good 

for the 2-dimension Schaffer Problem. The same 

observation can be obtained from Figure 7 for the 5-

dimension problem.  

Intuitively according to the algorithm procedure, 

when
1 2n n , the reference-objects’ update takes high 

percentage of the whole update progress, which leads a 

fast convergence. However, it will lose diversity 

especially when dealing with deceptive problem. 

When
1 2n n , this is another status that the diversity is 

contented enough but with a little slow convergence. 

BDGE is an algorithm that can balance between a high 

convergence rate and a high diversity. 

The floating-object group size could be arbitrarily big 

but a too large group size is time consuming. The 

conclusion is 
1n should be appropriate small, 

2n could 

be slightly larger than
1n , and their relationship should 

meet
1 2n n . The specific values are defined depending 

on circumstances.  

 
(a) 

 
(b) 

Fig. 6 The Effect of Alternative Group Sizes on 

Optimization Schaffer 1 Problem (SF1) of 2-

dimension (a) Result of Success Rate, (b) Result 

of Average Function Evaluations 

 
(a) 

 
(b) 

Fig. 7 The Effect of Alternative Group Sizes on 

Optimization Schaffer 1 Problem (SF1) of 5-

dimension (a) Result of Success Rate, (b) Result 

of Average Function Evaluations 

4.2. The threshold parameter   

The threshold parameter is discussed in this part, 

which influences the algorithm performance a lot as 

well. BDGE is tested on Shifted Sphere Function ( SSFf ). 
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1 2Min ( , , , ) 0SSF SSF Df f o o o   

Here we separately test the problem with a dimension 

of 10, 20, 30 and 100, respectively. The parameters are 

set as follows:
1 10n  , 

2 20n  ,
1 2c  , 10

0 10K  . The 

halt conditions are set as either 6Min 10SSFf f   or 

the number of fitness function evaluations overstepped 

2,000,000.  increases gradually by 110  , 210 , , 

1010 , and for each setting of  , 50 runs are conducted 

independently.  

Table. 3 The result of benchmark testing on Shifted Sphere 

Function with different values of   

Test 

functions 

Shifted Sphere Function 

10-D 20-D 30-D 100-D 

  Std FEs Std FEs Std FEs Std FEs 

10-1 e-2 2000000 e-1 2000000 e+0 2000000 e+3 2000000 

10-2 e-4 2000000 e-2 2000000 e-2 2000000 e+2 2000000 

10-3 e-5 2000000 e-4 2000000 e-4 2000000 e+2 2000000 

10-4 e-7 2000000 e-6 2000000 e-5 2000000 e+0 2000000 

10-5 e-8 7031 e-8 392908 e-7 2000000 e-1 2000000 

10-6 e-8 6194 e-9 24766 e-9 87314 e-2 2000000 

10-7 e-8 5952 e-9 21129 e-9 50503 e-4 2000000 

10-8 e-8 5877 e-8 20065 e-9 44269 e-6 2000000 

10-9 e-8 6184 e-8 20362 e-9 42729 e-6 1501400 

10-10 e-8 6202 e-8 21480 e-8 45363 e-9 909876 

As shown in Table 3, with the value of   decreasing, 

the standard deviation Std and the average number of 

fitness function evaluations FEs decrease as well, which 

means a better performance in optimization. From the 

statistic results shown in Table 3, it can be observed that 

in general, a setting of 8 1010 ~ 10    preferably fit for 

most problems, which can be used as a common setting. 

As for low-dimensional problems, a setting of  nearby 

the precision value leads to nice performances, while for 

a high-dimensional problem, the smaller   is set, the 

better result would be got. For example, for Shifted 

Sphere Function with 100-dimension, when 1510  , 

the FEs value decreases to 459,283, better than 909,876 

when 910  . 

5. Analysis of Algorithm Convergence  

BDGE is a type of randomized optimization algorithms. 

The conditions of proving the convergence of a 

randomized algorithm were firstly proposed by Solis 

and Wets [27]. They have given the theorems to prove 

whether an algorithm has converged to the global 

optimal with probability 1, which can be summarized as 

follows: 

Hypothesis 1 [27] if ( ( , )) ( ),f D z f z S   , then 

( ( , )) ( )f D z f  . 

where D is a function to generate potential solutions,   

is a random vector generated from the probability space 

(R , , )n

kB  , and f is the objective function. S , which 

is the subspace of Rn , represents the constraint space of 

the problem. 
k is probability measurement on B , 

which is the  domain of Rn subset. 

Hypothesis 2 [27] if A is a Borel subset of S , 

satisfies ( ) 0A  , then 

0

(1 ( )) 0k
k

A




    

where ( )A is a n -dimensional closure of subset A , 

and ( )k A is a probability, indicating the rate that
k  

generates A . 

Theorem [27] Suppose f is a fathomable function, 

S is a fathomable subset of Rn , 
0{ }kz  is a solution 

sequence generated by the randomized algorithm. If 

both Hypothesis 1 and Hypothesis 2 are satisfied 

simultaneously, then  

lim [ ] 1k
k

P z R


   

where R represents the set of the global optimal 

solutions. 

According to the theorem, if both Hypothesis 1 and 

Hypothesis 2 are satisfied simultaneously for BDGE, it 

can be confirmed that the proposed BDGE algorithm 

converges to the global optimal solution with 

probability 1. The convergence proof of BDGE is given 

as follows: 

In the BDGE algorithm, the return value before the 

tht iteration is the function value of ( 1)ix t  , i.e. 

( ( 1))if x t  , and ( ( ))if x t  represents the function value 

of the tht iteration value ( )ix t , where ( )f x  represents 
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the objective function. The function D  of Hypothesis 1 

is defined as: 

( 1),   if  ( ( 1)) ( ( ))
( ( 1), ( ))

( ),      if  ( ( 1)) ( ( ))  

i i i

i i

i i i

x t f x t f x t
D x t x t

x t f x t f x t

  
  

 
 

It can be inferred Hypothesis 1 is satisfied for BDGE. 

For Hypothesis 2, all that is needed is to prove the S -

sized sample space contains S , thus, 

,

1

S

i t

i

M S


  

where
,i tM represents the support set of the thi  

individual’s sample space in tht iteration.  

Suppose there are N iterations in the search, and the 

range of the thi iteration is
iS , which is the support set as 

well. Therefore, the union space of the population (a set 

of individuals) is
1

N

i

i

S


. The range of an individual is 

adjustable, and when range covers the boundary of the 

solution space, though there are only a few individuals, 

it can enable 
1

N

i

i

S S


  Then Hypothesis 2 is satisfied 

for BDGE algorithm. 

In conclusion, BDGE converges to the global optimal 

solution with probability 1, according to the theorem. 

6. Conclusion 

In this paper, the BDGE algorithm based on two critical 

models, i.e. binary difference and gravitational 

evolution for global optimization, was proposed. The 

proposed algorithm BDGE was compared with the 

Differential Evolution by testing both algorithms on 

benchmark functions. Simulation results show that the 

BDGE can explore the solution space more effectively 

than DE to obtain the global solution, and the BDGE 

requires a much smaller size population than DE does. 

The parameters of BDGE are studied and set by trial-

and-error, and the convergence analysis was also 

conducted to show BDGE can converge to the global 

optimal solution with probability 1. Certainly, there is 

still room to further improve BDGE. For instance, the 

number of parameters should be reduced to simplify the 

algorithm, and the clustering and gravitational models 

should be studied to solve high-dimensional problems, 

which are our future research work. 
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