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Abstract 

Mobile ad-hoc network (MANET) is a dynamic collection of mobile computers without the need for any existing infrastructure. 

Nodes in a MANET act as hosts and routers. Designing of robust routing algorithms for MANETs is a challenging task. Disjoint 

multipath routing protocols address this problem and increase the reliability, security and lifetime of network. However, selecting an 

optimal multipath is an NP-complete problem. In this paper, Hopfield neural network (HNN) which its parameters are optimized by 

particle swarm optimization (PSO) algorithm is proposed as multipath routing algorithm. Link expiration time (LET) between each 

two nodes is used as the link reliability estimation metric. This approach can find either node-disjoint or link-disjoint paths in single- 

phase route discovery. Simulation results confirm that PSO-HNN routing algorithm has better performance as compared to backup 

path set selection algorithm (BPSA) in terms of the path set reliability and number of paths in the set. 
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1. Introduction 

Mobile ad-hoc networks (MANETs) are defined as the 

category of wireless networks that utilize multi-hop 

radio relaying and are capable of operating without the 

support of any fixed infrastructure. MANETs are useful 

when no wired link is available such as in disaster 

recovery or more generally when a fast deployment is 

necessary. In addition, the required expensive 

investments in base stations result to deployment of 

wireless networks in ad-hoc mode.
1
 The tasks such as 

relaying packets, discovering routes, monitoring the 

network and securing communication are performed by 

mobile nodes in the network. Nodes typically 

communicate in multi-hopping fashion and intermediate 

nodes act as routers by forwarding data.
2
 Unlike the 

wired networks, route failure is a normal behavior in 

MANETs. Route failure occurs frequently due to 

mobility and limited battery power of nodes as well as 

characteristics of the wireless communication medium. 

Route recovery process should be done when the route 

failure occurs in the network. This requires sending 

extra control packets which consumes network 

resources like bandwidth and battery power. It also 

leads to excessive delay that affects the quality of 

service (QoS) for delay sensitive applications.
3
 Routing 

protocols should adapt to these topology changes and 

continue to maintain connection between the source and 

destination nodes in the presence of path breaks caused 

by link and/or node failures.  
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In order to increase the routing resistance against link 

or/and node failures, one solution is to use not just a 

single path, but a set of redundant paths.
4-9

 In this way, 

there is a fundamental and quite difficult question: 

which of the potential exponentially many paths within 

the network should the routing layer use to achieve the 

highest reliability? 

The path with low probability of failure is the reliable 

one. The correlation of failures between the paths in the 

set should be as low as possible. Common links and 

nodes between paths are common failure points in the 

set. In order to provide high reliable path set, we focus 

on finding disjoint paths; i.e., the paths with no link-

overlap or node-overlap. The problem of finding 

disjoint paths is non-trivial. Two general principles for 

selecting the reliable paths can be stated. First, a long 

path is less reliable than a short one. Second, a larger 

number of disjoint paths increases the overall reliability. 

Thus, one should be looking for a large set of short and 

disjoint paths.  

Most of the past works on multipath routing protocols 

have been based on the single version of an existing 

routing protocol. They have been mostly focused on 

load-balancing, delay, energy efficiency and quick 

failure recovery, but not considered how to effectively 

select the multiple paths and also the quality of selected 

paths such as the disjointedness of selected paths. The 

number of paths found by some algorithms has been 

restricted to a specific number and they cannot select 

the appropriate number of paths. Also, the proposed 

algorithms have been limited to find link-disjoint or 

node-disjoint path set and they are not capable to find 

both link- disjoint and node-disjoint path sets. 

Split multipath routing (SMR) algorithm, proposed by 

Lee and Gerla
8
, selects maximally disjoint paths. In 

SMR, the multipath routes are discovered by a modified 

route request procedure. In this scheme, the 

intermediate nodes are allowed to rebroadcast duplicate 

route request messages if they receive them from a link 

with better QoS. However in this protocol, the reliability 

of links has not been used and the paths are not entirely 

disjoint. It is also limited to route replies provided by 

the routing protocol. Pearlman et al.
9
 have proposed a 

method which selects the two routes with the least 

number of hops. This protocol does not provide a metric 

or model to justify a particular route selection scheme. 

Selecting paths based on a small number of hops does 

not imply that paths will undergo less frequent 

breakages, while the appropriate number of paths may 

be far from two. Dana et al.
6
 have proposed a backup 

and disjoint path set selection algorithm for MANETs. 

This algorithm produces a set of backup paths with high 

reliability. In order to acquire the link reliability 

estimates, link expiration time (LET) between each two 

nodes has been used.   

The problem of finding the most reliable multipath has 

already been shown to be computationally hard.
10

 It is 

noted that the motivation for using soft-computing 

methods is the need to cope with the complexity of 

existing computational models of real-world systems.
11-

15
 The recent resurgence of interest in neural networks 

has its roots in the recognition that human brain 

performs the computations in a different manner as 

compared to conventional digital computers. A neural 

network has a parallel and distributed information 

processing structure which consists of many processing 

elements interconnected via weighted connections. One 

of the important applications of neural network is to 

solve optimization problems. In these cases, we want to 

find the best way to do something, subject to certain 

constraints. The best solution is generally defined by a 

specific criterion. Hopfield neural network (HNN) is a 

model that is commonly used to solve optimization and 

NP-complete problems.
16, 17

 One of the most important 

features of this model is that Hopfield network can be 

easily implemented in hardware, therefore neural 

computations are performed in parallel and the solution 

is found more quickly. The use of neural networks to 

find the shortest path between a given source-

destination pair was first introduced by Rauch and 

Winarske.
18

 An adaptive framework to solve the optimal 

routing problem based on Hopfield neural network has 

been introduced by Ali and Kamoun.
19

 

The computations in a neural network are heavily 

dependent on its parameters. The parameters should be 

chosen in such a way that the neural network 

approaches towards a valid solution.
20

 Consequently, 

tuning the HNN parameters should be done in order to 

achieve the best solution over minimum iterations. The 

lack of clear guidelines in selecting appropriate values 

of the parameters of energy function is an important 

issue in the efficiency of HNNs in solving combinatorial 
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optimization problems. It is obvious that a trial and error 

approach does not ensure the convergence to optimal 

solutions.
19

  

In the recent years, several intelligent optimization 

algorithms have been used in different applications such 

as: (a) genetic algorithm (GA) in scheduling problem
21

, 

total cost and allocation problem
22

, obtaining the 

optimal rule set and the membership function for fuzzy-

based systems23, and facility location problem24, (b) ant 

colony optimization (ACO) algorithm in chaotic 

synchronization
25

 and grouping machines and parts into 

cells26, (c) artificial immune algorithm in several 

nonlinear systems
27

, (d) particle swarm optimization 

(PSO) algorithm in single-objective and multi-objective 

problems
28, 29

, bandwidth prediction
30

, parameter 

identification of chaotic systems
31

, QoS-aware web 

service selection in service oriented communication 

problem
32

, and solving multimodal problems
33

, (e) 

harmony search (HS) algorithm for synchronization of 

discrete-time chaotic systems.
34

 

Among the mentioned approaches, PSO which has been 

proposed by Kennedy and Eberhart35 is inherently 

continuous and simulates the social behavior of a flock 

of birds. In PSO, the solution of a specific problem is 

being represented by multi-dimensional position of a 

particle and a swarm of particles is working together to 

search the best position which corresponds to the best 

problem solution. In each PSO iteration, every particle 

moves from its original position to a new position based 

on its velocity. Particle's velocity is influenced by the 

cognitive and social information of the particles. The 

cognitive information of a particle is the best position 

that has been visited by the particle. Based on the 

traditional speed-displacement search model, Gao et 

al.
36

 have analyzed the PSO mechanism and proposed a 

generalized PSO model, so that the PSO algorithm can 

be applied to the fields of discrete and combinatorial 

optimization.  

Bastos-Filho et al.
37

 have proposed a swarm intelligence 

and HNN-based routing algorithm for communication 

networks. They have used the PSO technique to 

optimize HNN parameters and the energy function 

coefficients. The results have shown that the proposed 

approach achieves better results than existing algorithms 

that employ the HNN for routing. Hemmati and 

Sheikhan
38

 have proposed a reliable path set selection 

algorithm based on Hopfield neural network. The 

performance of their proposed algorithm has been 

improved by using noisy HNN which introduces more 

complexity to the HNN implementation.
39

 They have 

shown that the reliability of multiple disjoint paths 

found by the proposed algorithm is higher than those 

found by traditional multipath routing algorithms. But 

they did not mention how the HNN parameters can be 

tuned.  

In this paper, we introduce a Hopfield neural model to 

find the most reliable disjoint multipath in a MANET. 

The proposed scheme contains several parameters and 

there is no rule to define them exactly. PSO is used to 

find the best set of parameters used in HNN for 

multipath calculation. Each node in the network can be 

equipped with a neural network, and all the network 

nodes can train and use the neural networks to obtain 

the optimal or sub-optimal multipath. 

In the next section, HNN and PSO are reviewed. The 

operation and termination conditions of proposed 

multipath routing algorithm are described in Section 3. 

The implementation details and the use of PSO 

algorithm to tune the proposed HNN model parameters 

are presented in Section 4. Section 5 demonstrates the 

efficiency of the proposed technique through a 

simulation study. Then, Section 6 conducts a 

performance evaluation of the proposed algorithm and 

then the computational complexity of proposed 

algorithm is described in Section 7.  Finally, Section 8 

presents the conclusions of the study. 

2. Background 

2.1. Hopfield neural network 

 
The use of neural networks to solve constrained 

optimization problems was initiated by Hopfield and 

Tank.
17, 40

 The general structure of HNN is shown in 

Fig. 1. Assume that the network consists of n neurons. 

The neurons are modeled as amplifiers in conjunction 

with resistors and capacitors which compromise 

feedback circuits.  A sigmoid monotonic increasing 

function relates the output Vi of the ith neuron to its 

input Ui: 

1
( ) ,

1 i
i i U

V g U
e

−
= =

+ λ
                                           (1)                                

where λ is a constant called the gain factor. Each 

amplifier i has an input resistor ri and an input capacitor 

Ci which partially define the time constant τi of ith 
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neuron. To describe synaptic connections, we can use 

the matrix T = [Tij], also known as the connection 

matrix, of the network. A resistor of value Rij connects 

one of the outputs of the amplifier j to the input of 

amplifier i. In this model, each neuron receives an 

external current (known also as a bias) Ii.  

 

 
Fig. 1. Hopfield neural network model. 

 

The dynamic of ith neuron can be described as 

follows
16

: 

 1

1 1

. ;

1 1 1 1
, , .

n
i i

ij j i

j i

n n

ij i i i

j jij i i i ij

dU U
T V I

dt

T R C
R C R r R

=

= =

= − +

=  = +  =

∑

∑ ∑

τ

τ

               (2)                             

For a symmetric connection matrix and for a sufficiently 

high gain of transfer function, then the dynamics of 

neurons follow gradient descent of the quadratic energy 

function
16

: 

1 1 1

1
.

2

n n n

ij i j i i

i j i

E T VV I V
= = =

= − −∑∑ ∑                 (3) 

Hopfield has also shown that as long as the state of 

neural network evolves inside the N-dimensional 

hypercube, defined by {0,1}
i

V ∈ , if 
i

λ → ∞  , then the 

minimum of energy function (3) will attain one of the 2N 

vertices of this hypercube. 

 

 

 

2.2. Particle swarm optimization 

 
PSO is a population-based stochastic optimization 

technique which does not use the gradient of the 

problem being optimized, so it does not require being 

differentiable for the optimization problem as is 

necessary in classic optimization algorithms. Therefore, 

it can also be used in optimization problems that are 

partially irregular, time variable, and noisy.  

In PSO algorithm, each bird, referred to as a “particle”, 

represents a possible solution for the problem. Each 

particle moves through the D-dimensional problem 

space by updating its velocities with the best solution 

found by itself (cognitive behavior) and the best 
solution found by any particle in its neighborhood 

(social behavior). Particles move in a multidimensional 

search space and each particle has a velocity and a 

position as follow: 

1 2( 1) ( ) ( ( )) ( ( )),i i i i i i iv k v k P x k G x k+ = + − + −γ γ                (4)                      

( 1) ( ) ( 1),i i ix k x k v k+ = + +                                       (5)                                               

where i is the particle index, k is the discrete time index, 

vi is the velocity of ith particle, xi is the position of ith 

particle, Pi is the best position found by ith particle 

(personal best), G is the best position found by swarm 

(global best) and γ1,2 are random numbers in the interval 

[0,1] applied to ith particle. In our simulations, the 

following equation is used for velocity
41

: 

[ ]

[ ]
1 1

2 2

( 1) ( ) ( ) ( ( ))

( ( )) ,

i i i i i

i i

v k k v k P x k

G x k

+ = + − +

−

ϕ α γ

α γ
                       (6)                  

in which φ  is the inertia function and 1,2α are the 

acceleration constants. The flowchart of the standard 

PSO algorithm is summarized in Fig. 2. 

PSO and the genetic algorithm (GA) are both 

population-based search algorithms and both of them 

share information among their population members to 

enhance their search processes. They also use a 

combination of deterministic and probabilistic rules. 

Different experiences have shown that although PSO 

and GA result on average in the same solution quality, 

the PSO is more computationally efficient which means 

it performs less number of function-evaluations as 

compared to GA. 
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Fig. 2. Standard PSO flowchart. 

 

In the other hand, it has been shown that computational 

effort in PSO and GA is problem dependent; but in 

solving unconstrained nonlinear problems with 

continuous design variables, PSO outperforms the 

GA.
42, 43

  

As the Hopfield performance is depending on its 

parameter setting, and it is a continuous problem, PSO 

is used in this study to determine the optimum values of 

Hopfield network parameters.  

3. Proposed Approach 

Disjoint multiple paths between source and destination 

are classified into two types, namely node-disjoint and 

link-disjoint multiple paths. Node-disjoint paths do not 

have any nodes in common, except the source and 

destination. Link-disjoint paths do not have common 

links, but may share some nodes. Link-disjoint paths are 

more available than node-disjoint paths. Movement of 

nodes at the junctions causes the failure of all the paths 

going through that node. The node-disjoint type has the 

most disjointedness, as all the nodes/links of two routes 

are different; i.e., the network resource is exclusive for 

the respective routes. 

Here, we propose an algorithm which can compute both 

node-disjoint and link-disjoint paths. This approach 

consists of three steps. First, a method is introduced to 

compute the multipath reliability. Then, a route 

discovery mechanism is defined, and finally the 

multipath calculation algorithm is proposed in which the 

most reliable multipath is found by a PSO-optimized 

HNN. 

3.1.  Assumptions 

A MANET is denoted by a probabilistic graph G = 

(V,L),  where V is a set of nodes in the network and L  

is a set of links connecting the nodes. Nodes are located 

on a two-dimensional field and move in the field. Node 

( )i V∈ has a distinct identifier IDi. Each node has the 

wireless transmission range R > 0. Node j is called a 

neighbor of node i if and only if, j is within the 

transmission range R of i, and the link (i,j) is included in 

the link set L. The probability of proper operation is 

also assigned to the links. A link (for example hth link) 

operates with probability 
link

hp and fails with 

probability 1
link link

h hq p= − . In this protocol, each node 

continuously monitors the reliability of its incident 

links. For each source and destination pair, 

( )S DReliability S D→ ≠  denotes the probability that 

there exists at least one path connecting source and 

destination over graph G.  

3.2.  Reliability computation method 

Assume that pathi, between source and destination, 

consists of m links. The probability that pathi be 

operational or the path reliability is obtained by: 

 
1

.
m

link

i h

h

PathReli p
=

= ∏                               (7) 

A path fails with probability: 

1 .i iPathFail PathReli= −                                (8) 

Assume that P={Path1, Path2, … , Pathn} denotes a set 

of disjoint paths that includes n paths. The reliability of 

the path set is calculated by: 

1

1

1

1 (1 ),

n

i

i

n

i

i

PSreliability PathFail

PathReli

=

=

= −

= − −

∏

∏
                               (9)       

in which PathRelii < 1, so PSreliability is approximately 

equal to: 

1 2

1

1 (1 .... )

.

n

n

i

i

PathReli PathReli PathReli

PathReli
=

− − − − −

=∑
       (10) 
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3.3.  Route discovery algorithm 

In this algorithm, each node has a route cache, which 

preserves the order of nodes and probabilities of all 

paths, PathRelii, from each source. In order to find paths 

between the source and destination, the source node 

broadcasts the route request (RREQ) packet to the nodes 

which are in its transmission range. This RREQ packet 

has the following fields: 

Record: a record of the sequence of hops taken by 

this packet;  

Prob: the reliability of the followed path;  

TTL: the maximum number of hops that a packet can 

traverse along the network before it is discarded.  

When a node receives the RREQ packet, it decrements 

TTL by 1 and performs the following steps: 

1. If the node is a destination one, it updates the 

Prob, and adds the Record and updates Prob to its route 

cash. 

2. If TTL=0, the RREQ packet is discarded. Thus, 

TTL limits the number of intermediate nodes in a path. 

3. If the ID of this node is already listed in the 

Record of route request, the RREQ packet is discarded 

to avoid looping. 

4. Otherwise, the node appends its node ID to the 

Record in the RREQ packet, and also updates the Prob 

field, and re-broadcasts the request to its neighbors. 

When the destination node receives the first RREQ 

packet from a specific source node, it waits for a while 

to receive other RREQ packets from longer paths.  

Now all the information, which is needed to calculate 

link-disjoint or node-disjoint paths, is obtained by single 

route discovery, so there is no need to send extra 

messages as overhead in the MANET; when both link-

disjoint and node-disjoint paths are needed. 

For all of the paths in destination route cache, we can 

assume a disjointedness matrix, ρ=[ρjk], with the size of 

(n×n) in which n is the total number RREQ packets 

received from a specific source. In order to find node-

disjoint paths, we define NDρjk as: 

0       

       -

1 .

th th

jk
j k

if j path and k path in

ND route cache are node disjointed

otherwise

ρ
≠

    


= 
               

(11)  

 

           
We define also LDρjk to find link-disjoint paths as 

follows: 

0       

       -

1 .

th th

jk
j k

if j path and k path in

LD route cache are link disjointed

otherwise

ρ
≠

    


= 
      

            (12)  

 

All the diagonal elements in ρ are also set to zero. 

3.4. Neural-based multipath calculation  

To formulate the problem in terms of Hopfield neural 

model, a suitable representation scheme should be found 

so that the most reliable multiple disjoint paths can be 

decoded from the final stable state of the neural 

network. Each neuron in this model represents a path of 

discovered paths in the route discovery phase, listed in 

the route cache. Thus, the total number of neurons 

required in HNN is equal to the total number of paths 

found in the route discovery phase. Based on the fact 

that a path is selected to be in the set or not, the output 

of a neuron at location i is defined as follows: 

1

0 .

th

i

if i path in route cache is in the path set
V

otherwise

              
= 

   

         (13) 

 

The normalized reliability of ith path is defined as: 

,i

i

max

PathReli
C

PathReli
=                              (14) 

 

where PathRelimax is the highest path reliability along all 

of the paths in the route cache.  

We have to define an energy function whose 

minimization process drives the neural network into its 

lowest energy state. This stable state shall correspond to 

the most reliable set of multiple paths. The energy 

function must favor states that correspond to disjoint 

paths and it must also favor the path set which has the 

highest reliability. A suitable energy function that 

satisfies such requirements is proposed that is given by: 

1

2

1 1 1

,
2

n n n

ij i j i i

i j i

E VV C V
= = =

= −∑∑ ∑
µ

ρ µ

                           

(15)         

where µ1 and µ2 are positive constants and n is the 

number of paths in the route cache. In (15), ρij is defined 

as NDρij if we want to calculate node-disjoint multiple 

paths and it is defined as LDρij if we want to calculate 

link-disjoint multiple paths. The minimum value of the 

µ1 term is zero and it is occurred when all the selected 
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paths are disjoint. The µ2 term is corresponding to 

reliability of the selected multiple disjoint paths. The 

larger number of high reliable paths results in the lower 

energy function, but this term should not cause non-

disjoint paths participate in the set. By selecting each 

path from the route cache, the energy decreases by 

(µ2×Ci). If the selected path is not disjoint with other 

paths of the set, then the total energy is changed by (µ1-

µ2×Ci). As we want to select disjoint paths, so this 

criterion should have higher energy value and µ1-µ2×Ci 

should be positive. As Ci < 1, so µ1 and µ2 should meet 

the criterion
1 2 0≥ >µ µ . In this way, assume that 

1 1 2
{ , , ..., }

k
P Path Path Path=       is a set of disjoint paths and 

2 1
{ }

l
P P Path= ∪ which 

1l
Path P∉  has a common node 

(or link) with at least one path in P1. Also assume that 

EP1 is the energy of P1 and EP2 is the energy of P2. 

Based on these assumptions, we can write EP2=EP1+µ1-

µ2×Ci. As P2 is not disjoint, so its energy should be 

higher than the energy of P1. In other words, EP2>EP1; 

thus µ1-µ2×Cl > 0. From (14) it is obvious that 1, lC ≤  

so in order to keep EP2 > EP1 always true, µ1 and µ2 

should meet the criterion
1 2 0≥ >µ µ . 

By comparing the corresponding coefficients in (15) 

and (3), the connection strengths and the biases are 

derived by: 

1

2
.

ij ij

i i

T

I C

= −

=

µ ρ

µ
                                                                   (16) 

As can be seen in (16), this model maps the reliability 

information into the biases and path disjointedness 

information of the neural interconnections. So, the 

destination node can set the neural interconnection as it 

received each RREQ packet and then set the biases after 

all the RREQ packets has been received. The 

destination node uses this neural network to find the 

most reliable path set, and then returns a copy of neural 

network solution in a route reply packet to the source 

node. 

The conceptual scheme of implementing the proposed 

algorithm in a MANET node is depicted in Fig. 3. 

According to the network properties, the neural network 

parameters can be tuned by PSO algorithm once and 

then these parameters can be used. 

 

4. Implementation Details and Parameter 

Tuning 

In order to implement this algorithm, there should be a 

method to predict the link reliability and also a network 

model that dictates how the nodes move throughout the 

network and structure of the network itself. We also 

need to define the Hopfield implementation method. 

4.1. Link reliability prediction 

We consider a free space propagation model.
44

 In this 

model, the wireless signal strength depends only on the 

distance to the transmitter. Hence, the link duration of 

Lij can be predicted from the motion information of the 

two nodes. Assume that node i and node j are within the 

same transmission range, r, of each other. Let (xi,yi) be 

the coordinate of node i and (xj,yj) be that of node j. 

Also, let vi and vj be the speeds, and θi and θj (0 ≤ θi,θj < 

2π) be the moving directions of node i and j, 

respectively. Then, the amount of time that the two 

mobile hosts will stay connected, LET, is predicted as 

follows
45

: 

 

2 2 2 2

2 2

( ) ( ) ( )
( , ) ;

,

,

cos cos ,

sin sin .

i j

i j

i i j j

i i j j

ab cd a c r ad bc
LET i j

a c

b x x

d y y

a v v

c v v

θ θ

θ θ

− + + + − −
=

+

= −

= −

=  −  

=  −  

  (17) 

The probability of proper operation of hth link (the link 

between node i and node j) is calculated by: 

 
,

,
i jlink

h

max

LET
p

LET
=                                          (18) 

where LETmax is the maximum link expiration time. 

4.2. Ad-hoc network model 

All of the nodes start the experiment at a random 

location within a rectangular working area of 1000×500  
m

2
 and moved as defined by the random waypoint 

model.
46

 For this, each node selects a random 

destination within the working area and moves linearly 

to that location at a predefined speed. After reaching its 

destination, it pauses for a specified time period (pause 

time) and then the node selects a new random location 

and continues the process again.  
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Fig. 3. Conceptual scheme of proposed algorithm 

 

 

Fig. 4. Number of paths averaged over different MANETs. 

In the present study, each node pauses at the current 

position for 5 s and speed of individual nodes ranges 

from 0 to 20 m/s. We have run simulations for a 

network with 30 mobile hosts, operating at transmission 

ranges (R) varying from 100 to 300 m. The TTL is set to 

3 as an initial value. The proposed model consists of n 

neurons where n is the total number of paths in the 

destination route cache found in the route discovery 

phase. The average paths found in the route discovery 

phase in different MANETs is calculated where TTL=3. 

The result is shown in Fig. 4. 

4.3. Hopfield network initialization 

The evolution of the neural network state is simulated 

by the solution of a system of n differential equations 

where the variables are the neuron outputs (Vi). The 

solutions consists of observing the outputs Vi for a 

specific duration .tδ  Without loss of generality, it has 

been considered that τ =1. To avoid bias in favor of any 

particular path set, it is assumed that all the inputs Ui are 

equal to 0. However, to help rapid convergence of the 

network, small perturbations are applied to the initial 

inputs of network. Initial random noise helps to break 

symmetry which may caused by paths with same 

reliability or by the possibility of having two or more 

high reliable path set, while preventing it from adopting 

an undesirable state.20, 47 At the start and based on our 

simulation results, Ui's are chosen randomly such that    

-0.0005 < Ui < 0.0005. The calculations are stopped 

when the network reaches a stable state; e.g., when the 

difference between the outputs is less than 10
-6

 from one 

update to another. When the network is in a stable state, 

the final values of Vi are rounded off. For this reason, 

the threshold voltage, Vth, should be defined and Vi 

should be rounded off in such a way that it is set to 0 if 

Vi < Vth, and to 1 otherwise. 

4.4. Selecting network parameters by PSO 

The PSO algorithm is used to find the values of µ1, µ2, 

λ, tδ and Vth of the HNN. Each dimension of the PSO 

particle is used to present a different HNN parameter, 

thus each particle has five dimensions. To evaluate the 

fitness of each particle, we compute the percentage error 

obtained by 500 HNN simulations. An error is assumed 

to have occurred if the HNN method finds multiple 

paths which are not disjoint or the reliability of the set is 
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less than reliability of the set found by parameter setting 

reported in Ref. 38 (Table 1). The initial values of PSO 

parameters are shown in Table 2. Table 3 depicts the 

maximum value (Xmax) and the minimum value (Xmin) 

of the parameters. The result of applying PSO algorithm 

to obtain the optimum values for HNN parameters is 

shown in Table 4. 

5. Simulation Results 

For the purpose of evaluating the efficiency of proposed 

routing method, it has been applied to different 

networks with various parameters. Then, the total path 

reliability, the number of paths in path set, and the 

lifetime are calculated for each simulation. Several 

MANETs with different characteristics are considered 

in this study in order to tune the HNN parameters and 

the simulation results are shown that HNN with this 

parameter setting have good performance when 

applying to a variety of MANETs. Therefore, the tuned 

parameters obtained in this study can be used in other 

MANETs also, or it can be tuned based on that MANET 

once and then using the same parameter for all of the 

nodes in a network. 

Lifetime is considered as the time between the 

construction of path set and the breakage of all paths in 

the path set. Based on the network parameters, two 

different scenarios have been considered. In each 

scenario, one aspect of MANET characteristics is 

considered. For example in the first scenario, the 

connectivity is considered and the network density is 

considered in the second scenario. Then the simulation 

results for these scenarios, using the proposed routing 

algorithm, are compared with previous works, non-

optimized HNN and noisy HNN path set selection 

algorithms reported in Refs. 38 and 39. All the 

simulation programs have been written and compiled in 

MATLAB 7.10 and run on PC with Intel Pentium 

E5300 CPU and 2 GB RAM. 

In the first scenario, the number and speed of nodes are 

considered fixed and the transmission range is variable. 

Since in this scenario, the transmission range is variable 

the focus of this scenario is to study the effect of this 

parameter on the reliability and number of paths. As 

depicted in Fig. 5, the reliability of disjoint paths 

selected by PSO-optimized HNN is higher than two 

other algorithms. By comparing the reliability between 

link-disjoint paths (Fig. 5a) and node-disjoint paths 

(Fig. 5b), we find that link-disjoint paths are more 

reliable than node-disjoint paths in the same 

transmission range, because there are more choices to 

select the link-disjoint paths rather than the node-

disjoint paths. Consequently, if the transmission range is 

increased, then the number of selected paths is also 

 

Table 1. Values of HNN parameters reported in Ref. 38. 

Parameter µ1 µ2 λ tδ  Vth 

Value 1 1 50 10-5 0.1 

 
Table 2. Initial values of PSO parameters. 

Parameter 
Max. No. of 

iterations 
Population size 

Max. particle 

velocity 

Initial inertia 

weight 

Final inertia 

weight 

Min. global 

error gradient 

Value 300 20 4 0.9 0.2 10-5 

 
Table 3. Maximum and minimum values of the parameters. 

Parameter 
µ1 µ2 λ tδ  Vth 

Xmax Xmin Xmax Xmin Xmax Xmin Xmax Xmin Xmax Xmin 

Value 50 0 50 0 100 0 1 0 1 0 

 

Table 4. Optimum parameter values obtained by PSO. 

Parameter µ1 µ2 λ tδ   Vth  

Value 32 27 0.45 10-3 0.23 
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increased for both sets of link-disjoint and node-disjoint 

paths (Fig. 6). When the radio transmission range of 

nodes increases, there will be more paths between 

source and destination nodes which routing algorithm 

can select among them. 

The time between the construction of path set and the 

breakage of all paths in the path set is called lifetime or 

time to failure. As shown in Fig. 7, the lifetime is 

increased as the transmission range increases.  
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Fig. 5.  Reliability of different HNN-based path selection 

algorithms; a) Link-disjoint, b) Node-disjoint. 

150 200 250 300
4

6

8

10

12

14

Transmission range (m)

(a)

N
u
m

b
e
r 

o
f 

p
a
th

s

 

 

150 200 250 300
4

6

8

10

12

14

Transmission range (m)

(b)

N
u
m

b
e
r 

o
f 

p
a
th

s

 

 

Non-optimized HNN

Noisy HNN

PSO-optimized HNN

Non-optimized HNN

Noisy HNN

PSO-optimized HNN

 

Fig. 6. Number of paths selected by different HNN-based 

algorithms; a) Link-disjoint, b) Node-disjoint. 

Link-disjoint path sets have longer lifetime than node-

disjoint ones. In this case, the PSO-optimized HNN 

algorithm also shows better performance than others 

which means the disjoint paths selected by this 

algorithm are more reliable and the connection can 

continue longer by using the paths selected by this 

algorithm. 
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Fig. 7. Lifetime of selected paths by different HNN-based 

algorithms; a) Link-disjoint, b) Node-disjoint. 
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Fig. 8.  Reliability for different number of nodes using HNN-

based algorithms; a) Link-disjoint paths, b) Node-disjoint 

paths. 
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The second scenario considers a fixed transmission 

range while the number of nodes is variable. In this 

scenario, the transmission range of all nodes is set to 

250 m. The reliability of the set for both the node-

disjoint and the link-disjoint paths is shown in Fig. 8. As 

can be seen, in a high density network, there are more 

routes in the path set and the path set reliability is higher 

than those of a low density network.  

Although the PSO-optimized HNN has similar or only 

slightly better results with those of a noisy HNN, but it 

is noticeable that the implementation of the HNN is 

simpler than a noisy HNN. It can be found from the 

simulation results that by fine tuning of the HNN, better 

results can be achieved with a simpler implementation 

and there is no need of an additional hardware.  

6. Performance Evaluation 

A performance comparison between the proposed 

algorithm and the shortest path (SP) algorithm is done 

in this study and the results are listed in Table 5. As can 

be seen, the reliability of path set in the proposed 

algorithm outperforms the SP algorithm. The best 

improvement in reliability is achieved when the 

transmission range is 250 m. In this transmission range, 

the link-disjoint path set reliability is 4.5 times more 

than the corresponding shortest path reliability. Also, 

the best improvement in lifetime is achieved when the 

transmission range is 250 m. In this transmission range, 

the link-disjoint path set lifetime is 3.2 times more than 

the corresponding shortest path lifetime. 

Hemmati and Sheikhan38 have proposed a method for 

path set selection using Hopfield neural network. 

Hopfield parameter settings in Ref. 38 have been based 

on the values reported in Table 1. The average number 

of iterations for both PSO-optimized and non-optimized 

settings are reported in Table 6. The PSO-optimized 

HNN which is reported in this study takes less iterations 

and thus less time to reach the steady state and get the 

solution. The reliability of path sets found by PSO-

optimized is also higher than those found by non-

optimized HNN. 

Dana et al.
6
 have proposed the backup path set selection 

algorithm (BPSA), based on a heuristic and picks a set 

of highly reliable paths. As the BPSA can find just the 

 

Table 5. Reliability and lifetime comparison between proposed algorithm and SP algorithm. 

Transmission 

range (m) 

Reliability 
 

Lifetime (s) 

Node-disjoint Link-disjoint SP 
 

Node-disjoint Link-disjoint SP 

150 0.466 0.475 0.107  
101.3 111.5 48.3 

200 0.754 0.762 0.171  
149.2 155.9 62.4 

250 0.839 0.865 0.191  
221.7 228.8 71.2 

300 0.949 0.951 0.352  
264.9 267.3 87.5 

 

Table 6. Performance comparison between PSO-optimized and non-optimized HNN algorithms. 

 
Transmission range 
(m) 

Number of iterations 
 

Reliability 

Non-

optimized 
PSO-optimized 

Percent of 
iterations in 

optimized to non-
optimized model 

 
Non-

optimized 
PSO-optimized 

Percent of 
increment in 
optimized as 

compared to 
non-optimized 

model 

150 70,476 8,587 12.2 
 

0.415 0.470 13.3 

200 87,944 7,896 9.0  0.723 0.758 4.8 

250 83,969 9,601 11.4 
 

0.806 0.837 3.8 

300 95,040 11,312 11.9 
 

0.855 0.950 11.1 
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link-disjoint path set, we compare the link-disjoint path 

set, selected by PSO-optimized HNN algorithm with 

those selected by BPSA algorithm. Table 7 shows the 

comparison between the proposed algorithm and BPSA. 

The values of path set reliability and number of paths 

are averaged over several simulations with different 

MANETs. The proposed algorithm has better 

performance in both the reliability and the number of 

paths. It shows up to 58.3% improvement in the path set 

reliability and up to 22.4% improvement in the number 

of paths in the set. 

7. Computational Complexity of Algorithm  

To determine the computational complexity, three 

components should be considered: route discovery 

calculations, calculating the elements of matrix ρ, and 

normalized reliability calculations. 

To determine this complexity, assume that M = TTL. 

The maximum number of nodes in each path of the 

proposed algorithm is M+1, in which source and 

destination are included. So, there is M-1 intermediate 

nodes that the algorithm finds them in the route 

discovery phase. At the worst case, where all of the 

MANET nodes are in the transmission range of each 

other, there are O(|V|
(M-1)

) such routes. 

To determine the route discovery computational 

complexity, the complexity in path reliability 

calculations should be considered. In a naive 

implementation, the path reliability is calculated 

independently for each route. The maximum length of 

each path between two nodes in the MANET is M, so 

the route discovery algorithm has to make O(M |V|
(M-1)

) 

calculations. To calculate the elements of matrix ρ, (M-

1)
2
 comparisons for node-disjoint and M

2
 comparisons 

for link-disjoint path sets should be performed between 

each two paths of total O(|V|(M-1)) paths to determine 

matrix ρ. So, matrix ρ calculation for the mentioned 

path sets needs O(|V|
2(M-1)

) operations.  

To calculate the normalized path reliability (Ci), it is 

noted that according to (14) the number of operations in 

this part is equal to the total number of paths. The 

computational complexity of this part is O(|V|
(M-1)

).  

Since the computation time in neural networks is 

expected to be very short, then the complexity of the 

proposed approach for the path set selection is best 

assessed in terms of the programming complexity, 

which is defined as the number of arithmetic operations 

required to determine again the proper synaptic 

connections and the biases each time a new data is fed 

to the neural net. According to (16), we can conclude 

that by determining the elements of matrix ρ, the 

synaptic connections of neural network (Tij) are also 

calculated. The biases are also specified when the 

normalized path reliabilities (Ci) are determined. In this 

study, we set M to 3 so the total computational 

complexity in the worst case is O(|V|
4
). 

8. Conclusion 

In this paper, we have proposed a reliable multipath 

routing algorithm using Hopfield neural network 

optimized by PSO for MANETs. A reliable path is 

constructed by the links that keep connection between 

two nodes for a long time. Each node predicts 

disconnection of all the incident links. A flooding 

mechanism has been used for the route discovery. 

Finding multiple paths in a single route discovery in this 

algorithm reduces the routing overhead. The proposed 

algorithm is able to compute both link-disjoint and 

node-disjoint multiple paths. Multipath routing in 

MANET consists of determining the most reliable 

disjoint multiple paths between each node pair within 

the network. The disjoint multiple-path selection 

algorithm is proposed using Hopfield neural network. In 

order to improve the network performance, PSO 

algorithm is used to optimize the HNN parameters. 

 

Table 7. Performance comparison between proposed algorithm and BPSA algorithm. 

Transmission range 

(m) 

Reliability  Number of paths 

Proposed algorithm BPSA algorithm  Proposed algorithm BPSA algorithm 

150 0.47 0.38  4.9 4.8 

200 0.76 0.48  6.2 6.1 

250 0.84 0.67  8.6 7.4 

300 0.95 0.71  13.1 10.7 
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The simulation results have shown that PSO is a reliable 

approach to optimize the Hopfield network for 

multipath routing, since this method results in fast 

convergence and produces more accurate results as 

compared to non-optimized HNN, noisy HNN, shortest 

path (SP) algorithm and recent researches in this field. 

The simulation results have shown that for different 

network conditions, the proposed model is efficient in 

selecting multiple disjoint paths. Simulations also have 

shown that the link-disjoint path set is more reliable 

than the node-disjoint one in different conditions. 

Simulation results have shown that the reliability and 

lifetime are increased up to 4.5 and 3.2 times as 

compared to shortest path routing algorithm, 

respectively. The PSO-optimized HNN routing 

algorithm has better performance as the reliability of 

multiple paths is increased by 8.3%, while the number 

of algorithm iterations is reduced to 11.1% as compared 

to the non-optimized HNN multipath routing when 

averaged over different transmission ranges. In addition, 

the proposed algorithm has better performance in terms 

of reliability and number of paths when compared with 

the backup path set selection algorithm (BPSA). In this 

way, it shows up to 58% improvement in the path set 

reliability and up to 22% improvement in the number of 

paths in the set. 
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