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Abstract 

When detecting of emotions from music, many features are extracted from the original music data. However, 
there are redundant or irrelevant features, which will reduce the performance of classification models. 
Considering the feature problems, we propose an embedded feature selection method, called Multi-label 
Embedded Feature Selection (MEFS), to improve classification performance by selecting features. MEFS 
embeds classifier and considers the label correlation. Other three representative multi-label feature selection 
methods, known as LP-Chi, max and avg, together with four multi-label classification algorithms, is included 
for performance comparison. Experimental results show that the performance of our MEFS algorithm is 
superior to those filter methods in the music emotion dataset. 
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1. Introduction 

In daily life, music plays an important role. It influences 
people emotional by nature, makes people feel happy or 
sad, angry or relaxed. In the past, the problem of 
automatically categorizing music into emotions was 
modeled as single-label classification1,2 or regression3. 
However, as we experience in our daily life, more than 
one emotion may be evoked by music simultaneously. 
In this case, classification and regression with single-
label can hardly model the multiplicity in music 
emotion studies. Thus, multi-label approaches are more 
appropriate in modeling music emotions4,5. 

Besides music emotion classification, various 
applications, like text categorization, video annotation, 
clinic diagnosis, etc., all relate to multi-label learning 
problems6. The goal of music emotion tagging is to 
correctly predict which emotion tags should be 
associated with a song. Multi-label problem attracts the 
attention of scholars all over the world. Previous works 

provide different algorithms solving the multi-label 
problem7. 

These algorithms are grouped into two categories, 
problem transformation methods and algorithm 
adaptation methods. One of the most famous problem 
transformation algorithms, known as binary relevance, 
learns a binary classifier for each class independently, 
and then predicts each of the labels separately. Another 
well-known problem transformation method is label 
power set transformation. This method takes each 
unique combination of labels that exists in a multi-label 
training set as one single-label multi-value classification 
task. Other representative problem transformation 
methods include random k-labelsets (RAkEL)8, ECC9, 
and LEAD10. As algorithm adaptation, Rank-SVM11 
trains a collection of SVMs, minimizing the ranking 
loss, a multi-label evaluation criterion. Other adaptation 
methods contain ML-KNN12, BPML13, Adaboost.MH14, 
etc. 
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The curse of dimensionality still exists in multi-label 
learning as well as in single-label task. Feature 
extraction and feature selection are usually employed to 
solve the dimensionality curse problem.  

Many scholars tend to use feature extraction to solve 
the curse of dimensionality in multi-label tasks. Besides 
unsupervised feature extraction methods, like PCA15, 
many multi-label feature extraction methods are 
proposed, such as MDDM16, LSI17 and LDA18, etc. 
These methods are effective to improve classification 
performance. However, the extracted features fuse the 
information of original features, and lose the distinct 
physical meanings. Hence the dimension reduction 
results cannot be explained and easily comprehended.  

Unlike feature extraction, feature selection will 
remain the physical meaning of features when reduce 
the dimensionality. It’s essential in many applications. 
To cope with the feature selection task on multi-label 
problem, Yang et al19 propose a filter framework to 
evaluate features for each label separately under some 
statistic evaluation metrics, and combine the results by 
average or max approaches. This framework is an 
extension of single label filter feature selection methods. 
It considers the labels separately, which ignores the 
correlations between labels. Trohidis et al propose 
another filter method on multi-label feature selection4. 
In their work, Multi-label dataset is transformed into 
single label dataset with LP method, and then a common 
attribute evaluation statistic is used to evaluate the 
feature’s correlation with the transformed single label. 
This method considers label correlation, which is 
important in multi-label learning. Other scholars 
proposed wrapper methods to improve classification 
performance along with dimensionality reduction. 
Zhang et al. use genetic algorithm to improve the 
performance of multi-label Naïve Bayes classifier20. In 
their work, genetic algorithm is used to select the 
feature subset after PCA feature extraction. With PCA 
process, the original meaning of features is discarded. 
And the authors only investigate the performance of the 
multi-label Naïve Bayes classifier, and more classifiers 
need to be further investigated. Shao et al21 propose a 
hybrid optimization multi-label feature selection method 
called HOML. In their work, simulated annealing, 
genetic algorithm and hill climb strategies are combined 
to select the best feature subset. The results show great 
improvement on performance. However, as a wrapper 
method, the computational complexity is too high.  

As feature selection methods, wrapper methods are 
classifier specified feature selection methods. They 
select different optimal feature subset for different 
classifier, and measure the feature subsets with the 
classification performance directly. Wrapper methods 
can improve the performance of classifiers in a large 
range However, their computational complexity are 
always too high. Filter methods have linear computation 
cost, but their selection results are always rough. They 
consider the relevance between labels and each feature, 
while ignoring the power when features combine 
together. Moreover, filter methods provide a unique 
feature rank for different kind of classifier. The selected 
feature subset is always not the most suitable subset for 
a certain classifier. When we try to improve 
classification performance with feature selection, the 
time cost of wrapper methods are always too high, while 
filter methods can not fit certain classifier. To select the 
classifier specified features without the high time cost 
like wrapper methods, we propose a tradeoff method by 
introducing an embedded feature selection method into 
multi-label classification. Especially, we apply the new 
embedded method on music emotion classification. Less 
works concentrate on the study of music emotion 
classification.  

The contribution of this paper is twofold: to present a 
new embedded feature selection method, called MEFS, 
on multi-label datasets, and to improve the performance 
when tagging music emotions, with the help of MEFS 
method.  

The remaining of this paper is organized as the 
following. Section 2 introduces the music emotion 
dataset employed in experiments. Section 3 presents 
details of the proposed embedded feature selection 
methods.  Section 4 explains the multi-label learning 
algorithms and multi-label evaluation metrics included 
in performance comparison. Section 5 reports our 
experiment results, and conclusions and future work are 
drawn in Section 6. 

2. Music Emotion Classification Task 

The music emotion dataset used in this work was 
firstly published by Konstantinos Trohidis et al4 There 
are 593 chosen records in this dataset. Each of them 
belongs to the following 7 different genres: Classical, 
Reggae, Rock, Pop, Hip-Hop, Techno and Jazz. 72 
features were extracted from each song. The extracted 
features fell into two categories: 8 rhythmic features and 
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64 timbre features. Detailed feature list and the 
computing method can be referred to the literature4. 

The emotion labels come from the Tellegen-Watson-
Clark model.4 6 main labels are associated with the 
samples. The labels are “amazed-surprised”, “happy-
pleased”, “relaxing-calm”, “quiet-still”, ” sad-lonely” 
and “angry-fearful”. The number of samples having 
these labels is 173, 166, 264, 148, 168 and 189 
respectively.  

For a multi-label dataset, more statistic indexes can 
be studied to give a deep understanding.6Common 
measurements for a multi-label dataset are cardinality, 
density and distinct. Cardinality means the average 
number of labels of a sample. Density is the average 
number of labels of a sample divided by the total 
number of labels. Distinct represents the number of 
different distinct label combinations appeared in the 
dataset. The statistic measurements of the music 
emotion dataset are shown in Table 1. 

Table 1. Statistic indexes of the music emotion dataset studied 

Measurement Value 
Cardinality 1.869 
Density 0.311 
Distinct 27 
 

With the information shown in Table 1, we analyze 
the dataset roughly. The cardinality is 1.869, which 
means each sample is associated with about 2 labels in 
average. Physically, a clip of music contains two kinds 
of emotions on average. 27 of distinct show a strong 
correlation among the emotion labels. 
 

3. Multi-label Embedded Feature Selection 
(MEFS) 

Embedded feature selection evaluates feature subsets 
with the metrics extracted from some certain classifiers. 
Classification target is embedded naturally into the 
selection metrics in embedded feature selection 
approach. With the metrics, selected features are more 
direct to improve the classification performance. 
Embedded feature selection methods can achieve 
comparable selection results with the wrapper model 
and have the similar efficiency with filter way. 
Considering these benefits, embedded feature selection 
methods have been paid close attentions in areas of 

machine learning, data mining and bioinformatics in 
recent years. 

Inspired by single label embedded feature selection 
methods, we propose a multi-label embedded feature 
selection method, called MEFS. In MEFS, prediction 
risk criterion22 is adopted for the evaluation of features, 
and backward search strategy is used for the search of 
feature subset. In MEFS, feature selection process 
cooperates with multi-label classifiers. The feature 
selection results mainly depend on the used classifier, 
and the feature extraction ability of MEFS relies on the 
learning ability of the classifier. 

Prediction risk is to evaluate the expected 
performance in classification of new observed data. 
During the process of data modeling, prediction risk is 
used to assess prediction accuracy of the models and 
select suitable models. The principle of minimization of 
prediction risk is often used for the selection of the 
optimal feature subset in single label problems. 
Prediction risk criterion evaluates each feature by 
calculating the change of training accuracy when the 
value of a certain feature is replaced by its mean value 
in all the samples, defined as: 

௜ܵ 	 ൌ ሺܺ௜ሻܴܴܧ	 െ  (1)                      ܴܴܧ	
Here, ERR  (error) stands for the prediction error of 
training model on training dataset. ܴܴܧሺܺ௜ሻ stands for 
the prediction error of training model when the value of 
the ith feature is replaced by its mean value in all the 
samples of training dataset.  

Let ܺ ∈ ܴேൈ஽ denote the dataset with N samples and 
D features, and ܻ ∈ ܴேൈ௅  be the label set associated 
with ܺ ௜ݔ . ∈ ܴேൈଵ  is the value of ith feature in all 
samples. The output of a classifier ݂ሺݔଵ,… , ஽ሻ is ෠ܻݔ . 
Let ܮሺ ෠ܻ , ܻሻ denotes a multi-label loss function, in which 
Y  is the real label set associated with samples. Then 
 :ሺܺ௜ሻ is defined asܴܴܧ

ሺܺ௜ሻܴܴܧ ൌ …,ଵݔሺ݂ሺܮ	 , ,௜ݔ̅ … , ,஽ሻݔ ܻሻ        (2) 
in which, ̅ݔ௜  is the mean value of the ݅ th feature and 
݂ሺݔଵ,… , ,௜ݔ̅ … , ஽ሻݔ  is the prediction value of all the 
samples with the ݅th feature replaced by its mean value. 

The feature with the least value of ௜ܵ will be deleted, 
because the impact on the result by the change of the 
feature’s value is the least. The effects of the deleted 
feature for distinguishing labels is the least and even 
negative. 

When we apply the prediction risk criterion to the 
dimension reduction in multi-label learning, we take the 
evaluation measure of multi-label learning as the loss 
function in prediction risk. Five metrics, i.e. hamming 
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loss, one-error, average precision, coverage, ranking 
loss are included. Especially, when take average 
precision as the loss function in Eq. (2), we need to 
calculate 1- average precision as a ܴܴܧ measurement.  

The pseudo code of MEFS (Multi-label Embedded 
Feature Selection) algorithm is shown in Table 2, whose 
main idea is to make use of prediction risk to evaluate 
the features in feature subset, and use a backward search 
algorithm to delete the worst feature from feature subset 
step by step. In each loop, a classifier model is trained 
with the remained features, and evaluates each feature 
with Eq. (1). The worst feature is saved in the feature 
rank and removed from feature subset. Repeat above 
step until each feature is stored into the feature rank. 
The output is the feature rank and corresponding trained 
models. In testing step, the test data is restricted to a 
certain number of features based on the feature rank. 
Then we find the corresponding training model, and use 
it directly on the low dimensional test data to evaluate 
performance.  

4. Experiment  

4.1.  Feature selection methods 

For experiment, we include three other filter feature 
selection methods, max, avg19 and LP-Chi4, for 
comparison.  
 max: max is a framework extended from single 

label feature selection methods. It calculates the 
dependency score with an attribute evaluation 
statistic, like 2 , between a feature and a label 
separately. The maximal dependency score of a 
certain feature across all labels stands for the 
importance of the feature. 

 avg: avg is similar to max. Dependency scores for 
some feature on all labels are averaged to form the 
final weight for that feature.  

 LP-Chi: LP-Chi algorithm aims to select the best 
features for music emotion classification task4. In 
LP-Chi, the multi-label problem is transformed into 
multiclass problem by the transformation of LP 
method firstly. Then a common attribute evaluation 
statistic, like 2 , is used to evaluate each feature on 
multiple classes. Finally, features are ranked by the 
statistic values. LP-Chi showed a better result than 
max and average approaches, because it takes the 
label correlation into account4. 

4.2. Multi-label classifiers 

After selecting appropriate features, multi-label 
classifiers would participate in the classification tasks. 
In order to eliminate the bias of classifiers, four multi-
label classifiers, which are LEAD10, MLNB20, Rank-
SVM11 and ML-KNN12, are employed in the 
experiment. LEAD and MLNB are problem 
transformation methods, which transform the multi-
label classification problem into one or more single-
label classification, regression or ranking tasks. Rank-
SVM and ML-KNN are algorithm adaptation methods, 
which extend specific learning algorithms in single label 
problem to handle multi-label data directly.  
 LEAD means multi-label Learning by Exploiting 

label Dependency. In LEAD, a Bayesian network 
is built to characterize the joint probability of all 
labels, conditioned on the feature set. Then BR 
(Binary Relevance) classifiers are trained to 
predict each label by taking its parental labels in 
the learned Bayesian network as additional input 
features.  
The SVM model used in LEAD is trained with a 

linear kernel and the complexity constant C equals 
to 1. We use the LIBSVM package25, which 
involves the training and testing algorithms of 
SVM models. The BDAGL (Bayesian DAG 
learning) package is used, which implemented the 
dynamic programming-based algorithm for 
computing the marginal posterior probability of 
every edge in a Bayesian network.26 

 MLNB stands for Multi-Label Naïve Bayes. It uses 
the Bayesian rule and adopts the assumption of 
class conditional independence among features as 
classic naive Bayes classifiers do, then uses Bayes 
rule to calculate the posterior probability of each 
label. The labels with the largest posterior 
probabilities are labeled to the unlabeled instances. 
  In our experiment, the Gaussian probability 
density model is used to estimate the conditioned 
probability. 

 Rank-SVM tries to train SVMs for each label. The 
objective function in Rank-SVM is minimizing the 
ranking loss, which is one of the main targets of 
multi-label learning. The SVM model used in 
Rank-SVM is trained with a linear kernel and the 
complexity constant C equals to 1. The tolerance 
value for λ, for difference between α୮ାଵ and α୮ are 
set to their default value. Maximum number of  
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Table 2. Pseudo code of MEFS 

MEFS (Xt, Yt, L) 
input 
Xt, Yt are the training data and training label 
L is the loss function in Eq. (2) 
M ← ∅; // empty trained model list 
r ← ∅; // empty feature ranking list 
u ← [1,2,…,D] // u is the remained feature set, initialize it by the universal set 
 
while (u ് ∅) 

S ← (0,…,0) with the dimensionality |u| // initialize S 
X௧෢ ← Xt(:,u) //restrict all training samples to having the remained feature indexes 
model ← trainclassifier(X௧෢,Yt) // train a classifier with the restricted dataset 
 X௧෢,Yt) // test the trained classifier and get the tanning error	testclassifier(model, ← ܴܴܧ
 
for each feature i in u 

compute ܴܴܧ ቀܺ௧෢
௜
ቁ as Eq.(2) showed 

ܵሾ݅ሿ ← ܴܴܧ ቀܺ௧෢
௜
ቁ	െ 	 	ܴܴܧ	

end // evaluate each feature’s importance according to the prediction risk criterion 
 
insert model to the end of M // save the classifier models in list M 
݄	 ← ௜∈௨݊݅݉݃ݎܽ ܵ // find the index of worst feature  
insert u[h] to the head of r // update the feature rank  
remove u[h] from u // remove the worst feature 
 

end //complete the feature selection process 
 
output the classifier list M and the feature rank r. 

iterations is set to 50. Detail information can be 
found in Ref.11. 

 ML-KNN is a high-performance problem 
adaptation method. ML-KNN brings the idea from 
KNN classifier, but it adopts maximum a posteriori 
(MAP) principle instead of the simple number 
counting to predict the label for new instances. 
  For ML-KNN, the number of nearest neighbors 

considered is set to 10. 
 

4.3. Evaluation metric  

The evaluation measure of multi-label learning is 
more complex than that of single label. Five popular 
measures specially designed for multi-label learning are 
used in this paper, i.e. hamming loss, one-error, 
coverage, ranking loss and average precision.14 Suppose 
ܺ is the instance set, ܻ	is the label set. ܶ is the training 
set.and ܶ	 ൌ 	 ሼሺݔଵ, ଵܻሻ, ሺݔଶ, ଶܻሻ, …	, ሺݔ௠, ௠ܻሻሽ	  ሺݔ௜ ∈
ܺ, ௜ܻ 	 ∈ ܻሻ . ܵ  is the test set, and 	
ܵ	 ൌ 	 ሼሺݔଵ, ଵܻሻ, ሺݔଶ, ଶܻሻ, …	, ሺݔ௣, ௣ܻሻሽ . The target of the 

learning process is to output a function ݄:	 ൌ 	ܺ → 2௒ in 
order to get a multi-label classifier which can optimize 
the evaluation measure. However in most cases, the 
classifiers produce real value function: ݂: ܺ	 ൈ ܻ → ܴ . 
For a given instance x୧  and its label set ௜ܻ , a good 
classifier tends to produce a greater value for the label 
in ௜ܻ compared with those instances without label ௜ܻ, so 

there is ݂ሺݔ௜, ଵሻݕ ൐ ݂ሺݔ௜, ଵݕ ଶሻ for anyݕ ∈ ௜ܻ and yଶY୧. 
Real function ݂	ሺݔ௜,∙ሻ can be transformed to be ranking 
function ݇݊ܽݎሺݔ௜,∙ሻ , which is a one-to-one mapping 
onto ሼ1, … , |Y|ሽ. These two functions have the following 
relations. When ݂ሺݔ௜, ଵሻݕ ൐ ݂ሺݔ௜, ଶሻݕ , there is 
,௜ݔሺ݇݊ܽݎ ଵሻݕ ൏ ,௜ݔሺ݇݊ܽݎ  ௜,∙ሻݔሺ	݂	ଶሻ. Still real functionݕ
also can be transformed to be a multi-label function 
݄	ሺݔ௜ሻ,݄ሺݔ௜ሻ 	ൌ 	 ሼݕ	|	݂ሺݔ௜, ሻݕ 	൐ ,௜ሻݔሺݐ	 ݕ ∈ ܻ	ሽ. ݐ	ሺݔ௜ሻ	is 
a threshold function (0 by default). Based on the above 
descriptions, five measures are defined as follows. 
 Hamming loss 

Hamming loss is used to evaluate the times when t
he label of the instance is predicted wrongly, i.e. when 
hlossୗሺhሻ 	ൌ 	0. The smaller the hamming loss, the bett
er the classifier. 
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ሺ݄ሻݏݏ݋݈݄ ൌ 	
ଵ

௣
∑ ଵ

|௒|
|݄ሺݔ௜ሻ∆ ௜ܻ|

௣
௜ୀଵ             (3) 

where ݌ is the size of testing set,  finds the difference 
between predicted label set and the actual label set. 
When | ௜ܻ| 	ൌ 	1 on all the instances, this becomes one 
label problem.  
 One error 

One error counts the number of instance whose first 
predicted label is not one of its real labels. The smaller 
the one error, the better the classifier. 

݁݊݋ െ ሺ݂ሻݎ݋ݎݎ݁ ൌ 	
ଵ

௣
∑ ௬∈௒ݔܽ݉݃ݎܽ ݂ሺݔ, ሻݕ ∉ ௜ܻ
௣
௜ୀଵ    (4) 

 Coverage 
Coverage is the number of labels we need to search 

along the label rank when finding all the labels of one 
instance in the label set. The smaller the coverage, the 
better the classifier.  

 coverageሺfሻ ൌ 	 ଵ
௣
∑ max௬∈௒ ,௜ݔሺ݇݊ܽݎ ሻݕ െ 1௣
௜ୀଵ 	

  

(5) 

 Ranking loss 
Ranking loss is the number of label pairs disordered 

in the label list. The smaller the ranking loss, the better 
the classifier. 

ሺ݂ሻݏݏ݋݈ݎ  ൌ 	
ଵ

௣
∑ ଵ

|௒೔||௒೔ฎ |
| ௜ܱ|

௣
௜ୀଵ

               

(6) 

where ௜ܱ is the disordered label pair, defined by:  

௜ܱ ൌ ሼሺݕ௝, ,௜ݔ௞ሻ|݂൫ݕ ௝൯ݕ ൑ ݂ሺݔ௜, ,௞ሻݕ ሺݕ௝, ௞ሻݕ ∈ ௜ܻ ൈ ௜ܻฎሽ 
 Average precision 

Average precision represents the average fraction of 
pairs that are not correctly ordered. The bigger average 
precision, the better classifier. 

ܿ݁ݎ݌݃ݒܽ ൌ 	
ଵ

௣
∑ ଵ

|௒೔|
∑ |ௐ೔ሺ௬ሻ|

௥௔௡௞ሺ௫೔,௬ሻ
௬∈௒೔

௣
௜ୀଵ

  

(7) 

where ௜ܹሺݕሻ  is the predicted label set which have a 
higher ranking than the true label ݕ, defined as: 

௜ܹሺݕሻ ൌ ሼሺݕ௝|݇݊ܽݎ൫ݔ௜, ௝൯ݕ ൑ ,௜ݔሺ݇݊ܽݎ ,ሻݕ ௝ݕ ∈ ௜ܻฎሻሽ	

4.4. Experimental setup 

In the experiment, average precision (Eq. (7)) and 
hamming loss (Eq. (3)) function are chosen as the 
measurement functions ܮሺݕฎ ,  .in Eq.(2), respectively	ሻݕ
MEFS is compared with three other feature selection 
methods LP-Chi, max and avg. 4 classifiers, i.e. LEAD, 
Rank-SVM, MLNB and ML-KNN, are all implemented 
in the experiment for an exhaustive assessment. 5 
evaluation criterions, average precision, hamming loss, 
ranking loss, coverage and one error, are investigated in 
the results comparison. In all of the experiments, we 
used 10-fold cross validation. The whole dataset is 
segmented into 10 groups with equal number of 
samples. In each experiment, nine of the groups are 

used to select features and train a model that is 
evaluated on the remaining group. This procedure is 
then repeated for all 10 possible choices for the held-out 
group.  

We design the methods comparison from three 
aspects: 
1) The performance variation against increasing 

selected feature number.  
   In this part, feature subset is expanded by the 
feature from the rank list, one by one. Evaluation 
metrics for each classifier with different feature 
subsets are recorded and compared in detail. 

2) The best performance can each feature selection 
method get. 
   Among the expanded feature sets from the first 

experiment aspect, the best performance of each 
feature selection method is extracted and compared. 
On five evaluation criterions, best results are 
inspected, respectively. 

3) Processing time.  
    The processing time for different feature 
selection methods will be compared. In this case we 
can find time cost to improve performance. 

5. Results and discussion 

In this section, MEFS (AP) represents the MEFS 
with average precision as the prediction risk criterion, 
while MEFS (HL) represents the MEFS with hamming 
loss. 

5.1. Performance comparison against feature 
number on hamming loss  

We demonstrate the hamming loss comparison of 
five feature selection methods on four different 
classifiers in Figure 1-4. The representation of each line 
is figured out in the legends. The horizontal axis 
represents the number of features retained, and the 
vertical axis stands for the corresponding evaluation 
metric. From Figure 1, we can observe that with the 
number of feature increasing, hamming loss on LEAD 
classifier seems is monotone decreasing. That is, more 
features bring better performance of LEAD. When 
feature set is larger than 40, the hamming loss on LEAD 
seems changeless. It may attribute to the strong learning 
ability of LEAD. LEAD can make good use of features, 
and its performance may not be heavily damaged by 
redundant features.  

At the beginning part of Figure 1, result from 
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performance across all feature selection methods on 
each evaluation criterion is highlighted in bold. The 
lower line is the number of features when the classifier 
reaches its best performance. The number of selected 
features gives more information for comparison when 
the best performances are similar.  In the last column, 
performances of the classifiers without feature selection 
are demonstrated. 

The mean and standard deviation are shown in Tables 
3-6 with the format “mean±std” “ ↓ ” indicates “the 
smaller the better” while “↑” indicates “the bigger the 
better”. 

From Table 3-6, we can find out that: 
1) The proposed MEFS with average precision or 

hamming loss as its prediction risk criterion can get 
the best performance with three of the classifiers, 
LEAD, Rank-SVM and MLNB, on all the five 
evaluation metrics. But with ML-KNN, LP-Chi 
obtains the best performance. All the classifiers’ 
performance can be improved by feature selection 
methods. 

2) As shown in Table 3, MEFS (AP) slightly 
outperforms other feature selection methods and 
MEFS (HL). However, all the feature selection 
methods can only improve the performance of 
LEAD in a small range. It may because of the 
strong learning ability of LEAD. Classifier LEAD 
can learn sufficient information from the instance 
features, even when most of the features are 
redundant or irrelevant. Feature selection will 
contribute little to LEAD classification. 

3) In Table 3, the best result is obtained by MEFS 
(AP), which improves LEAD by 8.57% in average. 

MEFS can not only achieve the highest 
performance improvement, but also with the 
smallest feature number. The best performance can 
be got with 40 of 72 features in the music emotion 
dataset, by MEFS method. 

4) From Table 3-6, we can observe that with different 
evaluation metric in Eq. (2), such as average 
precision, hamming loss in the experiment, MEFS 
have different performance. It is always essential to 
choose the best fit metric for each classifier. In this 
paper, we only tried two of the metrics and find a 
better one for each classifier. The relationship 
between the evaluation metric and classifier needs 
to be further studied.  

In Table 7, we present how much improvement can be 
obtained when employing different feature selection 
methods. There are 5 multi-label evaluation metrics 
investigated, we calculate the improvement of hamming 
loss metric as a representative. The percentage of 
reduced hamming loss is shown in Table 7, with the 
format “mean±std”. 

When the chosen classifier is Rank-SVM or MLNB, 
the difference between MEFS and other methods begin 
to emerge. According to Table 7, MEFS can improve 
classifier Rank-SVM by more than 32.6%, and improve 
MLNB by 22.6% in average, while the other methods 
can only improve Rank-SVM by about 20%, and 
improve MLNB by about 6%. These classifiers may be 
damaged by redundant features. With the classifier 
specified features chosen, the performance of these 
classifiers have been significantly improved. 

 
 

 

Table 3.  Comparative results with classifier LEAD 

 MEFS(AP) MEFS(HL) LP-Chi max avg All features 

average 
precision↑ 

0.8358±0.0377 
39.9±17.6 

0.8299±0.0372 
44±19.2 

0.8286±0.0352 
58.8±11.2 

0.8292±0.0309 
61.8±5.9 

0.8322±0.0372  
60.2±9.2 

0.8045±0.0362 

hamming 
loss↓ 

0.1801±0.0181 
45.8±20.6 

0. 1854±0.0151 
34.7±15.6 

0.1835±0.0168 
46.4±13.4 

0.1807±0.0141 
53.5±9.3 

0.1848±0.0165 
55.8±14.2 

0.1967±0.0184 

one error↓ 0.2005±0.0619 
35.5±17.5 

0.2072± 0.0631 
35.3±36.1 

0.2190±0.0513 
56.9±14.9 

0.2157±0.0527 
51.7±19.6 

0.2207±0.0648  
47.2±15.5 

0.2696±0.0638 

coverage↓ 0.2718±0.1830 
41.7±15.4 

0.2735±0.0307 
44.2±24.1 

0.2746±0.0319 
53±12.1 

0.2752±0.0312  
57.1±8.1 

0.2732±0.0319 
54.±12.5 

0.2948±0.0337 

ranking 
loss↓ 

0.1349±0.0282 
51.9±18.5 

0.1384±0.0244 
49.5±22.7 

0.1402±0.0265 
55.5±11.8 

0.1384±0.0242 
57.4±9.1 

0.1353±0.0269 
57.4±8.5 

0.1597±0.0271 
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Table 4.  Comparative results with Rank-SVM 

 MEFS(AP) MEFS(HL) LP-Chi max avg All features 
average 
precision↑ 

0.8032±0.0293  
49.3±9.7 

0.8040±0.0336  
53.3±18.3 

0.7641±0.0372  
37.2±11.3 

0.7667±0.0455  
29.5±16.3 

0.7584±0.0389  
33.2±13.0 

0.6786±0.0447 

hamming 
loss↓ 

0.2088±0.0080  
43.1±17.6 

0.2052±0.0157  
39.4±25.4 

0.2357±0.0211  
44.8±8.3 

0.2338±0.0231  
25.2±17.6 

0.2413±0.0169  
44.1±17.6 

0.3024±0.0324 

one error↓ 0.2577±0.0578  
41.9±15.8 

0.2493±0.0647 
39.8±23.4 

0.3252±0.0747  
34.9±11.4 

0.3169±0.0778 
33.0±21.4 

0.3185±0.0702  
43.8±6.9 

0.4621±0.0688 

coverage↓ 0.2940±0.0317  
55.1±9.8 

0.2867±0.0252  
52.5±19.1 

0.3162±0.0273  
41.5±5.1 

0.3162±0.0223  
24.0±15.1 

0.3246±0.0270  
36.8±18.3 

0.3997±0.0422 

ranking 
loss↓ 

0.1647±0.0220 
54.8±8.2 

0.1578±0.0207  
54.9±17.8 

0.1961±0.0235  
38.8±10.7 

0.1922±0.0336  
26.3±15.1 

0.2053±0.0279 
36.8±12.1 

0.2988±0.0511 

 
Table 5.  Comparative results with MLNB 

 MEFS(AP) MEFS(HL) LP-Chi max avg All features 
average 
precision↑ 

0.8148±0.0254  
30.0±14.0 

0.8139±0.0309  
28.5±14.8 

0.7845±0.0259 
53.1±26.7 

0.7826±0.0273  
55.1±25.3 

0.7865±0.0321  
55.6±20.6 

0.7689±0.0342 

hamming 
loss↓ 

0.2062±0.0155 
20.4±13.1 

0.1955±0.0234  
13.7±7.9 

0.2323±0.0240  
23.1±33.0 

0.2366±0.0226  
23.2±32.7 

0.2340±0.0231  
32.1±29.7 

0.2507±0.0186 

one error↓ 0.2257±0.0443 
29.8±20.7 

0.2307±0.0562  
31.2±17.9 

0.2915±0.0554  
53.6±19.1 

0.2966±0.0518  
54.0±26.8 

0.2914±0.0632 
45.3±20.7 

0.3134±0.0629 

coverage↓ 0.2884±0.0251  
31.0±15.5 

0.2827±0.0332  
31.3±21.2 

0.3036±0.0261  
48.0±25.6 

0.3053±0.0275  
58.4±19.6 

0.3013±0.0285  
50.1±19.5 

0.3134±0.0265 

ranking 
loss↓ 

0.1532±0.0156 
33.4±12.9 

0.1488±0.0257  
22.1±10.5 

0.1817±0.0202  
53.3±27.0 

0.1833±0.0197  
54.6±25.3 

0.1800±0.0218  
51.2±19.9 

0.1906±0.0214 

 

Table 6.  Comparative results with ML-KNN 

 MEFS(AP) MEFS(HL) LP-Chi max avg All features 
average 
precision↑ 

0.7271±0.0242  
47.5±28.7 

0.7253±0.0235 
44.8±29.1 

0.7752±0.0367 
34.4±16.8 

0.7599±0.0335  
25.2±13.6 

0.7633±0.0351  
38.4±18.1 

0.7117±0.0259 

hamming 
loss↓ 

0.2511±0.0179  
46.4±25.0 

0.2473±0.0191  
33.6±27.4 

0.2186±0.0186  
37.4±13.7 

0.2245±0.0218  
28.5±19.8 

0.2299±0.0131 
28.3±16.3 

0.2623±0.0155 

one error↓ 0.3559±0.0448  
21.0±21.1 

0.3509±0.0453  
22.0±26.6 

0.3033±0.0545  
30.1±19.1 

0.3067±0.0447  
26.1±17.2 

0.3117±0.0529  
35.0±14.7 

0.3913±0.0570 

coverage↓ 0.3663±0.0355  
51.4±26.8 

0.3666±0.0335  
49.2±29.1 

0.3145±0.0228  
27.8±19.1 

0.3269±0.0263  
26.9±15.6 

0.3244±0.0283  
27.0±18.7 

0.3787±0.0357 

ranking 
loss↓ 

0.2456±0.0282  
40.9±28.1 

0.2472±0.0268  
48.5±27.4 

0.1866±0.0291  
32.1±20.0 

0.2032±0.0271  
29.0±20.7 

0.2004±0.0294  
36.4±20.3 

0.2600±0.0255 

 

Table 7.  Improvements obtained by employing each feature selection method 

 MEFS LP-Chi max avg 
LEAD 8.57%±6.2% 6.6%±1.7% 7.7%±7.4% 5.8%±5.1% 
Rank-SVM 32.6%±9.0% 21.3%±10.7% 22.0%10.7% 19.5%±8.9% 
MLNB 22.6%±7.0% 7.9%±7.0% 5.6%±6.2% 6..6%±6.6% 
ML-KNN 6.25%±4.4% 16.4%±8.5% 14.1%10.7% 12.1%±7.4% 
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5.3. Computing time 

In this part, we compare the time cost of the 
proposed MEFS method and LP-Chi method when 
searching the optimal feature subset in training steps.  

The experiments execute on a personal computer 
with an Intel Core (TM) 2 Duo CPU E7400 @ 2.80GHz 
processor, and 2990MB RAM.  

In Table 8, the time costs are shown in the format 
“mean±std”, and the measurement unit of time cost is 
“seconds”.  

The result shows that MEFS spent more time than 
LP-Chi method in most of the cases. Intuitively, if there 
are ܨ  features, MEFS needs to train ܨ  modelsand test 
ிሺிାଵሻ

ଶ
൅ ܨ  times to sort the features into a rank list. 

While LP-Chi method is a filter technology, which 
needs to train ܨ models, and only test ܨ times. So, in the 
train part, MEFS method costs much time to delicately 
search for the best feature subset. But it will not harm 
the advantage of MEFS method. It is as fast as other 
filter functions in the test part, which is more important 
for practical applications. Exceptively, we surprisingly 
find that in Rank-SVM, MEFS runs even faster than LP-
Chi. It looks like MEFS can converge on Rank-SVM 
more quickly, just as Figure 3 shows.  

6. Conclusions 

The feature selection problem for multi-label musical 
emotion classification is investigated, where a novel 
multi-label feature selection algorithm MEFS is 
proposed. Experimental evaluation is performed by 
using four multi-label classification algorithms on a 
collection of 593 songs. Results show that MEFS 
performs better than the state-of-arts works like LP-Chi 
in most cases. This would benefit the automated 
annotation of large musical collections with multiple 
emotions.  

We consider further to improve the efficiency of 
feature selection, which we believe has great potential 
in this domain.  

 
Table 8.  Comparison of computing time 

 MEFS LP-Chi 
LEAD 19114±3461 6837±368 
Rank-SVM 8498±168.9 9965±55.5 
MLNB 1293±3.2 5±0.1 
ML-KNN 4227±15.3 61±0.1 
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