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Abstract 

In the last decades, nature-inspired algorithms have been widely used to solve complex combinatorial optimisation 
problems. Among them, Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms have been 
extensively employed as search and optimisation tools in various problem domains. Evolutionary and Swarm 
Intelligent algorithms are Artificial Intelligence (AI) techniques, inspired by natural evolution and adaptation. This 
paper presents two new nature-inspired algorithms, which use concepts of EAs and SI. The combination of EAs and 
SI algorithms can unify the fast speed of EAs to find global solutions and the good precision of SI algorithms to 
find good solutions using the feedback information. The proposed algorithms are applied to a complex NP-hard 
optimisation problem - the Terminal Assignment Problem (TAP). The objective is to minimise the link cost to form 
a network. The proposed algorithms are compared with several EAs and SI algorithms from literature. We show 
that the proposed algorithms are suitable for solving very large scaled problems in short computational times.  

 Keywords: Evolutionary Algorithms, Swarm Intelligence, Terminal Assignment Problem, Genetic algorithm with a 
new swarm mutation operator, Queen-bee Evolutionary Algorithm. 

1. Introduction 

A great number of engineering models and algorithms 
have been used to solve complex optimisation problems. 
The organisms and natural systems, which are working 
and developing in nature, are interesting and valuable 
sources for designing and inventing new systems and 
algorithms to be applied to different fields of science 
and technology. Among them, EAs and SI algorithms 
have been extensively applied to solve complex 
optimisation problems. EAs are a subset of evolutionary 
computation. They are bio-inspired population-based 
meta-heuristic optimisation algorithms [1]. SI 
algorithms are also bio-inspired techniques involving 
the study of collective behaviour in decentralised 

systems [2]. Ant Colony Optimisation (ACO), Particle 
Swarm Optimisation (PSO), Bees Algorithm (BA) and 
Artificial Bee Colony (ABC) algorithm are some of the 
most known SI approaches. These algorithms can be 
used in real-world optimisation problems. 

In this paper, we propose two bio-inspired 
algorithms, which combine characteristics of EAs and 
SI algorithms. We propose a Genetic Algorithm with a 
new “Swarm” mutation operator (GAS) and a Queen-
Bee Evolutionary Algorithm (QBEA) to optimise a 
communication network problem - the Terminal 
Assignment Problem (TAP). The algorithms were tested 
using small, medium and large TAP instances. The 
algorithms are used to minimise the link cost to form a 
network by connecting a given set of terminals to a 
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Fig. 1.TAP Example. 

given set of concentrators. TAP is a NP-hard 
combinatorial optimisation problem [3-5].  

Several heuristics have been used to optimise TAP: 
Local Search (LS) methods [6-9], EAs [3-5, 9-18], SI 
techniques [19, 20], among others. Note however, that 
this paper presents the first attempt (to the authors’ 
knowledge) to use evolutionary swarm based algorithms 
to optimise TAP. 

We compare the performance of GAS and QBEA 
with: Genetic Algorithm (GA), Tabu Search (TS) [9], 
Hybrid GA (HGA) [9], Local Search GA (LSGA) [11], 
GA with Multiple Operators (GAMO) [12], Hybrid 
Differential Evolution (HDE) [13], BA [20], Hybrid 
ACO (HACO) [19], Hybrid Scatter Search (HSS) [16], 
Discrete Differential Evolution (DDE) [17] and Hybrid 
Population Based Incremental Learning (HPBIL) [18]. 

 
The paper is structured as follows: in Section 2 we 

describe the TAP; in Section 3 we present the previous 
work; in Section 4 we describe the proposed algorithms; 
in Section 5 we discuss the computational results 
obtained and, in Section 6 we report about the 
conclusions. 

2. TAP 

In large centralised networks, concentrators are used to 
increase the network efficiency: a set of terminals is 
connected to a concentrator and each concentrator is 
connected to the central computer.  

In TAP the number of concentrators and their 
capacities and locations are known. Each concentrator is 
limited in the amount of traffic that it can accommodate. 
For that reason, each terminal must be assigned to one 
node of the set of concentrators, in such a way that any 
concentrator does not overstep its capacity [3-5].  

In TAP, a communication network will connect N 

terminals, each with Li demand (weight) to M 
concentrators, each of Cj capacity. Capacities are given 
by positive integers and each Li must be small or equal 
to min (Cj … CM). The terminals CTi(x, y) and 
concentrators CPj(x, y) sites have fixed and known 
locations placed on a Euclidean grid. 

 
Problem Instance (see Fig. 1): 

- N Terminals; 
- Weights - a vector L, with the capacity 

required for each terminal; 
- Terminals Location - a vector CT, with the 

location (x, y) of each terminal; 
- M Concentrators; 
- Capacities - a vector C, with the capacity 

required for each concentrator; 
- Concentrators Location - a vector CP, with 

the location (x, y) of each concentrator. 
 
The optimisation goals are to simultaneously 

produce feasible solutions, minimise the distances 
between concentrators and terminals assigned to them 
and to maintain a balanced distribution of terminals 
among concentrators. 

In this work, the solutions are represented using 
integer vectors. We use the terminal-based 
representation (see Fig. 1). Each position corresponds to 
a terminal. The value carried by position i of the vector 
specifies the concentrator to which the terminal i is to be 
assigned to. 

TAP is a NP-hard optimisation problem [3-5] and to 
deal with its difficulty many researchers proposed in the 
last decades, several optimisation algorithms to solve 
TAP (see Section 3). Nowadays, we observe an 
increasing size and consequently an increasing 
complexity of communication networks, and for that 
reason finding an optimal solution for TAP continues to 
be a hard task.  
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3. Previous Work 

Many problems in combinatorial optimisation are NP-
hard. To solve this type of problems are used 
approximate methods, because classical heuristics have 
failed to be efficient. The existing, successful methods 
in approximate optimisation fall into two classes: Local 
Search (LS) and population-based search.  

There are in literature different approximation 
algorithms, which use different concepts, derived from: 
classical heuristics, AI, biological evolution, neural 
systems, SI and statistical mechanics. These approaches 
include Simulated Annealing (SA), Tabu Search (TS), 
Greedy Randomised Adaptive Search Procedure 
(GRASP), Evolutionary Algorithms (EAs), SI 
algorithms, their hybrids and others. 

Iterated Local Search (ILS) [21] is a simple and 
powerful stochastic LS method that creates a sequence 
of solutions generated by an embedded heuristic. ILS is 
simple, easy to implement, robust, and highly effective. 
The essential idea of ILS lies in focusing the search on a 
smaller subspace, defined by locally optimal solutions 
for a given optimisation engine.  

GRASP [22] is a meta-heuristic belonging to the 
class of LS techniques. It typically consists of iterations 
made up from successive constructions of a greedy 
randomised solution and subsequent iterative 
improvements of it through LS. 

SA [23-25] exploits an analogy between the metal 
annealing process and the search for a minimum value 
in a more general system. In each run, it attempts to 
search the entire region of interest for the global 
minimum rather than performing multiple downhill 
optimisation runs, in which the selection of the various 
starting points is automated.  

TS [26] is a meta-heuristic algorithm that belongs to 
the class of LS techniques. TS allows the search of 
solutions that decrease the objective function value only 
in those cases where these solutions are not forbidden 
[27]. 

Some interesting LS techniques to solve TAP can be 
found in literature. Atiqullah and Rao [28] proposed SA 
to find the optimal design of small-scale networks. 
Pierre et al. [29] proposed SA to find solutions for 
packet switched networks. Zhang and Ke [30] studied 
the capability of SA Arithmetic to solve terminal 
allocation problems in communication networks. Glover 
et al. [31], and Koh and Lee [32] adopted TS to find an 
appropriate design of communication networks. 

Kapantow [6] proposed SA to solve concentrator 
location and terminal assignment problems. Xu et al. [7] 
proposed a TS algorithm to solve TAP and compared 
the results with the ones found with GA and Greedy 
algorithm. Bernardino [8] proposed ILS and GRASP to 
find solutions to TAP. Bernardino et al. [9] proposed a 
TS algorithm and compared the results with the ones 
found with Hybrid GA. 

Low [33] proposed an algorithm to solve Minimum 
Cost Min-Max Load Terminal Assignment Problem 
(MCMLTAP) proving that the problem is optimally 
solvable in polynomial time using MCMLTAP. 

EAs use mechanisms inspired by biological 
evolution [1]. EAs have been successfully used to solve 
complex combinatorial optimisation problems.  

GAs are EAs inspired in the genetic inheritance and 
the Darwinian strife for survival [34]. Metaphors as 
chromosomes and population stand for solutions and 
solution set, respectively. Mechanisms as recombination 
and mutation give rise to new offspring by manipulating 
the current population of solutions. Following a 
standard Darwinian approach, the selection extracts the 
most promising individuals from the current population 
[35]. 

Differential Evolution (DE) [36] is an EA. DE uses 
the mutation operation as a search mechanism and the 
selection operation to direct the search toward 
prospective regions in the search space [37]. Using the 
members of existing population to build trial vectors, 
the recombination operator efficiently shuffles 
information about successful combinations, enabling the 
search for a better solution space [38, 39]. 

SS is an useful methodoly to solve combinatorial 
optimisation problems. It was first introduced in 1977 
by Fred Glover [40] and extensive contributions have 
been made by Manuel Laguna [41]. The SS operates on 
a small set of solutions and makes only limited use of 
randomisation as a proxy for diversification when 
searching for an optimal solution. 

DDE was proposed by Pan et al. [42] to solve the 
permutation flowshop scheduling problem. DDE first 
mutates a target population to produce a mutant 
population [42]. Then the target population is 
recombined with the mutant population in order to 
generate a trial population. Finally, a selection operator 
is applied to both target and trial populations to 
determine who will survive for the next generation. 
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 PBIL algorithm is an EA proposed by Baluja [43]. 
It uses a stochastic guide search process to obtain new 
solutions based on the directional information from the 
previous best solution. PBIL maintains statistics about 
the search space (learning probabilities) and uses them 
to direct its exploration [43].  

Some interesting evolutionary approaches for TAP 
can be found in literature. Abuali et al. [10] proposed a 
Greedy algorithm and a Hybrid Greedy-GA to solve 
TAP. Khuri and Chui [3] proposed a GA with a penalty 
function as alternative method to solve TAP and 
compared the results with the Greedy algorithm. 
Salcedo-Sanz and Yao [4] proposed two different GAs, 
using Hopfield Neural Network and compare the results 
with the GA [3]. Salcedo-Sanz et al. [44] proposed to 
solve TAP with Groups Encoding. Yao et al. [5] 
proposed Hybrid GAs and compared the concentrator 
and terminal-based representations. Bernardino et al. [9] 
proposed a Hybrid GA (HGA) with a repair procedure 
and compared the HGA with the TS. Bernardino et al. 
[12] proposed a GA with multiple operators (GAMO) 
for crossover and mutation and compared it with the 
traditional methods. Bernardino et al. [11] proposed a 
Local Search GA (LSGA) and compared the LSGA 
with TS, HGA and GAMO. Julstrom [15] proposed 
three permutation-coded GAs and compared the results 
between them.  

Bernardino et al. [13, 14] proposed HDE and 
MHDE algorithms to solve TAP and compared these 
algorithms with the traditional methods. Bernardino et 
al. [16] proposed an application of a SS algorithm 
combined with a TS algorithm to solve TAP and 
compared the results with LSGA, TS, HDE and HACO. 
Embedded in a DDE algorithm, Bernardino et al. [17] 
used a LS to improve the TAP solutions quality. The 
authors compare the performance of DDE with LSGA, 
TS and MHDE. 

A SI algorithm is initialised with a population (i.e., 
potential solutions), whose individuals are modified 
over many iteration steps by imitating the social 
behaviour of insects or animals, in order to find the 
optimal solution in the problem solution space. A 
potential solution “flies” through the search space by 
modifying itself according to its past experience and its 
relationship with other individuals in the population and 
the environment [2]. 

ACO is a SI algorithm. It is based on the indirect 
communication of a colony of simple agents, called 

(artificial) ants, mediated by (artificial) pheromone trails 
[45-49].  

BA is also a population-based optimisation method 
and it has been successfully applied to different 
optimisation problems. BA is inspired by the food 
foraging behaviour of honey bees [50] and uses a 
neighbourhood search method and a LS method to be 
able to locate the global minimum.  

Some interesting SI techniques to solve TAP can be 
found in literature. Bernardino et al. [19] proposed a 
Hybrid ACO (HACO) algorithm to solve TAP and 
compared the results with the traditional methods. 
Bernardino et al. [20] proposed a BA to solve TAP and 
compared the results with LSGA, TS, HDE and HACO.  

In this paper, we compare the proposed algorithms 
with the algorithms proposed by Bernardino et al. [8, 9, 
11-13, 16-20], because they: (1) use the same 9 small 
test instances; (2) adopt the same fitness function; (3) 
implement the algorithms using the same language 
(C++), and; (4) adopt the same representation (terminal-
based). 

4. Proposed Algorithms 

In order to optimise TAP, we implement two EAs which 
use crossover, mutation and selection operators and we 
hybridise them with concepts of SI. 

4.1.  GAS 

GA involves a search from a “population” of individuals 
(potential solutions), in order to find the optimal 
solution in the problem solution space [35]. Each 
generation of a GA involves a competitive selection that 
weeds out poor solutions. Selection is a genetic operator 
that chooses a solution from the current generation’s 
population for inclusion in the next generation’s 
population. Before making it into the next generation’s 
population, selected solutions may undergo crossover 
and/or mutation (depending on the probability of 
crossover and mutation) in which case the offsprings are 
actually the ones that make it into the next generation’s 
population [35]. 

The selected solutions are “recombined” with other 
solutions by swapping parts of a solution with another. 
Solutions are also “mutated” by making small changes. 
Recombination and mutation are used to generate new 
solutions that are biased towards regions of the space 
for which good solutions have already been seen. 
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The GA consists in the following steps: 
 

Generate initial population 
Evaluation 
WHILE TerminationCriterion() 
 Selection 
 Crossover 
 Mutation 
 Evaluation 

 
In [11], Bernardino et al. proposed a Local Search 

GA (LSGA). It combines global and LS by using a GA 
to perform exploration, while the LS method performs 
exploitation.  

Combining global and local search is a strategy used 
by many successful global optimisation approaches, and 
this type of algorithms has in fact been recognised as a 
powerful algorithmic paradigm for evolutionary 
computing [11]. 

The LSGA consists in the following steps: 
 

Generate initial population 
Evaluation 
WHILE TerminationCriterion() 
   Selection 
   Crossover 
   Mutation 
   FOR each solution in population 
    Perform local search to get a new solution 
   Evaluation 

 
We adopted the model proposed by Bernardino et al. 

[11]. The basic difference is that we created a new 
mutation operator based on the ACO algorithm. 

ACO algorithm was proposed by Dorigo et al. [45, 
46], and Dorigo [47]. In real life, ants indirectly 
communicate among them by depositing pheromone 
trails on the ground, influencing the decision processes 
of other ants. This simple communication form among 
individual ants causes complex behaviours and 
capabilities on the colony as a whole.  

The pheromone trails in ACO serve as distributed 
numerical information used by the ants in order to 
probabilistically built solutions to the problem to be 
solved and which they adapt during the algorithm 
execution to reflect their search experience.  

The standard ACO algorithm uses pheromone trail 
information to build complete solutions. Gambardella et 
al. [48] proposed a Hybrid Ant Colony System coupled 
with a LS (HAS_QAP), applied to the Quadratic 
Assignment Problem (QAP). HAS-QAP uses 
pheromone trail information to perform modifications 
on QAP solutions.  

In GAS, the pheromone trail information is also 
used to perform mutations on TAP solutions.  

For solving the TAP, the set of pheromone trails is 
held in a matrix T of size N*M, where each Tij measures 
the desirability of assigning the terminal i to the 
concentrator j. 

Only the best solution found during the search 
process contributes to update the pheromone trails. This 
makes the search process more aggressive and requires 
less time to reach good solutions [48].  

The GAS consists in the following steps: 
 
Generate initial population 
Evaluation 
Initialise pheromone trails 
WHILE TerminationCriterion() 
   Selection 
   Crossover 
   Mutation (using pheromone trail matrix or a   
   “neighbourhood search” algorithm) 
   FOR each solution in population 
    Perform local search to get a new solution 
   Evaluation 
   Pheromone trail updating 

 
The next subsections describe each step of the 

algorithm in detail. 

Initialisation of Parameters 

The following parameters must be defined by the user: 
(1) mi – number of iterations; (2) ni – number of initial 
solutions; (3) cr – crossover operator; (4) pm – mutation 
probability; (5) pcr – crossover probability; (6) nm – 
number of modifications (used for mutation); (7) Q – 
value for booting the pheromone trails; (8) q – 
probability of exploration/exploitation; (9) x1 – 
pheromone evaporation rate; (10) x2 – pheromone 
influence rate, and; (11) ms – number of seconds. 

Generation of Solutions 

The solutions are created using a deterministic form. 
The deterministic form is based on the Greedy 
algorithm proposed by Abuali et al. [10]. The Greedy 
algorithm randomly assigns terminals to the closest 
feasible concentrators.  

Evaluation of Solutions 

To evaluate the quality of a potential solution in relation 
with other potential solutions we use a fitness function. 
This function returns a number (fitness value) that 
reflects how optimal the solution is.  
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Fig. 2. Reciprocal Translocation. 

 

Fig. 3. Exchange Positions. 

A simple and feasible method for optimising TAP is 
to allocate each terminal to one concentrator without 
exceeding the capacity of any concentrator. We use a 
vector of integers: 

 )(),...,3(),2(),1( NXXXXX   (1) 

Where X(t)=c means that terminal t is allocated to 
concentrator c, and 1≤X(t)≤M; 1≤t≤N. 

In other words, whole terminals must be assigned to 
one concentrator, and 
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It means that the capacity of one concentrator must 
not be exceeded by the capacity requirements of the 
terminals assigned to that concentrator.  

The fitness function is the same used in [8, 9, 11-13, 
16-20], and it is based on:  
(i) the total number of terminals connected to each 

concentrator (the purpose is to guarantee a balanced 
distribution of terminals among concentrators); 
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(ii) the distances between concentrators and terminals 
assigned to them (the goal is to minimise the 
distances);  
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(iii) the penalisation if a solution is not feasible (the 
purpose is to penalise the solutions when the total 
capacity of one or more concentrators is 
overloaded).  
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onPenalisatidistwbalwfitness
N

t
tXt

M

c
c  

 1
)(,

1

*2*1  (7) 

 
This fitness function (7) encourages solutions with a 

balanced distribution of terminals among concentrators 
(4). The Euclidean distances between terminals and 
concentrator are also considered and must be as small as 
possible (5). The parameters w1 and w2 (w1+w2=1) are 

used to control the importance of each term (balance/ 
distances) in the fitness function. In this paper, 
parameters w1 and w2 are set to 0.9 and 0.1, 
respectively, which is the same used in [4, 8, 9, 11-13, 
16-20]. The fitness function penalises also infeasible 
solutions (6). 

Pheromone trail initialisation 

All pheromone trails Tij are set to the same value 
T0=1/(Q*f(S*)) [48]. S* is the best solution found so far 
and Q a parameter. 

Selection 

For selection we implement the Tournament operator. 
This operator randomly selects a subset of individuals 
(size = 4). The best individual in this subset is then 
chosen as the selected individual. 

Crossover 

For recombination we implement seven crossover 
operators: one point, 2-points, 4-points, uniform, 
“reciprocal translocation”, “exchange positions” and 
“exchange terminals of two concentrators”.  

One point, 2-points, 4-points and uniform are very 
well-known and widely used in practice.  

In “reciprocal translocation”, randomly located and 
arbitrary-length segments are exchanged between 
parents, as it is illustrated in Fig. 2. 

In “exchange positions”, one segment is randomly 
selected for each parent and the segments are exchanged 
between parents, as it is illustrated in Fig. 3. 

Mutation 

We use a mutation operator, which can perform two 
types of mutation: (1) “neighbourhood search” mutation 
and (2) mutation using pheromone trail matrix. 
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The mutation operator can perform nm 
modifications and it is applied with a probability pm. A 
modification consists on assigning a terminal t to a 
concentrator c.  

First, a random number k is generated (0 or 1). If k is 
equal to 0, the mutation is done using a “neighbourhood 
search” algorithm. 

The “neighbourhood search” mutation consists in 
the following steps: 

 
FOR n=1 TO nm DO 
  t = random(N) 
  closestC=1                    
  FOR c=1 TO M DO  
    IF distance(t, c) < distance(t, closestC) 
      closestC=c 
  IF capacityFree(closestC)>=L(t) and      
                      mantainBalanced(closestC) 
    Assign terminal t to concentrator closestC 
  ELSE 
    cond=true 
    REPEAT 
      t1 = random(N)      
      t2 = random(N) 
      c1 = solution (t1)  
      c2 = solution (t2) 
      IF (capacityFree(c2)-L(t2)>=L(t1) and  
             capacityFree(c1)–L(t1)>=L(t2)) and    
           (distance(t2,c1)<=distance(t1,c1) or         
            distance(t1,c2)<=distance(t2,c2))  
        Assign t1 to c2 and t2 to c1 
        cond = false 
    WHILE cond=true 
 

In the “neighbourhood search” mutation, a mutant 
individual is obtained by performing multiple moves 
which length is specified as nm (number of 
modifications).  

First, the algorithm chooses a random terminal t and 
searches the closest concentrator. If the concentrator has 
enough capacity and maintains a balanced distribution 
of terminals, then the terminal t is assigned to the 
closest concentrator, closestC. Otherwise, the algorithm 
generates two random terminals, t1 and t2. The 
algorithm verifies the two concentrators, c1 and c2, 
assigned to them. If the concentrators have enough 
capacities and at least one of the concentrators is closest 
to the terminal that will be assigned, then the algorithm 
exchanges the terminals, t1 and t2, between the two 
concentrators, c1 and c2. The algorithm repeats this 
process until terminals, t1 and t2, are interchanged 
between concentrators, c1 and c2. 

 If k is equal to 1, the mutation is done using the 
pheromone trail matrix. A mutant individual is also 
obtained by performing multiple moves which length is 

specified as nm. First, a terminal t is randomly chosen 
(between 1 and N) and after, a concentrator c is chosen. 
A random number x is generated between 0 and 1. If x is 
smaller than q (parameter), the best concentrator c is 
selected in such a way that Ttc is maximum. This policy 
consists in exploiting the pheromone trail. If x is equal 
or higher than q, the concentrator c is chosen with a 
probability proportional to the values contained in the 
pheromone trail. This consists in exploring the solution 
space. 

Local Search Algorithm 

After recombination and mutation, the solutions go 
through the improvement phase. A LS algorithm is 
applied to each solution in the new population to reduce 
its cost, if possible. We adopt the improved LS 
algorithm proposed by Bernardino et al. [17]. The LS 
algorithm applies a partial neighbourhood search. We 
generate a neighbour by swapping two terminals 
between two concentrators - c1 and c2 (randomly 
chosen). The algorithm searches for a better solution in 
the initial set of neighbours. If the best neighbour 
improves the actual solution, then LS replaces the 
current solution by the best neighbour. Otherwise, the 
algorithm creates another set of neighbours. In this case, 
one neighbour results on assigning one terminal of c1 to 
c2, or c2 to c1.  

The neighbourhood size is N(c1)*N(c2), or 
N(c1)*N(c2) + N(c1)+N(c2). 

The LS algorithm consists in the following steps: 
 

c1 = random (number of concentrators) 
c2 = random (number of concentrators) 
NN = neighbours of ACTUAL-SOL (one neighbour  
     results of interchange one terminal of c1 
     or c2  with one terminal of c2 or c1) 
SOLUTION = FindBest (NN) 
IF fitness (ACTUAL-SOL) < fitness(SOLUTION)  
   NN = neighbours of ACTUAL-SOL (one neighbour  

results of assign one terminal of c1 to  
c2 or c2 to c1) 

   SOLUTION = FindBest (NN) 
   IF fitness (SOLUTION) < fitness(ACTUAL-SOL) 

ACTUAL-SOL = SOLUTION 
ELSE 

ACTUAL-SOL = SOLUTION 

Pheromone trail updating 

To speed-up the convergence, the pheromone trails are 
updated by taking into account only the best solution 
found so far [19, 48]. The pheromone trails are updated 
by setting: 

Tij=(1-x1)*Tij, where 0<x1<1 is a parameter that 
controls the evaporation of the pheromone trail. 
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TiSi* = TiSi* + x2/fitness(S*), where 0<x2<1 is a 
parameter that controls the influence of the best solution 
S* in the pheromone trail. 

Termination criterion 

The algorithm stops when a maximum number of 
iterations (mi) or a maximum number of seconds (ms) is 
reached. 

4.2.  QBEA 

Currently, researchers are studying the behaviour of 
social insects in an effort to use the SI concepts to create 
algorithms with the ability to explore the solution search 
space of the problem in a way similar to the behaviour 
of social insects [51, 52, 53]. Some algorithms inspired 
by the behaviour of insects can be called meta-heuristic 
algorithms, because they provide a high-level 
framework, which can be adapted to solve optimisation, 
search, and related problems, as opposed to providing a 
stringent set of guidelines to solve a particular problem.  

A review of literature on algorithms inspired by the 
behaviour of bees [51] suggests that the topic is 
evolving and that there is no consensus on a single 
descriptive title for algorithms based on bees’ 
behaviour. In literature, it is possible to find several bee 
inspired algorithms that use different algorithm models: 
Bee System, BeeHive, Virtual Bee algorithm, Bee 
Swarm Optimisation, Bee Colony Optimisation, 
Artificial Bee Colony, Bees algorithm and Honey Bees 
Mating Optimisation algorithm.  

Honey-bees live in hives around the world in well 
organised colonies. These colonies are characterised by 
the division of labour, where specific bees perform 
specific tasks [54, 55]. 

In this paper we consider the Honey-Bees marriage 
process and the GA model as an inspiration for creating 
a new bio-inspired algorithm.  

QBEA can be considered as a typical swarm-based 
approach to optimisation, in which the search algorithm 
is inspired by the process of marriage in real honey bees 
and it is also inspired by the process of selection and 
mutation used in GAs. In a real honey bee, the queen 
crossbreeds with some other bees of the population 
(selected as fathers) to create new bees for the next 
generation.  

In QBEA, the queen (the best solution in the 
population) is recombined with some individuals of the 
population to create new individuals for the next 

generations. The individuals (fathers) are selected using 
a selection operator. 

QBEA uses two different mutation operators to 
perform mutations on TAP solutions. Depending on a 
random number (0 or 1), the algorithm can choose the 
first or second mutation operator.  

The first mutation operator only affects a single 
gene of the individual – simple mutation operator.  

The second can affect several genes of the 
individual – multiple mutation operator. 

 The QBEA consists in the following steps: 
 

Generate initial population 
Evaluation 
Select queen 
WHILE TerminationCriterion() 
   Selection (selects the individuals that will  

       be recombined with the queen) 
   Crossover 
   Mutation: 
     For each solution in population 
 If random(0 or 1) = 0 
   Apply simple mutation operator 
 Else  
   Apply multiple mutation operator 
   FOR each solution in population 
     Perform local search to get a new solution 
   Evaluation 
   Update queen 

 
The next subsections describe each step of the 

algorithm in detail. 

Initialisation of Parameters 

The following parameters, must be defined by the user: 
(1) mi – number of iterations; (2) ni – number of initial 
solutions; (3) mut – simple mutation operator; (4) cr – 
crossover operator; (5) pm1 – mutation probability; (6) 
pm2 – mutation probability; (7) pcr – crossover 
probability; (8) nm – number of modifications (used in 
the second mutation operator), and; (9) ms – number of 
seconds.. 

Generation of Solutions 

The solutions are created using the deterministic form 
proposed by Abuali et al. [10]. 

Evaluation of Solutions 

To evaluate how good a potential solution is in relation 
to other potential solutions, we use the fitness function 
(7).  
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Selection 

To create a new population of individuals, the queen is 
recombined with ni/2 individuals from the previous 
population.  

We use the Tournament operator to select the 
individuals that will be recombined with the queen. For 
each individual that will be selected, this selection 
operator randomly selects a subset of individuals (size = 
4). The best individual in this subset is then chosen as 
the selected individual. 

Crossover 

For recombination we implement the same seven 
crossover operators used in GAS: one point, 2-points, 4-
points, uniform, “reciprocal translocation”, “exchange 
positions” and “exchange terminals of two 
concentrators”. 

Mutation 

A random number k is generated (0 or 1). If k is equal to 
0, the simple mutation operator is applied with a 
probability pm1. A random number pr, between 0 and 1, 
is generated. If pr is less than pm1, then the simple 
mutation operator is applied to generate a perturbed 
individual.  

We implemented and studied three simple mutation 
operators: “change order”, “change concentrator” and 
“change closest concentrator”. The mutation operator is 
chosen by the user. In “change order”, two terminals are 
randomly selected and exchanged. In “change 
concentrator”, a terminal is randomly selected and its 
value (concentrator) is replaced by a new random value 
(concentrator). In “change closest concentrator”, a 
terminal is randomly selected and its value 
(concentrator) is replaced by a new value (closest 
concentrator).  

If k is equal to 1, the multiple mutation operator is 
applied with a probability pm2. A uniform random 
number pr is generated between 0 and 1. If pr is less 
than pm2, then the multiple mutation operator is applied 
to generate the mutant individual. The general 
mechanism of the multiple mutation operator is equal to 
the mechanism of the neighbourhood search method 
used in GAS (“neighbourhood search” mutation – see 
Section 4.1 - Mutation). 

Local Search Algorithm 

After recombination and mutation, the solutions go 
through the improvement phase. We use the same LS 
algorithm used in GAS to improve the new solutions’ 
quality. 

Termination criterion 

The algorithm stops when a maximum number of 
iterations (mi) or a maximum number of seconds (ms) is 
reached. 

5. Results 

In order to test the performance of our approaches, we 
use a collection of TAP instances of different sizes. We 
choose 9 small instances from literature [20] and 3 
extreme large instances with 1000 terminals and 300 
concentrators. 

We compare our results with those found previously 
using GA, TS, HGA, LSGA, GAMO, HDE, BA, 
HACO, DDE, HSS and HPBIL.  

The suggestions from literature helped us to guide 
our choice of parameter values for TS [9], HGA [9], 
GAMO [12], HDE [13], LSGA [11], HACO [19], BA 
[20], HSS [16], DDE [17] and HPBIL [18]. We use the 
same values proposed by Bernardino et al. [8, 9, 11-13, 
16-20] (see Tables 1 and 2). 

We performed different tests using different 
instances of different sizes in order to establish the best 
parameter values for GAS and QBEA. We select the 
values presented in Table 1 to produce the results for 
GAS and QBEA. 

Table 3 and Table 4 present the best-obtained results 
with classical GA, TS, HGA, LSGA, GAMO, HDE, 
BA, HACO, DDE, HSS and HPBIL. In both tables, the 
first columns represent the number of the problem (P) 
and the fitness of the Best-Known (BK) solution and the 
remaining columns show the results (BK, Ts – Run 
Time) obtained with the mentioned algorithms.  

The algorithms have been executed using a 
processor Intel Core Duo T2300.  

The initial solutions were created using the Greedy 
algorithm. Ts (Run Time) corresponds to the execution 
time that each algorithm needs to obtain the best-known 
feasible solution.  

The values presented in tables 3 and 4 have been 
computed based on 100 different executions for each 
test instance. 
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Table 1. Parameter values. 

HACO Number of ants 

Number of iterations for diversification 

Q 

Probability exploitation/exploration 

Pheromone influence 

Pheromone evaporation 

Number of modifications 

30 

[N*2 ... N*4] 

100 

0.9 

{0.7, 0.8} 

0.8 

[3 ... 15] 

BA Number of scout bees 

Number of selected sites 

Number of best sites 

Number of bees sent to selected sites 

Number of bees sent to best sites 

Number of modifications 

10 

10 

5 

10 

30 

6 

GAS Number of individuals 

Crossover operator  

Mutation probability 

Crossover probability 

Number of modifications (used for mutation) 

Q 

Probability exploitation/exploration 

Pheromone influence 

Pheromone evaporation 

40 (instances 10-12), 100 (instances 1-9) 

one-point 

>=0.7 

<=0.4 

<4 

100 

[0.5 … 0.8] 

0.8 

0.8 

QBEA Number of individuals 

Simple mutation operator 

Crossover operator 

Simple mutation probability 

Multiple mutation probability 

Crossover probability 

Number of modifications  (used for mutation) 

40 (instances 10-12), 100 (instances 1-9) 

“change concentrator” 

one-point 

[0.4 … 0.8] 

>=0.7 

<=0.4 

<4 

Tables 5 and 6 present the average fitnesses and 
standard deviations. The first column represents the 
number of the problem (P) and the remaining columns 
show the results obtained (AvgF – Average Fitness, Std 
– Standard Deviation). 

To compute the results in tables 5 and 6 we used 
300 iterations/generations for instances 1-4, 500 for the 
instance 5, 1000 for the instance 6, 1500 for the instance 
7 and 2000 for instances 8-9. For instances 10, 11 and 
12 we stop the executions when a maximum number of 
10000 iterations/generations is reached or when a 
maximum number of 5000 seconds is reached.  

The values presented in tables 5 and 6 have been 
computed based on 50 different executions (50 best 
executions out of 100 executions) for each test instance. 

In a first stage, we use a different stop condition for 
the algorithms. We use a predefined number of 
evaluations. We observe that EAs present a very poor 
performance (higher average fitnesses and standard 
deviations) if we compare them in terms of number of 
evaluations. This happens because the tested EAs need 
more population diversity. For this reason, in each 
iteration, the EAs perform a higher number of 
evaluations in comparison with SI algorithms. We 
observe that SI algorithms can obtain very good results 
using small populations (see Fig. 4). The improvements 
using large populations are not significant. Large 
populations are more time consuming and do not 
provide significant better results using the SI algorithms 
(see Fig. 4 and Fig. 5).  
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Table 2. Parameter values. 

TS Number of elements in the tabu list [5 … 20] 

GA Number of individuals 

Crossover probability 

Selection operator 

Mutation probability 

Crossover operator 

Mutation operator 

200 

{0.3, 0.4} 

“tournament” 

[0.6 … 0.8] 

one-point 

“change order”  

HGA Number of individuals 

Crossover probability 

Selection operator 

Mutation probability 

Crossover operator 

Mutation operator 

200 

{0.3, 0.4} 

“tournament” 

[0.6 … 0.8] 

“exchange terminals of two concentrators”, one-point 

“multiple” 

GAMO Number of individuals 

Crossover probability 

Selection operator 

Mutation probability 

Crossover operator 

Mutation operator 

200 

{0.3, 0.4} 

“tournament” 

[0.6 … 0.8] 

“exchange terminals of two concentrators”, one-point 

“multiple” 

LSGA Number of individuals 

Crossover probability 

Selection operator 

Mutation probability 

Crossover operator 

Mutation operator 

200 

{0.3, 0.4} 

“tournament” 

[0.6 … 0.8] 

“exchange terminals of two concentrators”, one-point 

“multiple” 

HDE Number of individuals 

Crossover probability 

Factor F 

Strategy 

200 

{0.3, 0.4} 

{0.9, 1.6} 

“Best1Exp” 

HSS Number of individuals 

Number of best solutions in the reference set 

Number of most different feasible solutions in the reference set 

Number of iterations for diversification 

100 

8 

8 

[N/15 … N/2] 

DDE Number of individuals 

Crossover probability 

Perturbation probability 

Number of perturbations 

100 

[0.1 … 0.3] 

{0.8, 0.9} 

[N/10...N/5] 

HPBIL Number of individuals 

Mutation probability 

Mutation Shift 

Number of iterations for diversification 

Probability exploitation/exploration 

30 

0.3 

0.1 

N/20 

0.6 

When using the same number of individuals in the 
population, we observe that SI algorithms are more time 
consuming, because they use probability 

vectors/matrices (see Fig. 5). Since SI algorithms can 
produce good results with smaller populations, the 
differences between SI and EAs (which need more 
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Table 3. Results – Evolutionary Algorithms. 

P BK GA HGA GAMO HDE LSGA HSS DDE HPBIL 
  BK Ts BK Ts BK Ts BK Ts BK Ts BK Ts BK Ts BK Ts 
1 65.63 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s 
2 134.65 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s 
3 270.26 - - Yes 1s Yes 1s Yes <5s Yes <1s Yes <1s Yes <1s Yes <1s 
4 286.89 Yes <1s Yes 1s Yes 1s Yes <5s Yes <1s Yes <1s Yes <1s Yes <1s 
5 335.09 Yes <1s Yes 1s Yes 1s Yes <5s Yes <1s Yes <1s Yes <1s Yes <1s 
6 371.12 - - Yes 1s Yes 1s Yes 58s Yes 1s Yes 1s Yes <1s Yes <1s 
7 401.21 - - Yes 2s Yes 2s Yes 118s Yes 1s Yes 1s Yes <1s   Yes <1s 
8 563.19 - - Yes 8s Yes 8s Yes 274s Yes 7s Yes 4s Yes 2s Yes 3s 
9 642.83 - - Yes 8s Yes 8s Yes 456s Yes 7s Yes 6s Yes 3s Yes 5s 
10 4892.09 - - - - - - - - - - - - - - -     - 
11 4897.28 - - - - - - - - - - - - - - - - 
12 4883.67 - - - - - - - - - - - - - - - - 

P- Problem, BK- Best Known Solution Fitness, Ts - Execution time. 
 

Table 4. Results – TS, SI and Proposed Algorithms. 

P BK TS HACO BA GAS QBEA 
  BK Ts BK Ts BK Ts BK Ts BK Ts 
1 65.63 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s 
2 134.65 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s 
3 270.26 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s 
4 286.89 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s 
5 335.09 Yes <1s Yes 2s Yes <1s Yes <1s Yes <1s 
6 371.12 Yes <1s Yes 3s Yes <1s Yes <1s Yes <1s 
7 401.21 - - Yes 4s Yes <1s Yes <1s Yes <1s 
8 563.19 - - Yes 14s Yes 3s Yes 1s Yes 1s 
9 642.83 - - Yes 25s Yes 4s Yes 2s Yes 2s 
10 4892.09 - - - - - - Yes 300s Yes 250s 
11 4897.28 - - - - - - Yes 300s Yes 250s 
12 4883.67 - - - - - - Yes 300s Yes 250s 

 
Table 5.  Results – Evolutionary Algorithms – Average Fitnesses and Standard Deviations. 

P GA HGA GAMO HDE LSGA HSS DDE HPBIL 
 AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std 
1 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00
2 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00
3 283.13 5.62 270.52 0.24 270.52 0.23 270.35 0.06 270.32 0.06 270.26 0.00 270.40 0.09 270.28 0.03
4 295.08 1.42 287.26 0.48 287.18 0.42 286.97 0.09 286.90 0.02 286.89 0.00 286.89 0.00 286.89 0.00
5 350.69 2.67 335.75 0.60 336.00 0.67 335.42 0.16 335.34 0.25 335.09 0.01 335.11 0.02 335.09 0.01
6 388.21 1.80 371.95 0.33 371.95 0.30 371.60 0.17 371.57 0.22 371.26 0.13 371.51 0.29 371.43 0.13
7 441.56 3.51 402.36 0.43 402.42 0.49 401.58 0.12 401.87 0.24 401.36 0.15 401.57 0.26 401.62 0.14
8 623.16 2.86 564.03 0.41 564.14 0.36 564.03 0.21 563.59 0.24 563.37 0.10 563.68 0.32 563.70 0.18
9 784.68 2.91 643.88 0.45 643.98 0.53 646.65 0.61 643.83 0.41 643.53 0.35 643.77 0.44 644.00 0.34
10 6891.50 28.1 4959.69 3.26 4966.05 3.24 5167.41 3.83 4915.46 2.24 4937.87 4.24 4900.03 1.62 5053.37 3.41
11 6736.08 33.37 4969.92 2.59 4972.09 3.17 5158.72 3.44 4917.96 2.12 4942.99 3.17 4902.33 1.47 5063.75 4.64
12 6673.56 33.21 4956.34 2.56 4961.78 2.53 5143.74 4.11 4902.12 2.05 4925.28 4.11 4888.33 1.26 5042.69 3.63

P- Problem, AvgF- Average Fitnesses, Std - Standard Deviations.

population diversity) in terms of execution time are not 
relevant. For these reasons, we consider that the number 
of evaluations is not suitable to perform comparisons 
between EAs, SI and hybrid algorithms. 

We establish the number of iterations based on 
preliminary observations on the convergence of the 
algorithms.  

All algorithms reach feasible solutions for all test 
instances. GAS, QBEA, HACO, BA, HSS, HPBIL and 
DDE algorithms can reach the best-known solutions for 
the 9 smaller instances (see Table 3 and Table 4). HDE, 
HGA, GAMO, LSGA and HACO can also find the 
best–known solutions, but in a higher execution time.  

Published by Atlantis Press 
      Copyright: the authors 
                   756



 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks 
 

 

Fig. 4. Results – average fitness – instance 10. The values 
have been computed based on 30 different executions for 
each population size {10, 20, ..., 200}. For stop criterion 
we use 1000 iterations.

Table 6. Results – TS, SI and Proposed Algorithms – Average Fitnesses and Standard Deviations. 

P TS HACO BA GAS QBEA 
 AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std 
1 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 
2 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 
3 270.48 0.15 270.32 0.06 270.29 0.04 270.35 0.07 270.38 0.10 
4 287.93 0.75 286.91 0.04 286.89 0.00 286.89 0.00 286.89 0.00 
5 336.00 0.66 335.11 0.03 335.11 0.02 335.13 0.07 335.11 0.02 
6 372.35 0.51 371.55 0.17 371.21 0.10 371.30 0.15 371.33 0.16 
7 403.29 0.76 401.61 0.15 401.45 0.12 401.56 0.16 401.70 0.22 
8 564.34 0.59 563.55 0.16 563.37 0.11 563.50 0.19 563.45 0.14 
9 644.04 0.53 643.67 0.38 643.41 0.25 643.68 0.39 643.63 0.37 
10 5090.97 7.64 4913.02 3.80 4910.30 2.42 4898.83 1.40 4898.58 1.30 
11 5105.23 8.08 4917.80 6.23 4914.10 1.45 4902.07 1.35 4901.83 1.35 
12 5075.97 6.48 4904.65 8.56 4893.37 1.18 4887.29 1.17 4887.31 1.12 

 

Fig. 5. Results – average time – instance 10. The values 
have been computed based on 30 different executions for 
each population size {10, 20, ..., 200}. For stop criterion 
we use 1000 iterations. 

The TS algorithm is the fastest algorithm and can 
find good solutions in a reasonable running time. For 
the harder instances (10-12), GAS and QBEA are the 
best algorithms.  

As it can be seen in table 6, for large instances (10-
12), the standard deviations and the average fitnesses 
for GAS and QBEA are smaller. It means that these 
algorithms are more robust to solve large instances than 
GA, TS, HGA, GAMO, LSGA, HDE, HSS, DDE, 

HPBIL, HACO and BA. For smaller instances, BA and 
HSS are the best algorithms. 
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Fig. 6. Results – average fitness – instance 10. The values 
have been computed based on 30 different executions for 
each population size {10, 20, ..., 200}. For stop criterion 
we use 60 seconds. 

Comparing with GAS, QBEA presents a better 
standard deviation and it is less time consuming.  

The size of the initial population in HSS does not 
have a significant influence on the execution time (see 
Fig. 4). However, when a number of seconds for the 
stop criterion is used, we observe that HSS has a poor 
performance (see Fig. 6). We observe that HSS can find 
good solutions, but it needs more time. In comparison 
with HSS, GAS and QBEA are faster. GA, HGA and 
GAMO are faster and can produce good results if the 
stop criterion is a limited number of seconds (see Fig. 
6). However, using a large amount of time or a large 
number of iterations, we observe an early convergence 
of the algorithms. GA, HGA and GAMO often get 
trapped in local minimums. The LS method used in 
LSGA, HDE, BA, DDE, HSS, HPBIL, QBEA and GAS 
avoids getting trapped in local minimums. 

Using different population sizes we observe that 
QBEA and GAS work better with smaller populations 
(see Fig. 4 and Fig. 5). With a small initial population 
these algorithms can find faster better solutions. With 
large populations the algorithms can reach better results 
but the algorithms slow down (see Fig. 4 and Fig. 5). 
For large instances, the better algorithms in terms of 

execution time/quality of solutions are GAS and QBEA. 
We observe that GAS and QBEA present the best 
characteristics of EAs and SI algorithms - the proposed 
algorithms are faster and can find with a good precision 
good solutions. The algorithms have a good 
performance with small populations. The feedback 
information increases the precision of the algorithms, 
and the LS method avoids the early convergence of the 
algorithms. 

 

6. Conclusions 

In this paper, we proposed a Genetic Algorithm with a 
new swarm mutation operator and a Queen-bee 
Evolutionary Algorithm to optimise the Terminal 
Assignment Problem. These algorithms are a 
combination between Evolutionary Algorithms and 
Swarm Intelligence techniques. The algorithms were 
tested in small, medium and large TAP instances. The 
results were compared with the ones obtained with 
Genetic Algorithm, Tabu Search, Hybrid GA, Local 
Search GA, GA with Multiple Operators, Hybrid 
Differential Evolution, Bees Algorithm, Discrete 
Differential Algorithm, Hybrid Scatter Search 
Algorithm and Hybrid Population Based Incremental 
Learning. The results indicate that the proposed 
algorithms have a better performance for large 
instances. 

This paper indicates that the combination of 
Evolutionary Algorithms with Swarm Intelligence can 
be very effective. The proposed algorithms are easy to 
apply and we suggest their application to other 
assignment problems. Furthermore, as a relatively 
straightforward extension, the algorithms can be 
modified to optimise multi-objective optimisation 
problems.  
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