

Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

Eugénia Moreira Bernardino, Anabela Moreira Bernardino
Research Center for Informatics and Communications, Department of Computer Science, School of Technology and

Management, Polytechnic Institute of Leiria
Leiria, 2411-901, Portugal

E-mail: {eugenia.bernardino;anabela.bernardino}@ipleiria.pt
www.ipleiria.pt

Juan Manuel Sánchez-Pérez, Juan Antonio Gómez-Pulido, Miguel Ángel Vega-Rodríguez
Department of Technologies of Computers and Communications, Polytechnic School, University of Extremadura

Cáceres, 10071, Spain
E-mail: {sanperez;jangomez;mavega}unex.es

www.unex.es

Abstract

In the last decades, nature-inspired algorithms have been widely used to solve complex combinatorial optimisation
problems. Among them, Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms have been
extensively employed as search and optimisation tools in various problem domains. Evolutionary and Swarm
Intelligent algorithms are Artificial Intelligence (AI) techniques, inspired by natural evolution and adaptation. This
paper presents two new nature-inspired algorithms, which use concepts of EAs and SI. The combination of EAs and
SI algorithms can unify the fast speed of EAs to find global solutions and the good precision of SI algorithms to
find good solutions using the feedback information. The proposed algorithms are applied to a complex NP-hard
optimisation problem - the Terminal Assignment Problem (TAP). The objective is to minimise the link cost to form
a network. The proposed algorithms are compared with several EAs and SI algorithms from literature. We show
that the proposed algorithms are suitable for solving very large scaled problems in short computational times.

 Keywords: Evolutionary Algorithms, Swarm Intelligence, Terminal Assignment Problem, Genetic algorithm with a
new swarm mutation operator, Queen-bee Evolutionary Algorithm.

1. Introduction

A great number of engineering models and algorithms
have been used to solve complex optimisation problems.
The organisms and natural systems, which are working
and developing in nature, are interesting and valuable
sources for designing and inventing new systems and
algorithms to be applied to different fields of science
and technology. Among them, EAs and SI algorithms
have been extensively applied to solve complex
optimisation problems. EAs are a subset of evolutionary
computation. They are bio-inspired population-based
meta-heuristic optimisation algorithms [1]. SI
algorithms are also bio-inspired techniques involving
the study of collective behaviour in decentralised

systems [2]. Ant Colony Optimisation (ACO), Particle
Swarm Optimisation (PSO), Bees Algorithm (BA) and
Artificial Bee Colony (ABC) algorithm are some of the
most known SI approaches. These algorithms can be
used in real-world optimisation problems.

In this paper, we propose two bio-inspired
algorithms, which combine characteristics of EAs and
SI algorithms. We propose a Genetic Algorithm with a
new “Swarm” mutation operator (GAS) and a Queen-
Bee Evolutionary Algorithm (QBEA) to optimise a
communication network problem - the Terminal
Assignment Problem (TAP). The algorithms were tested
using small, medium and large TAP instances. The
algorithms are used to minimise the link cost to form a
network by connecting a given set of terminals to a

International Journal of Computational Intelligence Systems, Vol. 5, No. 4 (August, 2012), 745-761

Published by Atlantis Press
 Copyright: the authors
 745

Administrateur
Texte tapé à la machine
Received 6 June 2011; accepted 6 June 2012

EM Bernardino, AM Bernardino, JM Sánchez-Pérez, JÁ Gómez-Pulido, MA Vega-Rodríguez

Fig. 1.TAP Example.

given set of concentrators. TAP is a NP-hard
combinatorial optimisation problem [3-5].

Several heuristics have been used to optimise TAP:
Local Search (LS) methods [6-9], EAs [3-5, 9-18], SI
techniques [19, 20], among others. Note however, that
this paper presents the first attempt (to the authors’
knowledge) to use evolutionary swarm based algorithms
to optimise TAP.

We compare the performance of GAS and QBEA
with: Genetic Algorithm (GA), Tabu Search (TS) [9],
Hybrid GA (HGA) [9], Local Search GA (LSGA) [11],
GA with Multiple Operators (GAMO) [12], Hybrid
Differential Evolution (HDE) [13], BA [20], Hybrid
ACO (HACO) [19], Hybrid Scatter Search (HSS) [16],
Discrete Differential Evolution (DDE) [17] and Hybrid
Population Based Incremental Learning (HPBIL) [18].

The paper is structured as follows: in Section 2 we

describe the TAP; in Section 3 we present the previous
work; in Section 4 we describe the proposed algorithms;
in Section 5 we discuss the computational results
obtained and, in Section 6 we report about the
conclusions.

2. TAP

In large centralised networks, concentrators are used to
increase the network efficiency: a set of terminals is
connected to a concentrator and each concentrator is
connected to the central computer.

In TAP the number of concentrators and their
capacities and locations are known. Each concentrator is
limited in the amount of traffic that it can accommodate.
For that reason, each terminal must be assigned to one
node of the set of concentrators, in such a way that any
concentrator does not overstep its capacity [3-5].

In TAP, a communication network will connect N

terminals, each with Li demand (weight) to M
concentrators, each of Cj capacity. Capacities are given
by positive integers and each Li must be small or equal
to min (Cj … CM). The terminals CTi(x, y) and
concentrators CPj(x, y) sites have fixed and known
locations placed on a Euclidean grid.

Problem Instance (see Fig. 1):

- N Terminals;
- Weights - a vector L, with the capacity

required for each terminal;
- Terminals Location - a vector CT, with the

location (x, y) of each terminal;
- M Concentrators;
- Capacities - a vector C, with the capacity

required for each concentrator;
- Concentrators Location - a vector CP, with

the location (x, y) of each concentrator.

The optimisation goals are to simultaneously

produce feasible solutions, minimise the distances
between concentrators and terminals assigned to them
and to maintain a balanced distribution of terminals
among concentrators.

In this work, the solutions are represented using
integer vectors. We use the terminal-based
representation (see Fig. 1). Each position corresponds to
a terminal. The value carried by position i of the vector
specifies the concentrator to which the terminal i is to be
assigned to.

TAP is a NP-hard optimisation problem [3-5] and to
deal with its difficulty many researchers proposed in the
last decades, several optimisation algorithms to solve
TAP (see Section 3). Nowadays, we observe an
increasing size and consequently an increasing
complexity of communication networks, and for that
reason finding an optimal solution for TAP continues to
be a hard task.

Published by Atlantis Press
 Copyright: the authors
 746

 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

3. Previous Work

Many problems in combinatorial optimisation are NP-
hard. To solve this type of problems are used
approximate methods, because classical heuristics have
failed to be efficient. The existing, successful methods
in approximate optimisation fall into two classes: Local
Search (LS) and population-based search.

There are in literature different approximation
algorithms, which use different concepts, derived from:
classical heuristics, AI, biological evolution, neural
systems, SI and statistical mechanics. These approaches
include Simulated Annealing (SA), Tabu Search (TS),
Greedy Randomised Adaptive Search Procedure
(GRASP), Evolutionary Algorithms (EAs), SI
algorithms, their hybrids and others.

Iterated Local Search (ILS) [21] is a simple and
powerful stochastic LS method that creates a sequence
of solutions generated by an embedded heuristic. ILS is
simple, easy to implement, robust, and highly effective.
The essential idea of ILS lies in focusing the search on a
smaller subspace, defined by locally optimal solutions
for a given optimisation engine.

GRASP [22] is a meta-heuristic belonging to the
class of LS techniques. It typically consists of iterations
made up from successive constructions of a greedy
randomised solution and subsequent iterative
improvements of it through LS.

SA [23-25] exploits an analogy between the metal
annealing process and the search for a minimum value
in a more general system. In each run, it attempts to
search the entire region of interest for the global
minimum rather than performing multiple downhill
optimisation runs, in which the selection of the various
starting points is automated.

TS [26] is a meta-heuristic algorithm that belongs to
the class of LS techniques. TS allows the search of
solutions that decrease the objective function value only
in those cases where these solutions are not forbidden
[27].

Some interesting LS techniques to solve TAP can be
found in literature. Atiqullah and Rao [28] proposed SA
to find the optimal design of small-scale networks.
Pierre et al. [29] proposed SA to find solutions for
packet switched networks. Zhang and Ke [30] studied
the capability of SA Arithmetic to solve terminal
allocation problems in communication networks. Glover
et al. [31], and Koh and Lee [32] adopted TS to find an
appropriate design of communication networks.

Kapantow [6] proposed SA to solve concentrator
location and terminal assignment problems. Xu et al. [7]
proposed a TS algorithm to solve TAP and compared
the results with the ones found with GA and Greedy
algorithm. Bernardino [8] proposed ILS and GRASP to
find solutions to TAP. Bernardino et al. [9] proposed a
TS algorithm and compared the results with the ones
found with Hybrid GA.

Low [33] proposed an algorithm to solve Minimum
Cost Min-Max Load Terminal Assignment Problem
(MCMLTAP) proving that the problem is optimally
solvable in polynomial time using MCMLTAP.

EAs use mechanisms inspired by biological
evolution [1]. EAs have been successfully used to solve
complex combinatorial optimisation problems.

GAs are EAs inspired in the genetic inheritance and
the Darwinian strife for survival [34]. Metaphors as
chromosomes and population stand for solutions and
solution set, respectively. Mechanisms as recombination
and mutation give rise to new offspring by manipulating
the current population of solutions. Following a
standard Darwinian approach, the selection extracts the
most promising individuals from the current population
[35].

Differential Evolution (DE) [36] is an EA. DE uses
the mutation operation as a search mechanism and the
selection operation to direct the search toward
prospective regions in the search space [37]. Using the
members of existing population to build trial vectors,
the recombination operator efficiently shuffles
information about successful combinations, enabling the
search for a better solution space [38, 39].

SS is an useful methodoly to solve combinatorial
optimisation problems. It was first introduced in 1977
by Fred Glover [40] and extensive contributions have
been made by Manuel Laguna [41]. The SS operates on
a small set of solutions and makes only limited use of
randomisation as a proxy for diversification when
searching for an optimal solution.

DDE was proposed by Pan et al. [42] to solve the
permutation flowshop scheduling problem. DDE first
mutates a target population to produce a mutant
population [42]. Then the target population is
recombined with the mutant population in order to
generate a trial population. Finally, a selection operator
is applied to both target and trial populations to
determine who will survive for the next generation.

Published by Atlantis Press
 Copyright: the authors
 747

EM Bernardino, AM Bernardino, JM Sánchez-Pérez, JÁ Gómez-Pulido, MA Vega-Rodríguez

 PBIL algorithm is an EA proposed by Baluja [43].
It uses a stochastic guide search process to obtain new
solutions based on the directional information from the
previous best solution. PBIL maintains statistics about
the search space (learning probabilities) and uses them
to direct its exploration [43].

Some interesting evolutionary approaches for TAP
can be found in literature. Abuali et al. [10] proposed a
Greedy algorithm and a Hybrid Greedy-GA to solve
TAP. Khuri and Chui [3] proposed a GA with a penalty
function as alternative method to solve TAP and
compared the results with the Greedy algorithm.
Salcedo-Sanz and Yao [4] proposed two different GAs,
using Hopfield Neural Network and compare the results
with the GA [3]. Salcedo-Sanz et al. [44] proposed to
solve TAP with Groups Encoding. Yao et al. [5]
proposed Hybrid GAs and compared the concentrator
and terminal-based representations. Bernardino et al. [9]
proposed a Hybrid GA (HGA) with a repair procedure
and compared the HGA with the TS. Bernardino et al.
[12] proposed a GA with multiple operators (GAMO)
for crossover and mutation and compared it with the
traditional methods. Bernardino et al. [11] proposed a
Local Search GA (LSGA) and compared the LSGA
with TS, HGA and GAMO. Julstrom [15] proposed
three permutation-coded GAs and compared the results
between them.

Bernardino et al. [13, 14] proposed HDE and
MHDE algorithms to solve TAP and compared these
algorithms with the traditional methods. Bernardino et
al. [16] proposed an application of a SS algorithm
combined with a TS algorithm to solve TAP and
compared the results with LSGA, TS, HDE and HACO.
Embedded in a DDE algorithm, Bernardino et al. [17]
used a LS to improve the TAP solutions quality. The
authors compare the performance of DDE with LSGA,
TS and MHDE.

A SI algorithm is initialised with a population (i.e.,
potential solutions), whose individuals are modified
over many iteration steps by imitating the social
behaviour of insects or animals, in order to find the
optimal solution in the problem solution space. A
potential solution “flies” through the search space by
modifying itself according to its past experience and its
relationship with other individuals in the population and
the environment [2].

ACO is a SI algorithm. It is based on the indirect
communication of a colony of simple agents, called

(artificial) ants, mediated by (artificial) pheromone trails
[45-49].

BA is also a population-based optimisation method
and it has been successfully applied to different
optimisation problems. BA is inspired by the food
foraging behaviour of honey bees [50] and uses a
neighbourhood search method and a LS method to be
able to locate the global minimum.

Some interesting SI techniques to solve TAP can be
found in literature. Bernardino et al. [19] proposed a
Hybrid ACO (HACO) algorithm to solve TAP and
compared the results with the traditional methods.
Bernardino et al. [20] proposed a BA to solve TAP and
compared the results with LSGA, TS, HDE and HACO.

In this paper, we compare the proposed algorithms
with the algorithms proposed by Bernardino et al. [8, 9,
11-13, 16-20], because they: (1) use the same 9 small
test instances; (2) adopt the same fitness function; (3)
implement the algorithms using the same language
(C++), and; (4) adopt the same representation (terminal-
based).

4. Proposed Algorithms

In order to optimise TAP, we implement two EAs which
use crossover, mutation and selection operators and we
hybridise them with concepts of SI.

4.1. GAS

GA involves a search from a “population” of individuals
(potential solutions), in order to find the optimal
solution in the problem solution space [35]. Each
generation of a GA involves a competitive selection that
weeds out poor solutions. Selection is a genetic operator
that chooses a solution from the current generation’s
population for inclusion in the next generation’s
population. Before making it into the next generation’s
population, selected solutions may undergo crossover
and/or mutation (depending on the probability of
crossover and mutation) in which case the offsprings are
actually the ones that make it into the next generation’s
population [35].

The selected solutions are “recombined” with other
solutions by swapping parts of a solution with another.
Solutions are also “mutated” by making small changes.
Recombination and mutation are used to generate new
solutions that are biased towards regions of the space
for which good solutions have already been seen.

Published by Atlantis Press
 Copyright: the authors
 748

 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

The GA consists in the following steps:

Generate initial population
Evaluation
WHILE TerminationCriterion()
 Selection
 Crossover
 Mutation
 Evaluation

In [11], Bernardino et al. proposed a Local Search

GA (LSGA). It combines global and LS by using a GA
to perform exploration, while the LS method performs
exploitation.

Combining global and local search is a strategy used
by many successful global optimisation approaches, and
this type of algorithms has in fact been recognised as a
powerful algorithmic paradigm for evolutionary
computing [11].

The LSGA consists in the following steps:

Generate initial population
Evaluation
WHILE TerminationCriterion()
 Selection
 Crossover
 Mutation
 FOR each solution in population
 Perform local search to get a new solution
 Evaluation

We adopted the model proposed by Bernardino et al.

[11]. The basic difference is that we created a new
mutation operator based on the ACO algorithm.

ACO algorithm was proposed by Dorigo et al. [45,
46], and Dorigo [47]. In real life, ants indirectly
communicate among them by depositing pheromone
trails on the ground, influencing the decision processes
of other ants. This simple communication form among
individual ants causes complex behaviours and
capabilities on the colony as a whole.

The pheromone trails in ACO serve as distributed
numerical information used by the ants in order to
probabilistically built solutions to the problem to be
solved and which they adapt during the algorithm
execution to reflect their search experience.

The standard ACO algorithm uses pheromone trail
information to build complete solutions. Gambardella et
al. [48] proposed a Hybrid Ant Colony System coupled
with a LS (HAS_QAP), applied to the Quadratic
Assignment Problem (QAP). HAS-QAP uses
pheromone trail information to perform modifications
on QAP solutions.

In GAS, the pheromone trail information is also
used to perform mutations on TAP solutions.

For solving the TAP, the set of pheromone trails is
held in a matrix T of size N*M, where each Tij measures
the desirability of assigning the terminal i to the
concentrator j.

Only the best solution found during the search
process contributes to update the pheromone trails. This
makes the search process more aggressive and requires
less time to reach good solutions [48].

The GAS consists in the following steps:

Generate initial population
Evaluation
Initialise pheromone trails
WHILE TerminationCriterion()
 Selection
 Crossover
 Mutation (using pheromone trail matrix or a
 “neighbourhood search” algorithm)
 FOR each solution in population
 Perform local search to get a new solution
 Evaluation
 Pheromone trail updating

The next subsections describe each step of the

algorithm in detail.

Initialisation of Parameters

The following parameters must be defined by the user:
(1) mi – number of iterations; (2) ni – number of initial
solutions; (3) cr – crossover operator; (4) pm – mutation
probability; (5) pcr – crossover probability; (6) nm –
number of modifications (used for mutation); (7) Q –
value for booting the pheromone trails; (8) q –
probability of exploration/exploitation; (9) x1 –
pheromone evaporation rate; (10) x2 – pheromone
influence rate, and; (11) ms – number of seconds.

Generation of Solutions

The solutions are created using a deterministic form.
The deterministic form is based on the Greedy
algorithm proposed by Abuali et al. [10]. The Greedy
algorithm randomly assigns terminals to the closest
feasible concentrators.

Evaluation of Solutions

To evaluate the quality of a potential solution in relation
with other potential solutions we use a fitness function.
This function returns a number (fitness value) that
reflects how optimal the solution is.

Published by Atlantis Press
 Copyright: the authors
 749

EM Bernardino, AM Bernardino, JM Sánchez-Pérez, JÁ Gómez-Pulido, MA Vega-Rodríguez

Fig. 2. Reciprocal Translocation.

Fig. 3. Exchange Positions.

A simple and feasible method for optimising TAP is
to allocate each terminal to one concentrator without
exceeding the capacity of any concentrator. We use a
vector of integers:

)(),...,3(),2(),1(NXXXXX  (1)

Where X(t)=c means that terminal t is allocated to
concentrator c, and 1≤X(t)≤M; 1≤t≤N.

In other words, whole terminals must be assigned to
one concentrator, and

   
1

))(()(
0




N

t

ctXiftLck (2)

 )()(;1; 1
0

cCckMccallforiffeasible  (3)

It means that the capacity of one concentrator must
not be exceeded by the capacity requirements of the
terminals assigned to that concentrator.

The fitness function is the same used in [8, 9, 11-13,
16-20], and it is based on:
(i) the total number of terminals connected to each

concentrator (the purpose is to guarantee a balanced
distribution of terminals among concentrators);

 













































1

10

1*201

))((1
0

M

N
roundcsumif

csum
M

N
roundabs

c

N

t

ctXif
c balsum

 (4)

X(t)- concentrator assigned to terminal t

(ii) the distances between concentrators and terminals
assigned to them (the goal is to minimise the
distances);

22
)(,)].[)].([()].[)].([(ytCTytXCPxtCTxtXCPdist tXt  (5)

(iii) the penalisation if a solution is not feasible (the
purpose is to penalise the solutions when the total
capacity of one or more concentrators is
overloaded).

 )1(0
500

 feasibleifonPenalisati (6)

The purpose is to minimise the fitness function (7).

onPenalisatidistwbalwfitness
N

t
tXt

M

c
c  

 1
)(,

1

*2*1 (7)

This fitness function (7) encourages solutions with a

balanced distribution of terminals among concentrators
(4). The Euclidean distances between terminals and
concentrator are also considered and must be as small as
possible (5). The parameters w1 and w2 (w1+w2=1) are

used to control the importance of each term (balance/
distances) in the fitness function. In this paper,
parameters w1 and w2 are set to 0.9 and 0.1,
respectively, which is the same used in [4, 8, 9, 11-13,
16-20]. The fitness function penalises also infeasible
solutions (6).

Pheromone trail initialisation

All pheromone trails Tij are set to the same value
T0=1/(Q*f(S*)) [48]. S* is the best solution found so far
and Q a parameter.

Selection

For selection we implement the Tournament operator.
This operator randomly selects a subset of individuals
(size = 4). The best individual in this subset is then
chosen as the selected individual.

Crossover

For recombination we implement seven crossover
operators: one point, 2-points, 4-points, uniform,
“reciprocal translocation”, “exchange positions” and
“exchange terminals of two concentrators”.

One point, 2-points, 4-points and uniform are very
well-known and widely used in practice.

In “reciprocal translocation”, randomly located and
arbitrary-length segments are exchanged between
parents, as it is illustrated in Fig. 2.

In “exchange positions”, one segment is randomly
selected for each parent and the segments are exchanged
between parents, as it is illustrated in Fig. 3.

Mutation

We use a mutation operator, which can perform two
types of mutation: (1) “neighbourhood search” mutation
and (2) mutation using pheromone trail matrix.

Published by Atlantis Press
 Copyright: the authors
 750

 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

The mutation operator can perform nm
modifications and it is applied with a probability pm. A
modification consists on assigning a terminal t to a
concentrator c.

First, a random number k is generated (0 or 1). If k is
equal to 0, the mutation is done using a “neighbourhood
search” algorithm.

The “neighbourhood search” mutation consists in
the following steps:

FOR n=1 TO nm DO
 t = random(N)
 closestC=1
 FOR c=1 TO M DO
 IF distance(t, c) < distance(t, closestC)
 closestC=c
 IF capacityFree(closestC)>=L(t) and
 mantainBalanced(closestC)
 Assign terminal t to concentrator closestC
 ELSE
 cond=true
 REPEAT
 t1 = random(N)
 t2 = random(N)
 c1 = solution (t1)
 c2 = solution (t2)
 IF (capacityFree(c2)-L(t2)>=L(t1) and
 capacityFree(c1)–L(t1)>=L(t2)) and
 (distance(t2,c1)<=distance(t1,c1) or
 distance(t1,c2)<=distance(t2,c2))
 Assign t1 to c2 and t2 to c1
 cond = false
 WHILE cond=true

In the “neighbourhood search” mutation, a mutant
individual is obtained by performing multiple moves
which length is specified as nm (number of
modifications).

First, the algorithm chooses a random terminal t and
searches the closest concentrator. If the concentrator has
enough capacity and maintains a balanced distribution
of terminals, then the terminal t is assigned to the
closest concentrator, closestC. Otherwise, the algorithm
generates two random terminals, t1 and t2. The
algorithm verifies the two concentrators, c1 and c2,
assigned to them. If the concentrators have enough
capacities and at least one of the concentrators is closest
to the terminal that will be assigned, then the algorithm
exchanges the terminals, t1 and t2, between the two
concentrators, c1 and c2. The algorithm repeats this
process until terminals, t1 and t2, are interchanged
between concentrators, c1 and c2.

 If k is equal to 1, the mutation is done using the
pheromone trail matrix. A mutant individual is also
obtained by performing multiple moves which length is

specified as nm. First, a terminal t is randomly chosen
(between 1 and N) and after, a concentrator c is chosen.
A random number x is generated between 0 and 1. If x is
smaller than q (parameter), the best concentrator c is
selected in such a way that Ttc is maximum. This policy
consists in exploiting the pheromone trail. If x is equal
or higher than q, the concentrator c is chosen with a
probability proportional to the values contained in the
pheromone trail. This consists in exploring the solution
space.

Local Search Algorithm

After recombination and mutation, the solutions go
through the improvement phase. A LS algorithm is
applied to each solution in the new population to reduce
its cost, if possible. We adopt the improved LS
algorithm proposed by Bernardino et al. [17]. The LS
algorithm applies a partial neighbourhood search. We
generate a neighbour by swapping two terminals
between two concentrators - c1 and c2 (randomly
chosen). The algorithm searches for a better solution in
the initial set of neighbours. If the best neighbour
improves the actual solution, then LS replaces the
current solution by the best neighbour. Otherwise, the
algorithm creates another set of neighbours. In this case,
one neighbour results on assigning one terminal of c1 to
c2, or c2 to c1.

The neighbourhood size is N(c1)*N(c2), or
N(c1)*N(c2) + N(c1)+N(c2).

The LS algorithm consists in the following steps:

c1 = random (number of concentrators)
c2 = random (number of concentrators)
NN = neighbours of ACTUAL-SOL (one neighbour
 results of interchange one terminal of c1
 or c2 with one terminal of c2 or c1)
SOLUTION = FindBest (NN)
IF fitness (ACTUAL-SOL) < fitness(SOLUTION)
 NN = neighbours of ACTUAL-SOL (one neighbour

results of assign one terminal of c1 to
c2 or c2 to c1)

 SOLUTION = FindBest (NN)
 IF fitness (SOLUTION) < fitness(ACTUAL-SOL)

ACTUAL-SOL = SOLUTION
ELSE

ACTUAL-SOL = SOLUTION

Pheromone trail updating

To speed-up the convergence, the pheromone trails are
updated by taking into account only the best solution
found so far [19, 48]. The pheromone trails are updated
by setting:

Tij=(1-x1)*Tij, where 0<x1<1 is a parameter that
controls the evaporation of the pheromone trail.

Published by Atlantis Press
 Copyright: the authors
 751

EM Bernardino, AM Bernardino, JM Sánchez-Pérez, JÁ Gómez-Pulido, MA Vega-Rodríguez

TiSi* = TiSi* + x2/fitness(S*), where 0<x2<1 is a
parameter that controls the influence of the best solution
S* in the pheromone trail.

Termination criterion

The algorithm stops when a maximum number of
iterations (mi) or a maximum number of seconds (ms) is
reached.

4.2. QBEA

Currently, researchers are studying the behaviour of
social insects in an effort to use the SI concepts to create
algorithms with the ability to explore the solution search
space of the problem in a way similar to the behaviour
of social insects [51, 52, 53]. Some algorithms inspired
by the behaviour of insects can be called meta-heuristic
algorithms, because they provide a high-level
framework, which can be adapted to solve optimisation,
search, and related problems, as opposed to providing a
stringent set of guidelines to solve a particular problem.

A review of literature on algorithms inspired by the
behaviour of bees [51] suggests that the topic is
evolving and that there is no consensus on a single
descriptive title for algorithms based on bees’
behaviour. In literature, it is possible to find several bee
inspired algorithms that use different algorithm models:
Bee System, BeeHive, Virtual Bee algorithm, Bee
Swarm Optimisation, Bee Colony Optimisation,
Artificial Bee Colony, Bees algorithm and Honey Bees
Mating Optimisation algorithm.

Honey-bees live in hives around the world in well
organised colonies. These colonies are characterised by
the division of labour, where specific bees perform
specific tasks [54, 55].

In this paper we consider the Honey-Bees marriage
process and the GA model as an inspiration for creating
a new bio-inspired algorithm.

QBEA can be considered as a typical swarm-based
approach to optimisation, in which the search algorithm
is inspired by the process of marriage in real honey bees
and it is also inspired by the process of selection and
mutation used in GAs. In a real honey bee, the queen
crossbreeds with some other bees of the population
(selected as fathers) to create new bees for the next
generation.

In QBEA, the queen (the best solution in the
population) is recombined with some individuals of the
population to create new individuals for the next

generations. The individuals (fathers) are selected using
a selection operator.

QBEA uses two different mutation operators to
perform mutations on TAP solutions. Depending on a
random number (0 or 1), the algorithm can choose the
first or second mutation operator.

The first mutation operator only affects a single
gene of the individual – simple mutation operator.

The second can affect several genes of the
individual – multiple mutation operator.

 The QBEA consists in the following steps:

Generate initial population
Evaluation
Select queen
WHILE TerminationCriterion()
 Selection (selects the individuals that will

 be recombined with the queen)
 Crossover
 Mutation:
 For each solution in population
 If random(0 or 1) = 0
 Apply simple mutation operator
 Else
 Apply multiple mutation operator
 FOR each solution in population
 Perform local search to get a new solution
 Evaluation
 Update queen

The next subsections describe each step of the

algorithm in detail.

Initialisation of Parameters

The following parameters, must be defined by the user:
(1) mi – number of iterations; (2) ni – number of initial
solutions; (3) mut – simple mutation operator; (4) cr –
crossover operator; (5) pm1 – mutation probability; (6)
pm2 – mutation probability; (7) pcr – crossover
probability; (8) nm – number of modifications (used in
the second mutation operator), and; (9) ms – number of
seconds..

Generation of Solutions

The solutions are created using the deterministic form
proposed by Abuali et al. [10].

Evaluation of Solutions

To evaluate how good a potential solution is in relation
to other potential solutions, we use the fitness function
(7).

Published by Atlantis Press
 Copyright: the authors
 752

 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

Selection

To create a new population of individuals, the queen is
recombined with ni/2 individuals from the previous
population.

We use the Tournament operator to select the
individuals that will be recombined with the queen. For
each individual that will be selected, this selection
operator randomly selects a subset of individuals (size =
4). The best individual in this subset is then chosen as
the selected individual.

Crossover

For recombination we implement the same seven
crossover operators used in GAS: one point, 2-points, 4-
points, uniform, “reciprocal translocation”, “exchange
positions” and “exchange terminals of two
concentrators”.

Mutation

A random number k is generated (0 or 1). If k is equal to
0, the simple mutation operator is applied with a
probability pm1. A random number pr, between 0 and 1,
is generated. If pr is less than pm1, then the simple
mutation operator is applied to generate a perturbed
individual.

We implemented and studied three simple mutation
operators: “change order”, “change concentrator” and
“change closest concentrator”. The mutation operator is
chosen by the user. In “change order”, two terminals are
randomly selected and exchanged. In “change
concentrator”, a terminal is randomly selected and its
value (concentrator) is replaced by a new random value
(concentrator). In “change closest concentrator”, a
terminal is randomly selected and its value
(concentrator) is replaced by a new value (closest
concentrator).

If k is equal to 1, the multiple mutation operator is
applied with a probability pm2. A uniform random
number pr is generated between 0 and 1. If pr is less
than pm2, then the multiple mutation operator is applied
to generate the mutant individual. The general
mechanism of the multiple mutation operator is equal to
the mechanism of the neighbourhood search method
used in GAS (“neighbourhood search” mutation – see
Section 4.1 - Mutation).

Local Search Algorithm

After recombination and mutation, the solutions go
through the improvement phase. We use the same LS
algorithm used in GAS to improve the new solutions’
quality.

Termination criterion

The algorithm stops when a maximum number of
iterations (mi) or a maximum number of seconds (ms) is
reached.

5. Results

In order to test the performance of our approaches, we
use a collection of TAP instances of different sizes. We
choose 9 small instances from literature [20] and 3
extreme large instances with 1000 terminals and 300
concentrators.

We compare our results with those found previously
using GA, TS, HGA, LSGA, GAMO, HDE, BA,
HACO, DDE, HSS and HPBIL.

The suggestions from literature helped us to guide
our choice of parameter values for TS [9], HGA [9],
GAMO [12], HDE [13], LSGA [11], HACO [19], BA
[20], HSS [16], DDE [17] and HPBIL [18]. We use the
same values proposed by Bernardino et al. [8, 9, 11-13,
16-20] (see Tables 1 and 2).

We performed different tests using different
instances of different sizes in order to establish the best
parameter values for GAS and QBEA. We select the
values presented in Table 1 to produce the results for
GAS and QBEA.

Table 3 and Table 4 present the best-obtained results
with classical GA, TS, HGA, LSGA, GAMO, HDE,
BA, HACO, DDE, HSS and HPBIL. In both tables, the
first columns represent the number of the problem (P)
and the fitness of the Best-Known (BK) solution and the
remaining columns show the results (BK, Ts – Run
Time) obtained with the mentioned algorithms.

The algorithms have been executed using a
processor Intel Core Duo T2300.

The initial solutions were created using the Greedy
algorithm. Ts (Run Time) corresponds to the execution
time that each algorithm needs to obtain the best-known
feasible solution.

The values presented in tables 3 and 4 have been
computed based on 100 different executions for each
test instance.

Published by Atlantis Press
 Copyright: the authors
 753

EM Bernardino, AM Bernardino, JM Sánchez-Pérez, JÁ Gómez-Pulido, MA Vega-Rodríguez

Table 1. Parameter values.

HACO Number of ants

Number of iterations for diversification

Q

Probability exploitation/exploration

Pheromone influence

Pheromone evaporation

Number of modifications

30

[N*2 ... N*4]

100

0.9

{0.7, 0.8}

0.8

[3 ... 15]

BA Number of scout bees

Number of selected sites

Number of best sites

Number of bees sent to selected sites

Number of bees sent to best sites

Number of modifications

10

10

5

10

30

6

GAS Number of individuals

Crossover operator

Mutation probability

Crossover probability

Number of modifications (used for mutation)

Q

Probability exploitation/exploration

Pheromone influence

Pheromone evaporation

40 (instances 10-12), 100 (instances 1-9)

one-point

>=0.7

<=0.4

<4

100

[0.5 … 0.8]

0.8

0.8

QBEA Number of individuals

Simple mutation operator

Crossover operator

Simple mutation probability

Multiple mutation probability

Crossover probability

Number of modifications (used for mutation)

40 (instances 10-12), 100 (instances 1-9)

“change concentrator”

one-point

[0.4 … 0.8]

>=0.7

<=0.4

<4

Tables 5 and 6 present the average fitnesses and
standard deviations. The first column represents the
number of the problem (P) and the remaining columns
show the results obtained (AvgF – Average Fitness, Std
– Standard Deviation).

To compute the results in tables 5 and 6 we used
300 iterations/generations for instances 1-4, 500 for the
instance 5, 1000 for the instance 6, 1500 for the instance
7 and 2000 for instances 8-9. For instances 10, 11 and
12 we stop the executions when a maximum number of
10000 iterations/generations is reached or when a
maximum number of 5000 seconds is reached.

The values presented in tables 5 and 6 have been
computed based on 50 different executions (50 best
executions out of 100 executions) for each test instance.

In a first stage, we use a different stop condition for
the algorithms. We use a predefined number of
evaluations. We observe that EAs present a very poor
performance (higher average fitnesses and standard
deviations) if we compare them in terms of number of
evaluations. This happens because the tested EAs need
more population diversity. For this reason, in each
iteration, the EAs perform a higher number of
evaluations in comparison with SI algorithms. We
observe that SI algorithms can obtain very good results
using small populations (see Fig. 4). The improvements
using large populations are not significant. Large
populations are more time consuming and do not
provide significant better results using the SI algorithms
(see Fig. 4 and Fig. 5).

Published by Atlantis Press
 Copyright: the authors
 754

 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

Table 2. Parameter values.

TS Number of elements in the tabu list [5 … 20]

GA Number of individuals

Crossover probability

Selection operator

Mutation probability

Crossover operator

Mutation operator

200

{0.3, 0.4}

“tournament”

[0.6 … 0.8]

one-point

“change order”

HGA Number of individuals

Crossover probability

Selection operator

Mutation probability

Crossover operator

Mutation operator

200

{0.3, 0.4}

“tournament”

[0.6 … 0.8]

“exchange terminals of two concentrators”, one-point

“multiple”

GAMO Number of individuals

Crossover probability

Selection operator

Mutation probability

Crossover operator

Mutation operator

200

{0.3, 0.4}

“tournament”

[0.6 … 0.8]

“exchange terminals of two concentrators”, one-point

“multiple”

LSGA Number of individuals

Crossover probability

Selection operator

Mutation probability

Crossover operator

Mutation operator

200

{0.3, 0.4}

“tournament”

[0.6 … 0.8]

“exchange terminals of two concentrators”, one-point

“multiple”

HDE Number of individuals

Crossover probability

Factor F

Strategy

200

{0.3, 0.4}

{0.9, 1.6}

“Best1Exp”

HSS Number of individuals

Number of best solutions in the reference set

Number of most different feasible solutions in the reference set

Number of iterations for diversification

100

8

8

[N/15 … N/2]

DDE Number of individuals

Crossover probability

Perturbation probability

Number of perturbations

100

[0.1 … 0.3]

{0.8, 0.9}

[N/10...N/5]

HPBIL Number of individuals

Mutation probability

Mutation Shift

Number of iterations for diversification

Probability exploitation/exploration

30

0.3

0.1

N/20

0.6

When using the same number of individuals in the
population, we observe that SI algorithms are more time
consuming, because they use probability

vectors/matrices (see Fig. 5). Since SI algorithms can
produce good results with smaller populations, the
differences between SI and EAs (which need more

Published by Atlantis Press
 Copyright: the authors
 755

EM Bernardino, AM Bernardino, JM Sánchez-Pérez, JÁ Gómez-Pulido, MA Vega-Rodríguez

Table 3. Results – Evolutionary Algorithms.

P BK GA HGA GAMO HDE LSGA HSS DDE HPBIL
 BK Ts BK Ts BK Ts BK Ts BK Ts BK Ts BK Ts BK Ts
1 65.63 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s
2 134.65 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s
3 270.26 - - Yes 1s Yes 1s Yes <5s Yes <1s Yes <1s Yes <1s Yes <1s
4 286.89 Yes <1s Yes 1s Yes 1s Yes <5s Yes <1s Yes <1s Yes <1s Yes <1s
5 335.09 Yes <1s Yes 1s Yes 1s Yes <5s Yes <1s Yes <1s Yes <1s Yes <1s
6 371.12 - - Yes 1s Yes 1s Yes 58s Yes 1s Yes 1s Yes <1s Yes <1s
7 401.21 - - Yes 2s Yes 2s Yes 118s Yes 1s Yes 1s Yes <1s Yes <1s
8 563.19 - - Yes 8s Yes 8s Yes 274s Yes 7s Yes 4s Yes 2s Yes 3s
9 642.83 - - Yes 8s Yes 8s Yes 456s Yes 7s Yes 6s Yes 3s Yes 5s
10 4892.09 - - - - - - - - - - - - - - - -
11 4897.28 - - - - - - - - - - - - - - - -
12 4883.67 - - - - - - - - - - - - - - - -

P- Problem, BK- Best Known Solution Fitness, Ts - Execution time.

Table 4. Results – TS, SI and Proposed Algorithms.

P BK TS HACO BA GAS QBEA
 BK Ts BK Ts BK Ts BK Ts BK Ts
1 65.63 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s
2 134.65 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s
3 270.26 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s
4 286.89 Yes <1s Yes <1s Yes <1s Yes <1s Yes <1s
5 335.09 Yes <1s Yes 2s Yes <1s Yes <1s Yes <1s
6 371.12 Yes <1s Yes 3s Yes <1s Yes <1s Yes <1s
7 401.21 - - Yes 4s Yes <1s Yes <1s Yes <1s
8 563.19 - - Yes 14s Yes 3s Yes 1s Yes 1s
9 642.83 - - Yes 25s Yes 4s Yes 2s Yes 2s
10 4892.09 - - - - - - Yes 300s Yes 250s
11 4897.28 - - - - - - Yes 300s Yes 250s
12 4883.67 - - - - - - Yes 300s Yes 250s

Table 5. Results – Evolutionary Algorithms – Average Fitnesses and Standard Deviations.

P GA HGA GAMO HDE LSGA HSS DDE HPBIL
 AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std
1 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00
2 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00
3 283.13 5.62 270.52 0.24 270.52 0.23 270.35 0.06 270.32 0.06 270.26 0.00 270.40 0.09 270.28 0.03
4 295.08 1.42 287.26 0.48 287.18 0.42 286.97 0.09 286.90 0.02 286.89 0.00 286.89 0.00 286.89 0.00
5 350.69 2.67 335.75 0.60 336.00 0.67 335.42 0.16 335.34 0.25 335.09 0.01 335.11 0.02 335.09 0.01
6 388.21 1.80 371.95 0.33 371.95 0.30 371.60 0.17 371.57 0.22 371.26 0.13 371.51 0.29 371.43 0.13
7 441.56 3.51 402.36 0.43 402.42 0.49 401.58 0.12 401.87 0.24 401.36 0.15 401.57 0.26 401.62 0.14
8 623.16 2.86 564.03 0.41 564.14 0.36 564.03 0.21 563.59 0.24 563.37 0.10 563.68 0.32 563.70 0.18
9 784.68 2.91 643.88 0.45 643.98 0.53 646.65 0.61 643.83 0.41 643.53 0.35 643.77 0.44 644.00 0.34
10 6891.50 28.1 4959.69 3.26 4966.05 3.24 5167.41 3.83 4915.46 2.24 4937.87 4.24 4900.03 1.62 5053.37 3.41
11 6736.08 33.37 4969.92 2.59 4972.09 3.17 5158.72 3.44 4917.96 2.12 4942.99 3.17 4902.33 1.47 5063.75 4.64
12 6673.56 33.21 4956.34 2.56 4961.78 2.53 5143.74 4.11 4902.12 2.05 4925.28 4.11 4888.33 1.26 5042.69 3.63

P- Problem, AvgF- Average Fitnesses, Std - Standard Deviations.

population diversity) in terms of execution time are not
relevant. For these reasons, we consider that the number
of evaluations is not suitable to perform comparisons
between EAs, SI and hybrid algorithms.

We establish the number of iterations based on
preliminary observations on the convergence of the
algorithms.

All algorithms reach feasible solutions for all test
instances. GAS, QBEA, HACO, BA, HSS, HPBIL and
DDE algorithms can reach the best-known solutions for
the 9 smaller instances (see Table 3 and Table 4). HDE,
HGA, GAMO, LSGA and HACO can also find the
best–known solutions, but in a higher execution time.

Published by Atlantis Press
 Copyright: the authors
 756

 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

Fig. 4. Results – average fitness – instance 10. The values
have been computed based on 30 different executions for
each population size {10, 20, ..., 200}. For stop criterion
we use 1000 iterations.

Table 6. Results – TS, SI and Proposed Algorithms – Average Fitnesses and Standard Deviations.

P TS HACO BA GAS QBEA
 AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std
1 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00
2 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00
3 270.48 0.15 270.32 0.06 270.29 0.04 270.35 0.07 270.38 0.10
4 287.93 0.75 286.91 0.04 286.89 0.00 286.89 0.00 286.89 0.00
5 336.00 0.66 335.11 0.03 335.11 0.02 335.13 0.07 335.11 0.02
6 372.35 0.51 371.55 0.17 371.21 0.10 371.30 0.15 371.33 0.16
7 403.29 0.76 401.61 0.15 401.45 0.12 401.56 0.16 401.70 0.22
8 564.34 0.59 563.55 0.16 563.37 0.11 563.50 0.19 563.45 0.14
9 644.04 0.53 643.67 0.38 643.41 0.25 643.68 0.39 643.63 0.37
10 5090.97 7.64 4913.02 3.80 4910.30 2.42 4898.83 1.40 4898.58 1.30
11 5105.23 8.08 4917.80 6.23 4914.10 1.45 4902.07 1.35 4901.83 1.35
12 5075.97 6.48 4904.65 8.56 4893.37 1.18 4887.29 1.17 4887.31 1.12

Fig. 5. Results – average time – instance 10. The values
have been computed based on 30 different executions for
each population size {10, 20, ..., 200}. For stop criterion
we use 1000 iterations.

The TS algorithm is the fastest algorithm and can
find good solutions in a reasonable running time. For
the harder instances (10-12), GAS and QBEA are the
best algorithms.

As it can be seen in table 6, for large instances (10-
12), the standard deviations and the average fitnesses
for GAS and QBEA are smaller. It means that these
algorithms are more robust to solve large instances than
GA, TS, HGA, GAMO, LSGA, HDE, HSS, DDE,

HPBIL, HACO and BA. For smaller instances, BA and
HSS are the best algorithms.

Published by Atlantis Press
 Copyright: the authors
 757

EM Bernardino, AM Bernardino, JM Sánchez-Pérez, JÁ Gómez-Pulido, MA Vega-Rodríguez

Fig. 6. Results – average fitness – instance 10. The values
have been computed based on 30 different executions for
each population size {10, 20, ..., 200}. For stop criterion
we use 60 seconds.

Comparing with GAS, QBEA presents a better
standard deviation and it is less time consuming.

The size of the initial population in HSS does not
have a significant influence on the execution time (see
Fig. 4). However, when a number of seconds for the
stop criterion is used, we observe that HSS has a poor
performance (see Fig. 6). We observe that HSS can find
good solutions, but it needs more time. In comparison
with HSS, GAS and QBEA are faster. GA, HGA and
GAMO are faster and can produce good results if the
stop criterion is a limited number of seconds (see Fig.
6). However, using a large amount of time or a large
number of iterations, we observe an early convergence
of the algorithms. GA, HGA and GAMO often get
trapped in local minimums. The LS method used in
LSGA, HDE, BA, DDE, HSS, HPBIL, QBEA and GAS
avoids getting trapped in local minimums.

Using different population sizes we observe that
QBEA and GAS work better with smaller populations
(see Fig. 4 and Fig. 5). With a small initial population
these algorithms can find faster better solutions. With
large populations the algorithms can reach better results
but the algorithms slow down (see Fig. 4 and Fig. 5).
For large instances, the better algorithms in terms of

execution time/quality of solutions are GAS and QBEA.
We observe that GAS and QBEA present the best
characteristics of EAs and SI algorithms - the proposed
algorithms are faster and can find with a good precision
good solutions. The algorithms have a good
performance with small populations. The feedback
information increases the precision of the algorithms,
and the LS method avoids the early convergence of the
algorithms.

6. Conclusions

In this paper, we proposed a Genetic Algorithm with a
new swarm mutation operator and a Queen-bee
Evolutionary Algorithm to optimise the Terminal
Assignment Problem. These algorithms are a
combination between Evolutionary Algorithms and
Swarm Intelligence techniques. The algorithms were
tested in small, medium and large TAP instances. The
results were compared with the ones obtained with
Genetic Algorithm, Tabu Search, Hybrid GA, Local
Search GA, GA with Multiple Operators, Hybrid
Differential Evolution, Bees Algorithm, Discrete
Differential Algorithm, Hybrid Scatter Search
Algorithm and Hybrid Population Based Incremental
Learning. The results indicate that the proposed
algorithms have a better performance for large
instances.

This paper indicates that the combination of
Evolutionary Algorithms with Swarm Intelligence can
be very effective. The proposed algorithms are easy to
apply and we suggest their application to other
assignment problems. Furthermore, as a relatively
straightforward extension, the algorithms can be
modified to optimise multi-objective optimisation
problems.

Acknowledgements

This work has been partially supported by the
Polytechnic Institute of Leiria (Portugal) and the
MSTAR Project. Reference: TIN 2008-06491-C04-
04/TIN (MICINN Spain).

References

1. E. Eiben and J. Smith, Introduction to Evolutionary
Computing (Springer-Verlag, New York, 2003). ISBN: 3-
540-40184-9.

2. J. Kennedy, R. C. Eberhart and Y. Shi, Swarm
intelligence, 1st edn. (Morgan Kaufmann, San Francisco,
CA, 2001). ISBN: 1558605959.

Published by Atlantis Press
 Copyright: the authors
 758

 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

3. S. Khuri and T. Chiu, Heuristic Algorithms for the
Terminal Assignment Problem, in Proc. ACM Symposium
on Applied Computing (ACM, New York, 1997), pp.
247–251. ISBN:0-89791-850-9.

4. S. Salcedo-Sanz and X. Yao, A hybrid Hopfield network-
genetic algorithm approach for the terminal assignment
problem, IEEE Transaction On Systems, Man and
Cybernetics, 34(6) (2004) 2343–2353. DOI:
10.1109/TSMCB.2004.836471.

5. X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz,
Hybrid evolutionary approaches to terminal assignment
in communications networks, in Recent Advances in
Memetic Algorithms and related search technologies
(Springer, Berlin / Heidelberg, 2005), pp. 129–159. DOI:
10.1007/3-540-32363-5_7.

6. G. H. M. Kapantow, Solving concentrator location and
terminal assignment problems using simulated annealing,
Masters thesis (Concordia University, Canada, 1996).

7. Y. Xu, S. Salcedo-Sanz and X. Yao, Non-standard cost
terminal assignment problems using tabu search
approach, in IEEE Congress on Evolutionary
Computation (IEEE, Portland, Oregon, USA, 2004), vol.
2, pp. 2302–2306. DOI: 10.1109/CEC.2004.1331184.

8. E. Bernardino, Minimización de Interferencias y
Asignación de Terminales en Telecomunicaciones
utilizando Métodos Heurísticos, Diploma de Estudios
Avanzados (Universidad de Extremadura, Spain, 2007).

9. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, Tabu Search vs
Hybrid Genetic Algorithm to solve the terminal
assignment problem, in IADIS International Conference
Applied Computing (IADIS, 2008), pp. 404–409. ISBN:
978-972-8924-56-0.

10. F. Abuali, D. Schoenefeld and R. Wainwright, Terminal
assignment in a Communications Network Using Genetic
Algorithms, in Proc. 22nd Annual ACM Computer
Science Conference (ACM, New York, 1994), pp. 74–81.
DOI: 10.1145/197530.197559.

11. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, Solving the
Terminal Assignment Problem Using a Local Search
Genetic Algorithm, in International Symposium on
Distributed Computing and Artificial Intelligence
(Springer, Berlin / Heidelberg, 2008), vol. 50, pp. 225–
234. DOI: 10.1007/978-3-540-85863-8_27.

12. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, A Genetic
Algorithm with Multiple Operators for Solving the
Terminal Assignment Problem, in New Challenges in
Applied Intelligence Technologies, Studies in
Computational Intelligence, eds. N.T. Nguyen, R.
Katarzyniak (Springer, Berlin / Heidelberg, 2008), pp.
279–288. DOI: 10.1007/978-3-540-79355-7_27.

13. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, A Hybrid
Differential Evolution Algorithm for solving the
Terminal assignment problem, in Distributed Computing,

Artificial Intelligence, Bioinformatics, Soft Computing,
and Ambient Assisted Living (Springer, Berlin /
Heidelberg, 2009), vol. 5518, pp. 179–186. DOI:
10.1007/978-3-642-02481-8_25.

14. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, A Hybrid
Differential Evolution Algorithm with a multiple strategy
for solving the Terminal assignment problem, in
Artificial Intelligence: Theories, Models and
Applications, Lecture Notes in Computer Science
(Springer, Berlin / Heidelberg, 2010), pp. 303–308. DOI:
10.1007/978-3-642-12842-4_34.

15. B. A. Julstrom, Evolutionary codings and operators for
the terminal assignment problem, in Proc. 11th Annual
conference on Genetic and evolutionary computation
(ACM, New York, 2009) pp. 1805–1806. DOI:
10.1145/1569901.1570171.

16. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Scatter
Search Algorithm to assign terminals to concentrators, in
Proc. IEEE Congress on Evolutionary Computation
(IEEE Computer Society, Los Alamitos, CA, USA,
2010), pp. 329–336. ISBN: 978-1-4244-6909-3.

17. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, Discrete
Differential Evolution Algorithm for solving the
Terminal Assignment Problem, in Parallel Problem
Solving from Nature – PPSN XI, Lecture Notes in
Computer Science (Springer, Berlin / Heidelberg, 2010),
vol. 6239, Part II, pp. 229–239. DOI: 10.1007/978-3-642-
15871-1_24.

18. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, Hybrid
Population-Based Incremental Learning to assign
terminals to concentrators, in International Conference
on Evolutionary Computation (INSTIC, Portugal, 2010).
ISBN: 978-989-8425-31-7.

19. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, A Hybrid Ant
Colony Optimization Algorithm for Solving the Terminal
Assignment Problem, in International Conference on
Evolutionary Computation (INSTIC, Portugal, 2009), pp.
144–151. ISBN: 978-989-674-014-6.

20. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, Using the Bees
Algorithm to assign terminals to concentrators, in Trends
in Applied Intelligent Systems, Lecture Notes in
Computer Science (Springer, Berlin / Heidelberg, 2010),
pp. 267–276. DOI: 10.1007/978-3-642-13025-0_29.

21. H. R. Lourenço, O. Martin and T. Stutzle, Iterated local
search, in Handbook of Metaheuristics, eds. F. Glover
and G. Kochenberger (Kluwer Academic Publishers,
2003), pp. 321–353. ISBN: 1402072635.

22. T. A. Feo and M. G. C. Resende, A probabilistic
heuristic for a computationally difficult set covering
problem, Operations Research Letters, 8(1989) 67–71.
DOI: 10.1016/0167-6377(89)90002-3.

Published by Atlantis Press
 Copyright: the authors
 759

EM Bernardino, AM Bernardino, JM Sánchez-Pérez, JÁ Gómez-Pulido, MA Vega-Rodríguez

23. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,
Optimization by Simulated Annealing, Science J.,
220(4598) (1983) 671–680. DOI: 10.1126/
science.220.4598.671.

24. V. Cerny, A Thermodynamical Approach to the
Travelling Salesman Problem: an efficient Simulation
Algorithm. J. Optimization Theory and Applications,
Springer, 45(1) (1985) 41–51. DOI: 10.1007/
BF00940812.

25. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.
H. Teller and E. Teller, Equations of State Calculations
by Fast Computing Machines, J. Chemical Physics, 21(6)
(1953) 1087–1092. DOI: 10.1063/1.1699114.

26. F. Glover, Future paths for Integer Programming and
Links to Artificial Intelligence, Computers and
Operations Research, 13(5) (1986) 533–549. DOI:
10.1016/0305-0548(86)90048-1.

27. F. Glover and M. Laguna, Tabu Search (Kluwer
Academic Publishers, 1997). ISBN: 0-7923-8187-4.

28. M. Atiqullah and S. Rao, Reliability optimization of
communication networks using simulated annealing,
Microelectronics and Reliability, 33(1993) 1303–1319.
DOI: 10.1016/0026-2714(93)90132-I .

29. S. Pierre, M. A. Hyppolite, J. M. Bourjolly and O.
Dioume, Topological design of computer communication
networks using simulated annealing, Engineering
Applications of Artificial Intelligence, 8(1995) 61–69.
DOI: 10.1016/0952-1976(94)00041-K.

30. Z. Zhang and X. Ke, Solving terminal allocation problem
using simulated annealing arithmetic, Wseas
Transactions on Systems, 7(12) (2008) 1412–1422.
http://portal.acm.org/citation.cfm?id=1503532.1503537.

31. F. Glover, M. Lee and J. Ryan, Least-cost network
topology design for a new service: and application of a
tabu search, Annals of Operations Research, 33(1991)
351–362. DOI: 10.1007/BF02073940.

32. S. J. Koh and C. Y. Lee, A tabu search for the survivable
fiber optic communication network design, Computers
and Industrial Engineering, 28(1995) 689–700. DOI:
10.1016/0360-8352(95)00036-Z .

33. C. P. Low, An Efficient Algorithm for the Minimum
Cost Min-Max Load Terminal Assignment Problem,
IEEE Communications Letters, 9(11) (2005) 1012–1014.
DOI: 10.1109/LCOMM.2005.11011.

34. J. H. Holland, Adaptation in Natural and Artificial
Systems (The University of Michigan Press, 1975).
ISBN: 0-262-08213-6.

35. D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, 1 edn. (Addison-
Wesley, Boston, 1989). ISBN: 0201157675.

36. R. Storn and K. Price, Differential Evolution: a Simple
and Efficient Adaptive Scheme for Global Optimization
over Continuous Spaces, Technical Report TR-95-012
(ICSI, 1995)

37. R. Storn and K. Price, Differential Evolution - a Simple
and Efficient Heuristic for Global Optimization over

Continuous Spaces, J. Global Optimization, 11(1997)
341–359. DOI: 10.1023/A:1008202821328.

38. K. Price, R. Storn and J. Lampinen, Differential
Evolution: A Practical Approach to Global Optimization,
Natural Computing Series (Springer-Verlag, Berlin,
2005). ISBN: 3-540-20950-6.

39. Differential Evolution Website,
http://www.icsi.berkeley.edu/~storn/code.html

40. F. Glover, Heuristics for integer programming using
surrogate constraints, Decision Sciences, 8(1) (1977), pp.
156–166. DOI: 10.1111/j.1540-5915.1977.tb01074.x.

41. M. Laguna, Scatter search, in Handbook of Applied
Optimization, eds. P. M. Pardalos and M. G. C. Resende
(Oxford University, 2002), pp. 183–193. ISBN: 978-0-
19-512594-8.

42. Q-K. Pan, M. F. Tasgetiren, Y-C. Liang, A discrete
differential evolution algorithm for the permutation
flowshop scheduling problem, J. Computers & Industrial
Engineering, 55(4) (2008) 795-816. DOI:
10.1016/j.cie.2008.03.003.

43. S. Baluja, Population-based incremental learning: A
method for integrating genetic search based function
optimization and competitive learning. Technical report
CMU-CS-95-163 (School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA,
1994).

44. S. Salcedo-Sanz, J. A. Portilla-Figueras, F. García-
Vázquez and S. Jiménez-Fernández, Solving terminal
assignment problems with groups encoding: the wedding
banquet problem, Engineering Applications of Artificial
Intelligence, 19(2006) 569–578. DOI:
10.1016/j.engappai.2005.10.003.

45. M. Dorigo, V. Maniezzo and A. Colorni, Positive
feedback as a search strategy, Technical Report 91-016
(Dipartimento di Elettronica e Informazione, Politecnico
di Milano, Italy, 1991).

46. M. Dorigo, V. Maniezzo and A. Colorni, The ant system:
Optimization by a colony of cooperating agents, IEEE
Transactions on Systems, Man, and Cybernetics,
26(1996) 29–41. DOI: 10.1109/3477.484436.

47. M. Dorigo, Ottimizzazione, apprendimento automatico,
ed algoritmi basati su metafora naturale (Optimisation,
learning and natural algorithms), Doctoral dissertation
(Dipartimento di Elettronica e Informazione, Politecnico
di Milano, Italy, 1991).

48. L. M. Gambardella, E. D. Taillard and M. Dorigo, Ant
colonies for the quadratic assignment problem, J.
Operational Research Society, 50(2) (1999) 167–176.
DOI: 10.1057/palgrave.jors.2600676.

49. Ant Colony Optimization Website,
http://iridia.ulb.ac.be/dorigo/ACO/ACO.html

50. D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim
and M. Zaidi, The Bees Algorithm, Technical Note,
Manufacturing Engineering Centre (Cardiff University,
UK, 2005).

51. A. Baykasoğlu, L. Özbakır and P. Tapkan, Artificial Bee
Colony Algorithm and Its Application to Generalized

Published by Atlantis Press
 Copyright: the authors
 760

 Evolutionary Swarm based algorithms to minimise the link cost in Communication Networks

Assignment Problem, in Swarm Intelligence, Focus on
Ant and Particle Swarm Optimization, eds. Felix T.S.
Chan and Manoj Kumar Tiwari (I-Tech Education and
Publishing, Vienna, Austria, 2007), pp. 113–144. ISBN:
978-3-902613-09-7.

52. D. Karaboga, B. Akay, A survey: algorithms simulating
bee swarm intelligence, J. Artificial Intelligence Review
31(1, 4) (2009) 61–85. DOI: 10.1007/s10462-009-9127-
4.

53. A. Bernardino, E. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, Solving ring
loading problems using Bio-inspired algorithms, Journal
of Network and Computer Applications, 34(2) (2011)
668–685. DOI: 10.1016/j.jnca.2010.11.003.

54. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, Solving large-
scale SONET Network Design Problems using Bee-
inspired Algorithms, Optical Switching and Networking,
9(2) (2012) 97–117. DOI: 10.1016/j.osn.2011.11.001.

55. E. Bernardino, A. Bernardino, J. Sánchez-Pérez, M.
Vega-Rodríguez and J. Gómez-Pulido, Swarm
optimisation algorithms applied to large balanced
communication networks, Journal of Network and
Computer Applications, (2012). DOI:
10.1016/j.jnca.2012.04.005.

Published by Atlantis Press
 Copyright: the authors
 761

