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Abstract

This paper proposes a parameterized definition for fuzzy comparators on complex fuzzy datatypes like
fuzzy collections with conjunctive semantics and fuzzy objects. This definition and its implementation
on a Fuzzy Object-Relational Database Management System (FORDBMS) provides the designer with a
powerful tool to adapt the behavior of these operators to the semantics of the considered application.
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1. Introduction

Fuzzy database models and systems have evolved
from being extensions of the relational model to
be extensions of the object-oriented and object-
relational database models. These two last ap-
proaches deal with complex fuzzy datatypes, where
the semantics of the fuzzy operators involved in
complex object retrieval is dependent on the con-
sidered application. In previous work! we use a
FORDBMS to represent and store dominant color
descriptions extracted from images stored in the
database. To perform flexible retrieval of the im-
ages based on their dominant colors, it is necessary
to use implementations of fuzzy operators that com-
pute the inclusion degree of a set of dominant colors

into another set. Additionally, if we are interested in
the retrieval of images with a similar dominant color
description, the system must provide an implemen-
tation for the resemblance operator for conjunctive
fuzzy collections and for fuzzy objects. In another
previous work”> we use a FORDBMS to represent
description of curves in spines suffering a deforma-
tion called scoliosis. To obtain appropriate results
in the fuzzy search, it is necessary to use an imple-
mentation of the operators involved in complex data
retrieval that is different from the one used in a dom-
inant color based image retrieval application. These
facts prove that, for complex objects, it is necessary
to provide a parameterized approach to adapt the be-
havior of the object comparison operations to the se-
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mantics of the each application.

There are several proposals to model comparison
on sets, like the work of Hallez et al. 3, which are
based on a framework by Dubois and Prade * for
comparison of fuzzy sets, where they integrate the
element similarities in the comparison of the sets.
Interpreting a class as a set of attributes, Marin et
al.> propose a recursive way of comparing two com-
plex fuzzy objects of a given class, avoiding cycles.
Additionally, this work proposes some operators for
computing the resemblance between fuzzy sets of
fuzzy objects. An extension to this model, proposed
by Berzal et al.%, provides a wide variety of op-
tions to model the behavior of the fuzzy operators
for comparison of complex objects. A later work
by Marin et al.” proposes an approach for comput-
ing the fuzzy inclusion in a flexible way, using OWA
operators as aggregation method.

This paper proposes a framework, starting from
the proposal of Marn et al.®, for the operators in-
volved in comparison operations on fuzzy collec-
tions of elements with conjunctive semantics, and
on complex fuzzy objects. The proposed definition
for these operators integrates several parameters that
allow us to adapt the behavior of the comparator to
the semantics of the application. This extension is
designed for integration into a FORDBMS. There-
fore, the paper includes a proposal for the integra-
tion of these operators into a FORDBMS, describ-
ing the structures and methods that provide the de-
signer with the necessary mechanisms to set the de-
sired behavior of these operators in accordance to
the semantics of a particular application.

The paper is organized as follows. Section 2 de-
scribes the general structure of our FORDBMS. Sec-
tion 3 introduces the new definition proposed for the
comparators on complex fuzzy datatypes. The ex-
tension of the catalog to parameterize these com-
parators is described in Section 4. An example il-
lustrating a real world application of the proposal is
shown in Section 5. Finally, main conclusions and
future work are summarized in Section 6.

2. The Fuzzy Object-Relational Database
Management System

In previous work®°, we introduced the basis for the
implementation of our FORDBMS, that is based on
the extension of a market leader RDBMS (Oracle®)
by using its advanced object-relational'%!! features.
This strategy let us take full advantage of the host
RDBMS features (high performance, scalability,
availability, etc.) adding the capability of represent-
ing and handling fuzzy data provided by our exten-
sion.

Following the above strategy, the FORDBMS
is built over the host DBMS taking advantage of
its really powerful extension capabilities. The rep-
resentation of fuzzy data is made through user-
defined datatypes (UDT) and some convenience
user-defined operators that allow users to create SQL
sentences to query fuzzy data and apply flexible
conditions. The necessary logic for handling fuzzy
data is encapsulated as methods in the UDTs. All
this within the framework of SQL:2003'2. The fol-
lowing subsections depict the capabilities of such a
FORDBMS.

2.1. Fuzzy Data Support

Our FORDBMS includes a wide variety of UDTs
that allow to easily model any sort of fuzzy data.
Particularly, the system is able to represent the fol-
lowing types of fuzzy data:

o Atomic fuzzy types (AFT), fuzzy data represented
as possibility distributions over ordered (OAFT)
or non ordered (NOAFT) domains.

o Fuzzy collections (FC), fuzzy sets of objects
(from an homogeneous domain, crisp or fuzzy)
with conjunctive (CFC) or disjunctive (DFC) se-
mantics.

« Fuzzy objects (FO), whose attribute types can be
crisp or fuzzy, and where each attribute is asso-
ciated with a degree to weigh its importance in
object comparison.

The above types of fuzzy data can be divided
in two groups. FC and FO data is named complex
fuzzy data as each data item is composed of other
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Fig. 1. Datatype hierarchy for the FORDBMS

data items that can be, in turn, fuzzy. Likewise, all
AFT data is named simple fuzzy data, as the under-
lying domain on which a data item is defined must
be crisp. Particularly, it is worth noticing that a col-
lection is defined as a set of objects that, in turn,
may represent other complex fuzzy structures, even
including other nested collections. Therefore, fol-
lowing the common terminology in Object Oriented
Programming and for the purposes of this paper, we
use the term collection in favor of the term set to
stress that the elements of this kind of structure can
be complex fuzzy objects.

The UDTs available in the FORDBMS for rep-
resenting the above types of fuzzy data are depicted
in Fig.1, which shows an UML diagram illustrat-
ing these datatypes and their hierarchical relations.
The diagram includes two abstract datatypes that,
even though they are not part of the set of the UDTs
for fuzzy data representation, are helpful to under-
stand how the fuzzy UDTs are integrated in the
host datatype system. The first one is DataBase-
DataTypes, which represents a common ancestor for
all datatypes in the host DBMS. The second is Clas-
sicalDataTypes, which represents all the datatypes
of the host DBMS that are not a fuzzy UDT.

Among the fuzzy UDTs, AtomicFuzzyTypes is
the common ancestor for all UDTs representing an
AFT. Likewise, OrderedAFTs is the common ances-
tor for all UDTs representing an OAFT. The differ-
ent forms in which OAFT data can be represented
in the FORDBMS are implemented by the UDTs
whose common ancestor is the OrderedAFTValues

datatype. One of the forms in which an OAFT can be
represented is numerical: trapezoidal possibility dis-
tributions (by means of the UDT Trapezoid), inter-
vals (Interval UDT) or crisp values (Crisp UDT). All
the numerical representations have the same com-
mon ancestor, the NumericalAFTValues UDT. Alter-
natively, an OAFT can be represented as a linguistic
label (by means of the UDT Label), which in turn is
linked to some sort of OAFT numerical value.

Regarding the rest of the UDT hierarchy for rep-
resenting fuzzy data, the NonOrderedAFTs UDT is
devoted to represent NOAFT data. FuzzyCollections
UDT is the common ancestor for all types of FC
data. DFC data is represented by means of Dis-
junctiveFCs UDT instances and CFC data by in-
stances of ConjunctiveF'Cs UDT. Finally, FuzzyOb-
jects UDT is used to represent FO data.

2.2. Fuzzy Data Handling

All fuzzy types define a Fuzzy Equal comparator
(FEQ) that computes the degree of fuzzy equality for
each pair of instances. Each fuzzy datatype has its
own implementation of this operator in accordance
with its nature. Moreover, the FORDBMS provides
parameters to adjust the fuzzy equality computation
to the semantics of the data handled.

For AFT data, OAFT and NOAFT data subtypes,
the system uses a possibility measure to implement
FEQ. This comparator is defined as shown in Def. 1
and Def. 2 for OAFT and NOAFT data, respectively.

Definition 1. (Fuzzy Equality Comparator for OAFT
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data). Let A and B be two OAFT instances repre-
senting two possibility distributions defined over a
finite reference universe %/ and modeled as fuzzy
sets, Us and up the membership functions of these
fuzzy sets. The fuzzy equality FEQ(A,B) of A and
B is defined as:

FEQ(4,B) = maxmin(us (), () (1)

Definition 2. (Fuzzy Equality Comparator for
NOAFT data). Let A and B be two NOAFT instances
representing two possibility distributions (modeled
as two fuzzy sets whose membership functions are
Ua and up) defined over a finite reference universe
% , where a resemblance relation S(x,y),x,y € %
is defined for all its elements. The fuzzy equality
FEQ(A,B) of A and B is defined as:

FEQ(A.B)= max_(S(x.y)-ka(x)-Ha(x) (2)

XEU YEU

Additionally, for OAFT data the system imple-
ments other fuzzy comparators based on the or-
der relation of the underlying domain such as FGT
(Fuzzy Greater Than), FGEQ (Fuzzy Greater or
Equal), FLT (Fuzzy Less Than) and FLEQ (Fuzzy
Less or Equal), using a possibility measure. More-
over, for each possibility measure based comparator
of AFT datatypes, there is a necessity measure based
counterpart: NFEQ, NFGT, NFEGQ, NFLT and
NFLEQ. We refer the reader to Galindo’s work!? for
more details on the above comparators as its partic-
ularities are beyond the scope of this work.

Finally, as in the case of AFT types, the
FORDBMS defines FEQ comparators for complex
fuzzy datatypes. Details on these comparators are
provided in the next section.

3. Comparators for Complex Fuzzy Datatypes

Our FORDBMS provides complex fuzzy datatype
structures to model complex problems from the real
world. In order to properly capture the rich seman-
tics present in such real objects, it is necessary to
provide a flexible mechanism to model the way the
system retrieves instances of the datatypes. In other

words, the FORDBMS must provide a parameter-
ized way to adapt the behavior of the flexible com-
parators on complex fuzzy datatypes instances to the
semantics of the real world objects modeled by these
instances.

The complex fuzzy datatypes that the
FORDBMS provides are fuzzy collections (FC) and
fuzzy objects (FO). The implementation of flexi-
ble comparators for each of these datatypes is not
straight-forward as they must return a degree that
represents the whole resemblance for each pair of
datatype instances. The problem is that each in-
stance has a complex structure and a fuzzy equality
degree must be computed for each of their compo-
nent values, and then, perform an aggregation of all
these degrees. There are several options available
for each step in the computation of the resemblance
degree between a pair of complex fuzzy datatype
instances. Depending on the alternative used, the
semantics of the comparison may vary substantially.
In this section we will provide a general definition
for the flexible comparators for these datatypes.

3.1. Comparators for Conjunctive Fuzzy
Collections

This fuzzy datatype models collections of elements
with the same type, where each element can belong
to the collection with a degree between O and 1.
The semantics of the collection is conjunctive. The
FORDBMS must provide an operator that computes
to which degree an instance of a CFC data type is
included into another.

3.1.1. Fuzzy Inclusion Operator

The operator FInclusion (A, B) calculates the
inclusion degree of A C B, where A and B are in-
stances of CFC. There are some proposals for this
operator like the Resemblance Driven Inclusion De-
gree >, which is defined as follows:

Definition 3. (Resemblance Driven Inclusion De-
gree). Let A and B be two fuzzy sets defined over a
finite reference universe %, p4 and up the member-
ship functions of these fuzzy sets, S the resemblance
relation defined over the elements of %, ® be a t-
norm, and / an implication operator. The inclusion
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degree of A in B driven by the resemblance relation
S is calculated as follows:

Os(B|A) = min max 6a.8,5(x,y) 3)
where
Oa.8,5(x,y) = @ (pa (x), up(y)), ts(x,y)) (4

For some applications, like X-Rays image
retrieval?, the operator defined in Def. 3, performs
better using the min as t-norm and the Godel im-
plication operator. However, in other applications
like color based image retrieval!, we obtain a bet-
ter result if we use the Gaines implication operator
defined as follows:

I, ifx<y
y/x otherwise

I(x,y) = {

Additionally, we substitute in Eq. 3 the min-
imum aggregation operator by a weighted mean
aggregation operator, whose weight values are the
membership degrees in A of the elements of %, di-
vided by the fuzzy cardinality of A, |A|, resulting in
the following expression:

)

_ oy Ml
Os(B|A) —xél A max 6a,ps(x,y)  (6)
where
\g\ = Z Ha (x). (7

xX€EA

As this kind of operations require the use of
an implication operator, a t-norm and a aggrega-
tion function, we will propose a definition that pro-
vides freedom in the choice of the two first elements,
and that includes the use of the well known OWA
operators'# to model the aggregation task. In this
way, the particular semantics of each application can
be taken into account choosing the right operators
(i.e. implication, t-norm and aggregation) to com-
pute the resemblance. This is the proposed defini-
tion:

Definition 4. (Generalized Resemblance Driven In-
clusion Degree). Let A and B be two fuzzy sets
defined over a finite reference universe %, p4 and
up the membership functions of these fuzzy sets, S
the resemblance relation defined over the elements
of 7 , ® be a t-norm, [ an implication operator, F' an
OWA operator, and K(A) an aggregation correction
factor depending on A. The generalized inclusion
degree of A in B driven by the resemblance relation
S is calculated as follows:

Os(BlA) =
1,ifA=o
0,ifA£ONB=0
K(A) - Fyea(ta(x) -maxycp 604 g s(x,y)), otherwise

3)
where -
K:2(U)— R* )
and,
Oa.5,5(x,y) = @ (pa(x), s (y)), ps(x,y)) (10

When average is used as aggregation, the term
K(A) can be used to take into account the CFC ele-
ments’ membership degrees, to normalize the aggre-
gation result of Eq. 8

Note that, if we select in Eq. 8 the min OWA
operator F, and set K(A) = I we get:

Os(BJA) = Fipen(ta(x) - max0x p.5(x,y)) (1)

which has a similar behavior as Eq. 3 when
pa(x) =1,Vx € A.

The following example, taken form Marin et. al
work?, illustrates the use of the introduced operator:

Example 1. Let A = {(a,0.9),(d,1)} and
B = {(a,1),(0,0.7),(c,0.9)} be two fuzzy sets,
where {a,b,c,d} is the reference universe % over
which a resemblance relation S is defined, such
that ps(a,b) = ps(a,c) = us(a,d) = ps(b,c) =
us(b,d) =0 and us(c,d) =0.7.

According to Eq. 8, the inclusion degree of A
into B is computed as follows:
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Os(B|A) = K(A) - Fea(
pa(a) - max{@(I(ua(a), up(a)), us(a,a)),

((ta (@), 15(0)). pis(a. )},
(d)-max{@(I(ua(d), up(a)),us(d,a)),

E®:

cey

QU(ua(d), us(c)), us(d,c))})
(12)
If we use the product as t-norm, K(A) = 1, the
min OWA operator F, whose associated vector is, in
this case, W, = [0, 1]7 and, Gaines implication as the
implication operator then:

Og(BJA) =0- ua(a) - max{1,0,0,0}+

1- ua(d) - max{0,0,0.63,0} = 0.63 (13)

We can use Eq. 8 to express the modified resem-
blance defined in Eq. 6 by the following:

Os(BJA) =

14
K(A) - Fuyeren (Ha(x) - maxyes 64 ps(x,y)) O P

where F,,, is the averaging OWA operator, K(A) =
|A|/|A| and |A| stands for the crisp (i.e. non fuzzy)
cardinality of A.

The following example illustrates the use of the
previous equation to compute the Generalized Re-
semblance Driven Inclusion Degree.

Example 2. We start from the sets, resemblance
relation, t-norm and implication operator used in
example 1. In such case, |A| = 2, |A| = pa(a) +
pa(d) = 1.9 and W,,, = [1/2,1/2]T. Then, if we
apply Eq. 12 with K(A) =2/1.9 and the averaging
OWA operator, the result is:

®s(BJA) = 1% - (ua(a) -max{1,0,0,0}/2+
1a(d) - max{0,0,0.63,0} /2) = 24063 ~ 0.5(;15)

As we have shown, with the use of OWA oper-
ators we can model “orness” (F*), “andness” (F}),
average (Fgy.), and other semantics for the aggrega-
tion.

3.1.2.  Fuzzy Equality Operator

When A and B are two instances of CFC, the gener-
alized resemblance between two fuzzy sets is calcu-
lated using the concept of double inclusion proposed
by Marin et al.’

Definition 5. (Generalized resemblance between
fuzzy sets). Let A and B be two fuzzy sets defined
over a finite reference universe %, over which a re-
semblance relation S is defined, and ® be a t-norm.
The generalized resemblance degree between A and
B restricted by ® is calculated by means of the fol-
lowing formula:

Is(A,B) = ®(@s(B|A),Os(A|B))  (16)

Therefore, the implementation of the operator
FEQ (A, B), when A and B are instances of CFC,
aggregates the results of FInclusion (A, B) and
FInclusion (B, A) using a t-norm. In some
cases it may be necessary to apply a factor of cor-
rection to take into account the relative cardinalities
of the CFCs. This factor is defined” as follows:

Definition 6. (Cardinality ratio). Let A and B be two
fuzzy sets. We define the cardinality ratio between
A and B as a measure of the relative resemblance be-
tween their cardinalities. This ratio is calculated by
means of the following formula:

fA=0OAB=0

1,
D(A,B) = {mi“”A"B) otherwise

max ([A,|B[) an

By combining the Generalized resemblance be-
tween fuzzy sets and the optional Cardinality ratio,
we define the fuzzy equality operator for two in-
stances, A and B, of CFC as follows:

_ JS,®(AvB) 1f¢ =0
FEQ¢-(A,B) _{ ®(A,B)-Is5(A,B) otherwise
(13)
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3.2. Comparators for Fuzzy Objects

For this kind of fuzzy datatypes, our FORDBMS
provides the operator FEQ (A, B), that computes
the resemblance of two instances of the same sub-
class of FO. The definition of the operator proposed
in this section aims to provide the designer with a
flexible framework to express the specific seman-
tics of the considered problem. First, we will intro-
duce a parameterized version of the FEQ operator
for OAFT datatypes, to allow to fuzzify crisp values
(in order to represent data imprecision) and to relax
fuzzy values in flexible comparisons.

Definition 7. (Relaxation Function) Let s,k > 0 be
two real numbers that represent support and ker-
nel increments. Let A be a trapezoidal possibil-
ity distribution defined on a numerical domain %
whose characteristic function is given by [ct, 8,7, d].
The relaxation function rys : P(%) — P(%) of A,
rks(A), is a fuzzy set whose membership function is
defined by:

.urk_S(A) = [min(a- (1 _S)7B ' (1 _k))7B ' (1 _k)v
y‘(1—tk),max(}/-(1+k),6‘(1+s))],
VA € P(%MHA = [avﬁa%a]

(19)

Note that rgo(A) = A.

Example 3. Let A be a trapezoidal possibility
distribution given by [30,35,45,50], and s = 0.7,
k = 0.4 the support and kernel increments, respec-
tively. Then, o704)A(x) is given by the trape-
zoidal distribution:

[min(30- (1—0.7),35-(1—0.4)),35- (1 —0.4),
45-(140.4),max(45- (1+0.4),50- (1+0.7))]
=1[9,21,63,85]

(20)

Definition 8. (Relaxed numerical resemblance) Let
A and B be two trapezoidal possibility distributions
defined on a numerical domain %/, with membership
functions 4 (x) and ug(x), respectively, and k,s > 0
two real numbers that represent the kernel and sup-
port increments, respectively, then we define the re-

laxed numerical resemblance, FEQy <(A,B), as fol-
lows:

FEQys(A,B) = FEQ(ris(A),ris(B)) =

. 21
Sup, ey min(H g Ax), tz. ) B(X))) @

Note that FEQ ((A,B) = FEQ(A, B) and, because
of the use of a possibility measure, FEQy ;(A,B) =
FEQys(B,A).

Definition 9. (Parameterized Object Resemblance
Degree). Let C be a Class, n the number of attributes
defined in the class C, {a; : i € 1,2,...,n} the set of
attributes of C that does not generate cycles in sub-
class definition, 0; and o, be two objects of the class
C, oj.a; the value of the i-th attribute of the object
0j, rel(a;) € [—1,1], a value whose absolute value
means the relevance degree of the i-th attribute of the
class C, and that indicates a discriminant attribute
in the resemblance comparison if the degree is neg-
ative, m a parameter that establishes the minimum
number of attributes whose comparison degree must
be greater than 0. The Parameterized Object Resem-
blance Degree is recursively defined as follows:

OR(01,07) =
1, if01 =07

FEQy 5(01,02), if 01,0, € subClassOf(OAFT)
FEQ(01,02), if 01,0, € subClassOf(NOAFT)
FEQy—p(01,02), if 01,0, € subClassOf(CFC)
0, if

(Ji € [1,n] : OR(01.a;,02.a;) =0 Arel(a;) <0)
V([{OR(01.ai,02.a;) > 0:i€ [1,n]}| <m)

K(C)-F(OR(0;.ai,02.a;).|rel(a;)|), otherwise
(22)
where, k,s > 0 are two real numbers that represent
the kernel and support increments for the consid-
ered class (if not defined, both take O as value), b
a parameter indicating if the cardinality ratio cor-
rection factor is applied for CFC comparisons, F
is an OWA operator, that aggregates the compar-
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isons of attributes and has an associated weight vec-
tor W = [wy,---,w,]T, and K(C) > 0 an aggregation
correction factor set for each Class C, whose value
can be used to adjust the resemblance degree com-
puted, taking into account the kind of OWA opera-
tor used and the relation between n, the number of
attributes of C, and the sum of their respective rele-
vance degrees Y, |rel(a;)|.

The previous definition provides the designer
with a parameterized rich framework to model the
semantics of complex object comparisons. The def-
inition offers the following design alternatives:

« To set a relaxation percentage for elements of a
given subclass of OAFT, using the k and s param-
eters. This allows to perform flexible comparisons
on crisp values that are not exactly equal, as well
as to relax fuzzy data in these kind of compar-
isons.

« To apply or not the cardinality ratio on CFC com-
parisons.

o The possibility to determine that a given object at-
tribute is discriminant in the whole comparison of
two objects, in the sense that if the comparison of
two objects returns a O value for this attribute, the
whole object comparison must also return O.

« To set the number of comparisons of attributes for
an object that needs to be distinct from 0 to return
a whole object comparison distinct from 0. For
some kinds of problems it is better to return a 0
value for the whole object comparison if there are
a certain number of comparisons of attributes that
return 0.

o To set the relevance of each object attribute,
rel(a;), in the whole object comparison.

« To choose the OWA operator F' and the aggrega-
tion correction factor K(C) that best matches the
semantics of the modeled problem. When the se-
mantics of the problem requires a normalized av-
erage approach, an F;,, OWA operator can be used
in combination with a correction factor given by
K(C) =n/Y" | |rel(a;)|, that takes into account
the resemblance degrees in the computation. In
contrast, if the semantics is more “andness” ori-
ented, an OWA operator with this semantics and
a neutral correction factor like K(C) =1 can be

used. There are other possible intermediate alter-
natives for choosing the combination of the OWA
operator and the correction factor depending of
the semantics of the problem.

« To set the FEQ parameters and behavior for each
subclass involved in a complex object compari-
son.

3.3. Related work

As we have mentioned, our proposal takes as start-
ing point Marin et al.’s model’, and extends it to
adapt the operators’ behavior to the semantics of
each particular application, keeping always in mind
the need for a seamless integration in a FORDBMS.
There exists a number of proposals in the literature
to model the different aspects involved in complex
fuzzy data comparison: implication operators, ag-
gregation functions, t-norms, t-conorms, etc. In the
introduction we referred to Berzal et al.’ and the
2009 work of Marin et al.”, which propose two ex-
tensions related to this work. However, our work
is aimed at its integration into a FORDBMS, which
makes this proposal select different options and im-
plement them in a different way. Next, we analyze
the most relevant aspects of our proposal with re-
spect to the other two.

Regarding the definitions involved in the compu-
tation of fuzzy inclusion for Conjunctive Fuzzy Col-
lections, Marin et al. in 2009’ propose the use of
the OWA operator “almost all quantifier” to com-
pute the approximate inclusion degree of B in A into
their proposal of fuzzy division. In this sense, our
proposal of Generalized Resemblance Driven Inclu-
sion Degree (Def. 4), that also integrates the use of
OWA operators, is different from the above because
it allows the use of any OWA operator that, along
with the correction factor K(A), makes it adaptable
to a large variety of semantics.

The 2009 work of Marin et al.” also introduces
a new proposal in addition to the one in Def. 3,
the Resemblance based tolerant inclusion degree
(¥s(A | B)), whose idea is to expand the fuzzy set
A. It means that the objects of the reference class U
similar to an object initially present in A, are added
to A. That paper also includes a fuzzy inclusion op-
erator, based on this idea of inclusion, that uses the
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OWA operator almost all quantifier. This way of
computing the fuzzy inclusion could be studied to
be incorporated into our framework.

As to fuzzy objects comparisons, Berzal et al.®
analyze all the aspects involved and the alterna-
tives available to model them. It presents an impor-
tant study about the aggregation alternatives used to
compute the compatibility degree of two fuzzy ob-
ject instances taking into account the comparison de-
gree obtained for each one of its attributes, the set
of relevant attributes and its corresponding relevance
degree. For such aggregation, it proposes operators
based on linguistic quantifiers, such as most (e.g.
Most of the important attributes of the class exhibit
similar values in the objects). It also uses the ordered
weighted min (OWmin) OWA operator that mod-
els the concept of required majority. To integrate
the attribute relevance into the overall aggregation
calculation, it uses implication operators, replacing
Sai(01702) with p,, — Sa,'(01702)a being Sa,'(01702)
the compatibility degree computed on the attribute
a; and p,, the relevance of the attribute g;. It also
analyzes how some of these operators work, such as
the Kleene-Dienes, Godel and Goguen implication
operators.

Our proposal of Parameterized Object Resem-
blance Degree (Def. 9) for fuzzy object comparison
reformulates the one shown in Marin et al.’s model?,
incorporating the use of OWA operators along with
the aggregation correction factor K(C) as a mecha-
nism to model the aggregation of attribute compar-
isons. The attribute importance in the comparison is
managed by two mechanisms: a) the product t-norm
applied to the attribute relevance and the compatibil-
ity degree for such attribute, by means of which we
can affect the weight of an attribute in the compari-
son; b) setting certain attributes as discriminant, re-
quiring its compatibility degree to be greater than O,
by setting rel(a;) < 0. Finally, the possibility of es-
tablishing the minimum number of attributes whose
comparison degree must be greater than 0, and the
integration of the mechanism for the relaxation of
OAFT instance comparison, are other contributions
included in our proposal that help to adjust the be-
havior of this operator to the problem’s semantics.

4. FORDBMS Elements to Control the
Comparison Behavior

Our FORDBMS implements the complex object
comparison introduced in the previous section by
means of the datatype structure shown in Fig. 1,
where the definition and implementation of meth-
ods, constructors and operators take into account a
set of parameters, stored in a specific database cat-
alog, to determine their behavior. This section will
describe this structure in relation with each kind of
datatype considered.

4.1. Conjunctive Fuzzy Collections

The following are the tables with the parameters that
provide the behavior of the Flnclusion operator:

e CFC_FInclusion (type_name, oper_name),
where the first attribute identifies the subtype of
CFC and the second stores the associated imple-
mentation. There is a predefined implementation
labeled as: “min” (the default value) that imple-
ments the definition 1, using the Godel implica-
tion. The designer can provide other implemen-
tations whose definitions are parameterized in the
following tables.

e CFC_FInclusion_def (type_name, oper_na-
me, tnorm, implication, owa, ka), where the
first two attributes identify the FInclusion operator
whose parameters must be set, tnorm identifies
the t-norm used (the min t-norm is used by de-
fault), the user can also select the product t-norm;
the attribute implication sets the implication
operator used, using by default the Godel impli-
cation, but other operators are available in the im-
plementation; the last attributes are usually related
and define the OWA operator and the aggregation
correction factor used. By default the FORDBMS
provides an implementation with the values used
in the Eq. 11. If the designer wants to provide
his/her own OWA operator and aggregation cor-
rection factor, the adequate values must be set in
the following tables:

e OWA_def (owa_name, weight), this table stores
all weights for each OWA operator defined.
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e Ka_def (type_name, ka_name,user_func-
tion), the user must define and implement a
user function in the FORDBMS that computes
the value of the aggregation correction factor, and
set the identifier of this function in the column
user_function.

To parameterize the FEQ operator on CFC, the
FORDBMS provides the following table:

e CFC_FEQ (type_name, tnorm, same_size),
where the second attribute sets the t-norm used for
the double fuzzy inclusion (the min by default),
the third can take one of the following three val-
ues: if it is set to 1 (the default value) then the
cardinality ratio is applied, if set to 2 no cardinal-
ity ratio is applied, and if set to O then the FEQ
operator returns 0 if the compared CFC instances
have different number of elements.

4.2. Fuzzy Objects

The following catalog tables are created to store the
parameters that establish the behavior of the FEQ
operator on instances of FO:

e FTYPE_Relax (type_name, k, s, active), by
means of this table the designer sets the param-
eters k and s that relax the instances of OAFTs
subtypes in FEQ comparisons; if the attribute
active is set to ’true’ then this relaxation is ap-
plied in further FEQ comparisons, if it is set to
"false’, this relaxation is not considered.

e FO_FEQ_Aggr (type_name,owa, k_a,min_gt
_0), this table stores the identifier of the OWA
operator and the aggregation correction fac-
tor used for the subclass identified in the col-
umn type_name. By default, the FORDBMS
implements and uses the F,,, OWA operator
and the aggregation correction factor: K(C) =
n/ Y | |rel(a;)|. The description and implemen-
tation for other operators must be set in the tables
OWA_def and Ka_def described above. Besides,
this table allows to establish the minimum num-
ber of attributes whose comparison degree must
be greater than 0, so that the whole object com-
parison does not return 0.

e FO_FEQ_Attrib (type_name, name, relevan-—
ce), by means of this table, the designer can set
the relevance values for each attribute of the con-
sidered subclass of FO, if the relevance value for
a given attribute is lower than 0, this means that
this attribute is discriminant.

According to the structure shown in Fig. 1, the
FORDBMS provides a set of classes with methods
and operators to create the necessary data structures
for the considered problem, to set the behavior of
each comparator and to instantiate, to store, to han-
dle and to flexibly query the data. A detailed de-
scription of these language elements is out of the
scope of this paper (for more details see Barranco’s
work!3). Therefore, we consider more illustrative
the use of an example to show the use of these ele-
ments.

5. An Example of Modeling Complex Fuzzy
Datatypes and Flexible Comparators

To illustrate the use of the complex fuzzy datatypes
handled by the proposed FORDBMS and the way
the designer can adjust the behavior of compara-
tors for them, we will use an example based on a
flexible representation of the structure of a spine
with scoliosis®. This pathology consists of a three-
dimensional deformation of the spine. An an-
teroposterior (AP) X-ray of a spine with scoliosis
projects the three dimensional deformation to a bidi-
mensional image that shows several curves on the
spine. To measure the severity of this disease, physi-
cians measure, on the AP X-ray, the Cobb angle'®
for each curve in the spine. Each Cobb angle mea-
surement is characterized by means of four values:
angle value, superior vertebra, inferior vertebra and
direction of the curve (left or right). Another pa-
rameter that characterizes a spine curve is the apical
vertebra. The whole spine measurement comprises a
set of curves, each one represented by the previously
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mentioned parameters.

Parameters of Curve 1:
Direction of the curve: "Right",
Cobb angle: 19.83°,
Superior vertebra:"T1",
Apex vertebra: "T3",
Inferior vertebra:"T6"

Parameters of Curve 2:
Direction of the curve: "Left",
Cobb angle: 35.86°,
Superior vertebra: "T7",
Apex vertebra: "T9",
Inferior vertebra:"T11"

Parameters of Curve 3:
Direction of the curve: "Right",
Cobb angle: 36.34°,
Superior vertebra: "T11",
Apex vertebra:"L2",
Inferior vertebra:"L4"

Fig. 2. Example of Cobb angle measurement for a spine
with three curves. On the right, the parameter values for
each curve

Figure 2 shows an example of Cobb angle mea-
surement performed on an AP X-ray and the re-
sulting characteristic values of the curves. For the
diagnosis and treatment of scoliosis it is useful to
have medical files of other similar cases. In or-
der to gather this data, the possibility to retrieve X-
rays of patients with similar parameters for the de-
formation of the spine is interesting. Therefore, a
physician should be able to formulate queries to the
FORDBMS looking for images of spines that in-
clude a given curve (or a set of curves). Note that
the queries must be flexible in the sense of retriev-
ing images with similar values for the parameters,
but not exactly the same values.

5.1. Data Definition and Behavior of the
Comparators Setting

Firstly, we need to create all subtypes needed to rep-
resent the structure of the data. According to Fig. 2,
we use a subtype of OAFT to model the Cobb angle
and subtypes of the NOAFT to model the bound-
ary vertebrae of the Cobb angle and its direction.
To model a whole curve measurement we select a
FO subtype, and to model the whole spine mea-
surement we use a CFC subtype. The definitions
of these datatypes using the DDL provided by the
FORDBMS, are shown bellow:
EXECUTE OrderedAFT.extends (' CobbAngleT’) ;
EXECUTE NonOrderedAFT.extends (' CurvDirectionT’);
EXECUTE NonOrderedAFT.extends (' VertbSetT’);
—— This type has two values: LEFT and RIGHT
EXECUTE NonOrderedAFT.definelLabel (
"CurvDirectionT’,’LEFT');

EXECUTE NonOrderedAFT.defineLabel (
’CurvDirectionT’,’RIGHT') ;
—— This set of sentences defines labels
—-— for the 24 vertebrae
EXECUTE NonOrderedAFT.defineLabel (user,
'VertbSetT’,"L5");

EXECUTE NonOrderedAFT.definelLabel (user,
"VertbSetT’,’'Cl");
—-— Creates the subtype for
—-— a whole Cobb angle measurement
CREATE OR REPLACE TYPE CobbCurvT UNDER FO (
Direction CurvDirectionT, Angle CobbAngleT,
SupVertb VertbSetT,ApexVertb VertbSetT,
InfVertb VertbSetT);)
—— Creates the subtype for
—-- the whole spine measurement
EXECUTE ConjunctiveFCs.extends (’ SpineCurves’,
" CobbCurvT’, 4);

The type VertbsSetT represents the 24 verte-
brae of the spine. To perform comparisons it is
necessary to provide an order relation for this set.
To do this we define the following mapping: 'L5’
— 1, 'L4 — 2.. °C1” — 24. With this order
relation we define a static function on the type
VertbsSetT to relax the proximity value of two ver-
tebrae in FEQ comparisons. This function has the
form create_nearness_vert (k,s) and gener-
ates and stores a nearness relation based on the pa-
rameters k and s. The former extends k vertebrae
the kernel for a VertbSetT value, and the second
extends s vertebrae the support. In this example,
we will model that a given vertebra when compared
with itself and adjacent ones returns 1, when com-
pared with vertebrae located two positions away re-
turns 0.67, 0.33 if they are three positions away and
0 if they are four or more positions away. To get this
behavior we need to execute:
VertbSetT.create_nearness_vert (1, 3)

The following statements set the behavior for the
comparison of instances of the data structure de-
fined:
—-— Extends the kernel (k) and support (s)

—-— in FEQ comparisons. The value 'Y’ in the
—-— third parameter activates the relaxation.
—— Values are inserted into the catalog table
—-— FTYPE_Relax (type_name, k,s,active)
execute orderedAFT.setRelax ('’ CobbAngleT’, 0.4,
0.7, 'Y");
-— Set the relevance for CobbCurvT attributes.
—-— The first two are discriminant because of
—-— their negative value.
—— Values are inserted into the catalog table
-— FO_FEQ_Attrib (type_name, name, relevance)
execute fo.setAttributeRelevance (' CobbCurvT’,
"Direction’,-1);
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fo.setAttributeRelevance (! CobbCurvT’,
"Angle’,-1);
setAttributeRelevance (' CobbCurvT’,
" SupVertb’,1);
setAttributeRelevance (' CobbCurvT’,
" ApexVertb’,1);
.setAttributeRelevance (' CobbCurvT’,
"InfVerteb’,1);
—— Set the min attributes nonzero
—— Values are inserted into the catalog table
—-— FO_FEQ_Aggr (type_name,owa, k_a,min_gt_0)
execute fo.setMin_gt_0 (' CobbCurvT’, 3);

execute

execute fo.

execute fo.

execute fo

For the aggregation of the attributes of
CobbCurvT we select the default implementation
(see Sect. 4), then we do not need to set any values.
The same is valid for the implementation used for
the Flnclusion operator. For FEQ comparisons on
spine instances we want that spines with different
number of curves return a 0 value. To do this, we
execute the sentence:

EXECUTE ConjunctiveFCs.set ('’ SpineCurves’,null, 0)

Now, we can create a table that stores instances
of SpineCurves with the X-rays images:

create table APXRay (image# number,
SpineDescription SpineCurves);

xray bfile,

The following sentence inserts the data related to
the X-ray shown in Fig. 2:

Insert into apxray values (313701,

BFILENAME (' APXRays’,”313701.gif’), SpineCurves (

1, cobbCurvT (

CurvDirectionT (' RIGHT’),
CobbAngleT (trapezoid(18.83)),
VertbSetT (' T1"),

VertbSetT (' T3'),
VertbSetT (' T6")),

1, cobbCurvT (
CurvDirectionT (' LEFT'),
CobbAngleT (trapezoid (35.86)),
VertbSetT (' T7"),
VertbSetT (' T9"),
VertbSetT (' T11")),

1, cobbCurvT (
CurvDirectionT (' RIGHT'),
CobbAngleT (trapezoid(36.34)),
VertbSetT (' T11"),

VertbSetT ('L2"),
VertbSetT ('L4"))));

5.2. Querying

Using the behavior configured for FEQ on
CobbCurvT and SpineCurves subtypes, we can
retrieve images showing a spine curve pattern simi-
lar to a given one, for example, the image shown in

Fig. 2. To perform this query we execute the follow-
ing sentence:

SELECT apl.image#,apl.xray,apl.cdeg(l)
FROM apxray apl, apxray ap2

WHERE apl.image#=313701 AND

FCOND (FEQ (apl.spinedescription,

ap2.spinedescription),1)>0 order by cdeg(l) desc;

To process this query, the FORDBMS, taking
into account the parameters defined in the previ-
ous section that determine the behavior of the fuzzy
comparators involved in the query, evaluates the
comparison of the collection of curves present in
the image 313701 with respect to the collection of
curves present in each other image. We refer the
reader to Medina et al. work!” for a step-by-step de-
tail on the processing of this query. As can be seen
in Fig. 3, the result set holds that the more exact the
curve pattern matching is between each result image
and the sample image, the higher the compliance de-

gree assigned to the result image.
Images and FEQ degree
b) 0.97 ) 0.80

Image Querying
) a1

d) 0.67

‘ph

Fig. 3. Searching images that present similar spine curva-
ture to image q).

6. Concluding Remarks and Future Work

This paper proposes a parameterized behavior for
the operators FInclusion on CFC and FEQ on CFC
and FO. This idea is motivated by the need to
adapt the behavior of these comparators to the spe-
cific semantics of the considered applications. The
FORDBMS is designed to support these changes
through the implementation of a catalog that stores
the parameters that define the behavior of these com-
parators, and defining and implementing the types,
methods and operators that provides that function-
ality. This approach is proved useful by some ex-
ample applications. Although some alternatives for
the operators are implemented by default into the
FORDBMS, future work will be oriented to extend
the number of variants of operators supported and to
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implement techniques to improve the performance
of retrieval operations based on these operators.
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