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Abstract 

Chaotic synchronization, as a key technique of chaotic secure communication, has received much attention in 
recent years. This paper proposes a nonlinear synchronization scheme for the time-delay chaotic system in the 
presence of noise. In this scheme, an integrator is introduced to suppress the influence of channel noise in the 
synchronization process. The experimental results demonstrate the effectiveness and feasibility of the proposed 
scheme which is strongly robust against noises, especially the high-frequency noises.  
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1. Introduction 

Since Mackey and Glass firstly found chaos in time-
delay system1, there has been increasing attentions to 
the researches on the time-delay chaotic systems2-4. In 
recent years, control and synchronization of chaotic 
systems have developed extensively5 due to their 
potential applications in many fields such as biological 
systems6, chemical oscillators7, secure communication8, 
electronic systems9, and so on. Meanwhile, some 

distinguished synchronization methods are put forward, 
including Pecora-Carroll method10, observer-based 
approach11, the adaptive method12 and network security. 

Noise is ubiquitous in physical and natural systems. 
And the effect of the noise on dynamical systems has 
been a fundamental issue in nonlinear and statistical 
physics13-17. It has been found that noise, under some 
conditions, can induce or enhance synchronization even 
in the absence of coupling15-17. However, noise is not 
beneficial to chaotic synchronization most of the time. 
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Noise can also decrease or destroy the generalized 
synchronization, which depends on the details of the 
system such as the driving-driven configuration 14. 

In this paper, we study the influence of channel 
noise on the observer-based synchronization of time-
delay chaotic systems and find that the synchronization 
error fails to converge at zero in the presence of noise. 
Therefore, in order to reduce the effects of channel 
noise, we introduce integrators to suppress noise and 
propose a novel synchronization scheme for the 
synchronization of time-delay chaotic systems. Under 
different frequencies of the noises, a lot of simulations 
are provided to verify the effectiveness and feasibility of 
the developed method. Simulation results show that the 
proposed method can successfully suppress the effects 
of high-frequency noise. 

2. Problem Formulation 

The model of transmitter based on the observer 
theory could be written as: 

( ) 1 1 1

1

( ) ( ) ( ( ), ( )) ( ( ), ( ))
( ) ( )

x t Ax t By t F y t x t G y t x t
y t Cx t

τ τ ⎫⎧ = + + + − −⎪ ⎪
⎨ ⎬

=⎪ ⎪⎩ ⎭

  (1) 

where ×1nx∈ℜ  is the state vector, ×n nA∈ℜ  and 
×1nB∈ℜ  are the parameter matrixes, τ is the time 

delay of system; 1y is the scalar output, and 
1 nC ×∈ℜ  is the parameter matrix deciding the output 

signal 1y ; F  and G  are continuous nonlinear 
functions satisfying the following Lipschitz conditions: 

1 2 1 2

1 2 1 2

( ) ( ) ,
( ) ( ) ,

F x F x x x
G x G x x x

ρ
β

− ≤ +
− ≤ +

   (2) 

where ρ  and β  are both Lipschitz constants. 
The state observer is modeled as the receiver, which 

is shown as follows8,11: 

1 1

1 1

ˆ ˆ ˆ( ) ( ) ( ( ), ( ))
ˆ ˆ( ( ), ( )) ( ( )),

x Ax t By t F y t x t
G y t x t K y Cx tτ τ
= + + +

− − + −
  (3) 

where ×1ˆ nx∈ℜ  is the estimation of x , and K  is the 
observer gain. 

The above observer-based method is an effective 
scheme in noiseless channels. However, experimental 
observations are always corrupted by channel noises. 
And we have to consider the effects of measurable 
additive noise on chaos synchronization. When there 

exists channel noise, we will obtain the signal 
as 1y y d= + , where 1y Cx=  and d is the measured 
noise. In order to observe the influence of additive noise 
on the chaos synchronization, the simulation in Ref. [18] 
is undertaken here. We assume that there exist noises 
with zero mean, sample time 0.1 and amplitude 1 in the 
channel. The results of the above observer-based 
method (3) are depicted in Fig. 1. From Fig. 1, we know 
that the error curves fail to synchronize in presence of 
additive observational noises. 

 

Fig. 1. (Color online) The error dynamics of synchronization 
between the drive system and the response system in presence 
of noise with zero mean, sample time 0:1 and amplitude 1 in 
the channel. 

3. Scheme in Presence of Channel Noises 

In order to improve the synchronization performance of 
time-delay chaotic system, we introduce the integrators, 
which are like low-pass filters, to suppress the 
noises18,19. For chaotic system (1), we define a 
variable 0 0 ( )tx y dτ τ= ∫ , then we 
get 0 1x y y d Cx d= = + = + . The improved system 
could be written as follows: 

1

0 0

1

( , )
0 0 0

( ( ). ( ))
0 1          

F y xx A O x BC O
x C x O

G y t x t O dτ τ− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ ⎣ ⎦⎣ ⎦

 

Let 
0

x
xz ⎡ ⎤= ⎣ ⎦ , 1 0

A O
CA ⎡ ⎤= ⎣ ⎦ , 1 0

BC O
OB ⎡ ⎤= ⎣ ⎦ , 

1( ( ), ( ))
1 0( ) F y t x tF z ⎡ ⎤= ⎣ ⎦ , 1( ( ). ( ))

1 0
G y t x tG τ τ− −⎡ ⎤= ⎣ ⎦ , 
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1
OE ⎡ ⎤= ⎣ ⎦ , then we have  

1 1 1 1

0 0 1

( ) ( ) ( ) ,
,

z A B z F z G z Ed
y x C z

= + + + +⎧
⎨ = =⎩  

where 1 ( 1)C O= . 
The response system is designed as  

1 1 1 1 0 0ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )z A B z F z G z K y yτ= + + + + − , 

0 1 1 1ˆ ˆ ˆˆ, ,y C z y C x= =  
where 1ˆ ˆ( ( ), ( ))

1 0ˆ( ) F y t x tF z ⎡ ⎤= ⎣ ⎦ ,  

1ˆ ˆ( ( ), ( ))
1 0ˆ( ) G y t x tG z τ τ

τ
− −⎡ ⎤= ⎣ ⎦ . 

Then we have  
1 1 1 1 1 1 1ˆ ˆ( ) ( ) ( ) ( ) ( )e A B KC e F z F z Ed G z G zτ τ= + − + − + + −

where 1 ˆe z z= −  and K is the observer gain. 

Theorem 1. Assume 1 1 1( , )A B C+ is observable, 
and if the observer gain K satisfies 

2 2
1 1 1 1 1 1
2 2 2 2 0

T T T TA P PA PKC C K P B P PB P

P I P

ρ

β δ

+ − − + + + +

+ + <
 

then the synchronization error could be small enough to 
guarantee the synchronization, where P is a positive 
definite and symmetric matrix, I  is the identity matrix, 

,ρ β  are the Lipschitz constants and δ  is a positive 
constant. The synchronization error satisfies the 
following interval 

0 : .D e e dγ μ
δ

⎧ ⎫= ≤ +⎨ ⎬
⎩ ⎭  

where 
min ( )

TE P
P

γ
λ

= , min ( )Pλ  represents the smallest 

eigen value of matrix P and μ  is a constant. 

Proof: Let 2 ( )T t
tV e Pe e s dsτ−= + ∫ , then we 

have  
2 2

1 1 1 1 1 1

1 1 1 1 1

2 2
1 1 1

1 1 1 1 1 1

1

( ) ( )
  [( ) ( ) ( ) ( )

      ( )] [( ) ( )

      ( ) ( ) ( )] ( )

((( ) ( ))

      2( ( )

T T

T T

T T

V e Pe e Pe e t e t
A B KC e F z F z Ed G z

G z Pe e P A B KC e F z

F z Ed G z G z e e t

e A B KC P P A B KC e

F z F

τ

τ

τ τ

τ

τ

= + + − −
= + − + − + +

− + + − +

− + + − + − −

= + − + + − +

− 2 2
1( )) 2 ( )    T Tz Pe E Ped e e t τ+ + − −

 

1 1 1 1( ( ) ( )) ( ( ) ( ))T TG z G z Pe e P G z G zτ τ τ τ+ − + −
Since 1 1( ) ( )F z F z−  and 1 1( ) ( )G z G zτ τ−  satisfy the 
Lipschitz condition, so we have 

1 1 1 1 1 1

2 2

(( ) ( )

     2 ( ) 2 ( )

      2 ( )

T T

T

V e A B KC P P A B KC e

e t Pe E P e d e e t

e t Pe

ρ τ

β τ

≤ + − + + − +

+ + − −

+ −

Based on the equation 2 22ab a b≤ + , we have 

1 1 1 1 1 1
2 22 2

22 2

1 1 1 1 1

2 2 2 2
1

2
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(( ) ( ))

      2 ( )

      ( ) ( )

    = (

      2 ) 2

   2 2

    2 ( ) 2
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T

T T T T T

T

T T

T
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e Pe E P e d e t

e t e t Pe

e A P PA PKC C K P B P

PB P P I e E P e d

e Pe E P e d

P e E P e d

ρ

τ τ β

ρ β

δ

δλ

≤ + − + + − +

+ + +

− − + − +

+ − − +

+ + + + +

≤ − +

≤ − +

min min

min

= 2 ( ) ( / ( ( )) )

   = 2 ( ) ( )

TP e e E P P d

P e e d

δλ δλ

γδλ
δ

− + ⋅

− − ⋅
 

If e does not belong to 0D , that is, 

e dγ μ
δ

> ⋅ + . Then for arbitrary e dγ μ
δ

> ⋅ + , 

we have min2 ( )V P eμδλ≤ − . The proof is 
completed. 

4. Simulation research 

In this section, we utilize three representative examples 
to show that our scheme can be used to achieve 
synchronization in the time-delay chaotic systems in 
presence of noises. 

4.1. Example 1 

Firstly, we consider the time-delay system appearing in 
Ref. [8] which can be described by 

1 2 1 1 2

2 2 3 1

3 2 3 1 2

1 1 2

( ) (1 ) tanh( ),
( ) (1 ) ,
( ) sin( ( ( ) ( ) )),
( ) ,

x t x y y x
x t x x y
x t x x y t x t
y t x x

α ζ α αδ ζ
ζ

β γ ε σ τ τ ζ
ζ

= + − + −
= − + + +
= − + − − −

= +

（5） 
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where 1 2,x x  and 3x  are the state vectors and 1y  is the 
scalar output. During the transmission, the output signal 

1y  will be disturbed by noise and we assume that d is 
the zero-mean noise in the channel. So we have 

1 0 0 0
( ) ( ) , ( ) ( ) ( )

t
y t y t d y t x t y dτ τ= + = = ∫ . When 

49, 14, 5, 1, 0.5, 10, 10α β γ τ δ ε σ= = = = = = =
 and 510ζ −= , the system is chaotic and the response 
system could be designed as follows: 

 

Fig. 2. (Color) The error dynamics of synchronization between 
the drive system and the response system for Example 1 in 
presence of noise with zero mean, sample time 0:1 and 
amplitude 1 in the channel. The blue curves represent the 
simulation results of observer-based method and the red 
curves show the synchronization results of the proposed 
scheme. 

1 2 1 1 2 1 0 0

2 2 3 1 2 0 0

3 2 3 1 2

3 0 0

0 1 2 4 0 0

( ) (1 ) tanh( ) ( ),

( ) (1 ) ( ),

( ) sin( ( ( ) ( ) ))
           ( ),

( ) ( ),

x t x y y x k y y

x t x x y k y y

x t x x y t x t
k y y

x t x x k y y

α ζ α αδ ζ

ζ

β γ ε σ τ τ ζ

ζ

= + − + − + −

= − + + + + −

= − + − − − +
−

= + + −

(6) 

where 1 2 3, ,k k k  and 4k  are the observer gains and 
1 1 2( )y t x xζ= +  is the output signal of the response 

system. 
To compare the proposed scheme with the observer- 

based method in Ref. [18], we add noise and simulate 
the two schemes. The signals e x x= −  between the 
drive and response system is depicted in Fig. 2 and Fig. 
3, where 1 2 3 4 1000k k k k= = = = . Fig. 2 and Fig. 3 
show the experimental results in presence of noise with 
zero mean and sample time 0.1 and 0.01, respectively. 

From these figures, we can see that the synchronization 
results of the proposed scheme (red curves) are much 
better than those of the observer-based method (blue 
curves) in the aspect of stability. 

 

Fig. 3. (Color) The error dynamics of synchronization between 
the drive system and the response system for Example 1 in 
presence of noise with zero mean, sample time 0:01 and 
amplitude 1 in the channel. The blue lines represent the 
simulation results of observer-based method and the red lines 
show the synchronization results of the proposed scheme. 

4.2. Example 2 

Secondly, we adopt a polynomial approximation of 
the Mackey-Glass system, which can be described by 
[20]: 

 

Fig. 4. (Color online) The synchronization error of Example 2 
in presence of noise with zero mean and amplitude 0.5, where 
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(a), (c) and (e) show the error signals of the observer-based 
scheme and (b), (d) and (f) represent those of the proposed 
method. (a)-(b), (c)-(d) and (e)-(f) show the comparison 
curves between these two different methods when the sample 
times of noise are 0.01, 0.001 and 0.0001, respectively. 

 

FIG. 5. (Color online) The synchronization error of Example 2 
in presence of noise with zero mean and amplitude 0.1, where 
(a), (c) and (e) show the error signals of the observer-based 
scheme and (b), (d) and (f) represent those of the proposed 
method. (a)-(b), (c)-(d) and (e)-(f) show the comparison 
curves between these two different methods when the sample 
times of noise are 0.01, 0.001 and 0.0001, respectively. 

3

1

( ) ( ( ) ( )),
( ) ,

x t ax b x t x t
y t x

τ τ= − + − − −
=

      (7) 

where 1y  is the scalar output. When 

0.33, 1.33bα = =  and 4τ = , the system is chaotic. 
Consider d as the noise added in the measurement 
output 1( )y t , then we have 1( ) ( ) ,y t y t d= +  

0 0 0
( ) ( ) ( )

t
y t x t y dτ τ= = ∫ . The response system 

should be designed as: 
3

1 0 0

0 2 0 0

( ) 0.33 1.33( ( 4) ( 4)) ( ),

( ) ( ),

x t x x t x t k y y

x t x k y y

= − + − − − + −

= + −
(8) 

where 1k  and 2k  are the gains of observer. 
The simulation results are shown in Fig. 4 and Fig. 5 

when 1 2 100k k= =  and the zero-mean noises have 
the amplitudes of 0.5 and 0.1, respectively. In these two 
figures, sub-figure (a), (c) and (e) show the error curves 
of the observer-based scheme and sub-figure (b), (d) 
and (f) represent the error signals of our proposed 
method; sub-figure (a)-(b), (c)-(d) and (e)-(f) show the 

comparison results between two schemes when the 
sample times of noise is 0.01, 0.001 and 0.0001, 
respectively. 

4.3. Example 3 

Finally, we consider the system with the following 
mathematical form [20]: 

0

1

( ) ( ( ) ) [1 cos( ( )
1

        )],
( ) ,

B

M

Gx x t x t U x t

U U
y t x

ξ τ μ π τ
μ

= − + − + × + − +
+

+

=

  (9) 

where 1y  is the scalar output. When 

0 2.0, 1.0, 0.25, 0.1B MU U U μ= = = − =  and 

0.1τ =  the system demonstrates the chaotic behavior. 
Adding zero-mean noise to output signal 1y , we have 

1 0 0 0
( ) ( ) , ( ) ( ) ( )

t
y t y t d y t x t y dτ τ= + = = ∫ . 

Accordingly, we design the response system as:  

1 0 0

0 2 0 0

( ) ( ) ( ( ) 1) [1 cos( ( )
            0.5)] ( ),

( ) ( ),

x t x t x t x t
k y y

x t x k y y

ξ τ π τ= − + − + × + −
− + −

= + −

 

where 1k  and 2k  are the gains of observer. 

 

Fig. 6. (Color online) The synchronization error of Example 3 
in presence of noise with zero mean and amplitude 0.5, where 
(a), (c) and (e) show the error signals of the observer-based 
scheme and (b), (d) and (f) represent those of the proposed 
method. (a)-(b), (c)-(d) and (e)-(f) show the comparison 
curves between these two different methods when the sample 
times of noise are 0.01, 0.001 and 0.0001, respectively. 
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The simulation results are shown in Fig. 6 and Fig. 7 
when 1 2 100k k= =  and zero-mean noises have 
amplitudes of 0.5 and 0.1, respectively. In these two 
figures, sub-figure (a), (c) and (e) show the 
synchronization errors of the observer-based scheme 
and sub-figure (b), (d) and (f) represent the error signals 
of our proposed method; sub-figure (a)-(b), (c)-(d) and 
(e)-(f) show the comparison results between these two 
schemes when the sample times of noise are 0.01, 0.001 
and 0.0001, respectively. 

 

Fig. 7. (Color online) The synchronization error of Example 3 
in the presence of noise with zero mean and amplitude 0.1, 
where (a), (c) and (e) show the error signals of the observer-
based scheme and (b), (d) and (f) represent those of our 
method. (a)-(b), (c)-(d) and (e)-(f) show the comparison 
curves between these two different methods when the sample 
times of noise are 0.01, 0.001 and 0.0001, respectively. 

From Figs. 2-7, we can see that the synchronization 
curves of our scheme are smoother than those of 
observer-based scheme. Furthermore, from the 
comparison of the synchronization results, it can be 
inferred that the higher the frequency of d(t) is, the 
better synchronization accuracy and the smoother error 
signal curves we can obtain. The integrator that 
functions with the low-pass filter18,19 can suppress the 
high-frequency noises. And that is the reason why the 
integrator is able to make the synchronization error 
smoother and decrease the impact of high-frequency 
noises. 

In addition to the influence of noise frequency, the 
amplitude of noise is also a considerable factor affecting 
the results of the proposed scheme. Comparing Fig. 4 
and Fig. 6 with Fig. 5 and Fig. 7, we can find that as the 

amplitude of noise increases, the results of both 
methods deteriorate and the errors oscillate more 
severely around 0. In contrast to the proposed method, 
the observer-based scheme is relatively more sensitive 
to the increment of  the amplitude of noise. 

Note 1: The integrator and the low-pass filter can be 
designed by one-order RC circuit and the relationships 
between them can be consulted in Ref. [19]. 
Consequently, it is feasible to realize our method in 
practice. 

Note 2: Noise is ubiquitous in physical and natural 
systems. Under noise conditions, the proposed 
integrator method can be popularized to the 
computational intelligence field and especially will be 
more effective when dealing with high-frequency noises. 

5. Conclusion 

In this paper, we consider the synchronization problem 
of time-delay chaotic systems in presence of noise. The 
synchronization performance of the observer-based 
approach in the presence of zero-mean noise is studied. 
We find that the synchronization errors could not 
converge to zero as time evolves. Therefore, In order to 
reduce the influence of noise on the synchronization 
results, the integrators are introduced and a novel 
scheme is proposed. Simulation results show that the 
proposed method can successfully suppress the effects 
of high-frequency noise. The proposed method can be 
further popularized to the fields of network security and 
computational intelligence.  
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