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Abstract 

The LED is a new lightweight cipher, which was published in CHES 2011. This cipher could be applied in the 
Wireless Sensor Network to provide security. On the basis of the single byte-oriented fault model, we propose a 
differential fault analysis on the LED cipher. The attack could recover its 64-bit secret key by introducing 4 faulty 
ciphertexts, and 128-bit secret key by introducing 8 faulty ciphertexts. The results in this study will be beneficial to 
the analysis of the same type of other iterated lightweight ciphers. 
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1. Introduction 
The LED is a new Substitution-Permutation Network 
(SPN) lightweight cipher published in CHES 20111. It 
has a good compact hardware implementation and 
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software-friendly features, and thus could be applied in 
the sensor network, RIFD tag deployment and other 
application characterized by highly-constrained devices. 
The strength of the LED cipher against various classical 
cryptanalysis has been analyzed, including differential 
cryptanalysis, linear cryptanalysis, algebraic attack and 
so on1. 

Other than classical cryptanalysis, differential fault 
analysis (DFA) is a new class of cryptanalysis on 
cryptographic devices. It was first proposed by E. 
Biham and A. Shamir on DES2 in 1997. The similar 
attacks have been applied to AES3-8, Triple-DES9, 
RC410, Camellia11, ARIA12, SMS413-14, PRESENT15 and 
so on. The DFA exploits easily accessible information 
like input-output behavior under malfunctions, amplifies 
and evaluates the leaked information with the help of 
mathematical methods. It is based on deriving 
information about the secret key by examining the 
differences between a cipher resulting from correct 
operation and a cipher of the same initial message 
resulting from faulty operation. This analysis is often 
much more powerful than classical cryptanalysis. 

As for the SPN block ciphers, there are two types of 
DFA methods, which relate to the recovery of subkeys: 
(i) The bit number of the fault is less than or equals to 

that of the input of an S-box. For example, the fault 
is one bit or byte, while the input of an S-box is one 
byte. In this case, one fault's diffusion affects at 
most one S-box in the inducing round, and the fault 
propagation path is simple. Thus, it is not difficult 
for the attackers to derive the relationship between 
the subkeys and the ciphertext difference. Many 
studies have been conducted on the security of these 
SPN block ciphers against the DFA3-8, 12, 15. 

(ii) The bit number of the fault is greater than that of 
the input of an S-box. For example, the fault is a 
random byte, while the input of an S-box is 4 bits. 
Thus, the fault propagation paths may intersect 
each other. Thus it is not easy to deduce the 
relationship between the secret key and the 
ciphertext difference. For example, The LED is 
such a representative SPN block cipher which 
chooses 4 bits as a processing unit and its input of 
an S-box has 4 bits for the high efficiency in 
software and hardware. In the real circumstances, it 
is usual for the DFA attacker to choose the single-
byte oriented fault model to deduce the subkeys and 
the secret key for its easy implementation and 

general applications. However, few studies have 
been done on the single byte differential fault 
analysis on the LED cipher. 

In this study, we propose a single byte differential 
fault analysis method to recover the secret key of LED. 
The method could induce one-byte errors into the 
encryption. Both the locations and the values of the 
errors are unknown. By retrieving the related values of 
subkeys, our method requires 4 and 8 ciphertexts to 
recover the 64-bit and 128-bit secret keys of LED, 
respectively. 

The rest of this paper is organized as follows. 
Section 2 briefly introduces the LED cipher. The next 
section describes the basic assumption and basic idea of 
DFA. Then section 4 proposes our DFA analysis to 
recover the secret key. Section 5 summarizes the 
attacking complexity. Section 6 shows the experimental 
results of the DFA on LED. Finally section 7 concludes 
the paper. 

2. Description of the LED Cipher 

The LED is a 64-bit SPN block cipher with two primary 
instances taking 64-bit and 128-bit secret keys. It has l 
rounds, which is 32 for LED-64 and 48 for LED-128 as 
Fig. 1 shows. The cipher is composed of encryption, 
decryption and the key schedule. 

Fig. 1.  The structure of LED-64 and LED-128. 

2.1. Encryption 
The LED could be pictured as a rectangular array of 4 
bits, having four rows and four columns. Let X  be the 
plaintext and Y be the ciphertext. Let 1K and 2K  denote 
the  subkeys from the secret key K . The intermediate 
result is denoted as STATE 4 16({0,1} )∈ . In every four 
rounds, the STATE is XORed with a 64-bit subkey, 
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called AddRoundKey. The basic component of LED is a 
sequence of four identical rounds, and each round 
includes AddConstants, SubCells, ShiftRows and 
MixColumnsSerial  in sequence: 
(i) AddConstants is the transformation that processes 

the STATE with a constant.  
(ii) SubCells is the transformation that processes a 

STATE with a nonlinear 4-bit substitution table (S-
box).  

(iii) ShiftRows is the transformation that cyclically shifts 
the last three rows of the STATE by different offsets.               

(iv) MixColumnsSerials is the transformation that takes 
all the columns of the STATE and mixes their data 
to produce new columns.  

2.2. Decryption 
The decryption is the same as that of encryption, 
including the subkeys with the same order.  

2.3. Key Schedule 
The secret key K is the input of a key schedule to 
produce the subkeys for each round. In LED-64, the 
relationship between the secret key K and the subkey K1 

is as follows: 
1K K= .                            (1) 

In LED-128, the relationship among the secret key K, 
the subkeys K1 and K2 is as follows: 

1 2|| .K K K=                           (2) 

3. Basic Idea of Our Attack 

3.1.  The Basic Assumption  
The DFA analysis exploits the difference between a 
normal and a faulty ciphertext stemming from 
encryptions of the same plaintext. Our proposed fault 
model includes the following two assumptions:  
(i) The attacker has the capability to choose one 

plaintext to encrypt and obtain the corresponding 
right and faulty ciphertexts (Chosen Plaintext 
Attack, CPA). 

(ii) The attacker could induce a single byte error to one 
transformation. However, the location of this byte 
in this round and the value of the error are both 
unknown.     

3.2. The Basic Idea 
The main procedure of this attack is as follows:  
(i) The right ciphertext is obtained when a plaintext is 

encrypted with a secret key. 

(ii) We induce a random error in the l-2-th round of  the 
encryption, and thus obtain a faulty ciphertext. By 
differential analysis, the value of the last subkey K1 

can be recovered. If the key size is 64 bits, then 
jump step (iv); else jump step (iii). 

(iii) A random error is induced  in the l-6-th round of  
the encryption, we could decrypt the right 
ciphertext by the subkey K1 to obtain the input of 
the last four round, which is the output of the fifth 
round from the end. Repeat the same procedure to 
deduce the subkey K2. 

(iv) The secret key K could be deduced on the basis of 
the key schedule. 

4. Single Byte Differential Fault Analysis on 
LED 

4.1. Notations 
The following notations are used to describe the LED 
and its analysis.  

Let 4 16({0,1} )X ∈  be the plaintext and 4 16({0,1} )Y ∈  
be the ciphertext. Let 4 16

1 ({0,1} )K ∈ and 4 16
2 ({0,1} )K ∈  

denote the  subkeys from the secret key 4 16({0,1} )K ∈ . 
Let d

jAC , d
jSC , d

jSR and d
jMC  represent the j-th 4-

bit output value of the AddConstants, SubCells, 
ShiftRows, and MixColumnsSerial layers in the d-th 
round with 1 d l≤ ≤ and 0 15j≤ ≤ , respectively.  

Let c
jAR represents the j-th 4-bit output value of the 

AddRoundkey layer in the c-th 4 round with 1 / 4c l≤ ≤⎡ ⎤⎢ ⎥  
and 0 15j≤ ≤ . 

Let d
jACΔ , d

jSCΔ , d
jSRΔ and d

jMCΔ  represent the j-
th 4-bit output difference of the AddConstants, SubCell, 
ShiftRows, and MixColumnsSerial layers in the d-th 
round with 1 d l≤ ≤ and 0 15j≤ ≤ , respectively. 

Let c
jARΔ represents the j-th 4-bit output difference 

of the AddRoundkey layer in the c-th 4 round with 
1 / 4c l≤ ≤ ⎡ ⎤⎢ ⎥  and 0 15j≤ ≤ . 

The relationship between the input difference and 
output difference in the SubCells transformation is 
defined as follows: 

4( , ) { | {0,1} , ( )

( ) } 0 15, }, 1 ,

d d d d d
j j j j j

d d d
j j j

IN AC SC AC AC S AC

S AC AC jS d lC

Δ Δ = ∈ ⊕

⊕Δ = Δ ≤ ≤ ≤ ≤
(3) 

where the S represents a 4×4 substitution in the SubCells 
layer. 

Let AddConstants-1, SubCells-1, ShiftRows-1, and 
MixColumnsSerial-1 represent the inverse operations of 
the AddConstants, SubCells, ShiftRows, and 
MixColumnsSerial transformations, respectively. 
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4.2. Attacking Procedure 
In this subsection, we apply the above basic idea and 
propose a novel differential fault analysis to recover the 
secret keys of LED-64 and LED-128. Our analysis is 
split into the following four successive steps: 
(i) A ciphertext Y is derived when an arbitrary  

plaintext  X  is encrypted  with a secret key K. 
(ii) This step aims at recovering K1 in the last round. 

The fault injection targets at the l-2-th round. As 
Fig. 2 shows, a fault may be induced on either ACl-2, 
SCl-2 or SRl-2 whereas the approach is identical in 
either case. Note that any modification of one byte 
provokes the XOR-differences Δ MCl-2 on MCl-2, 
Δ AC l-1  on AC l-1, Δ SC l-1  on SC l-1, Δ SR l-1 on SRl-1, 
Δ MCl-1 on MCl-1, Δ ACl  on ACl, Δ SCl  on SCl, 
Δ SRl on SRl, Δ MCl on MCl. These alter the 
original ciphertext Y into the faulty ciphertext *Y . 
We can observe that 

*
1 1

,
( (

*

l

Y = Y Y
MC Y K Y K Y
Δ ⊕

Δ = ⊕ ⊕ ⊕ Δ

                         (4)

) )= ，        (5)
1

1 1

1 1

( )
(
(

l l

l

SC ShiftRows SR
ShiftRows MixColumnsSerial MC
ShiftRows MixColumnsSerial Y

−

− −

− −

Δ = Δ

= Δ

= Δ

    ( ))(6)

    ( )).  

The output difference of the j-th S-box in the l-th 

round could be represented by ,l
jSCΔ  where 

0 15.j≤ ≤ The transformation between inputs 
difference and outputs difference of the SubCells 
transformation is defined in the l-th round as below: 

4( , ) { | {0,1} ,

( ) ( ) , 0 15}.
j j j j

l
j

l l l l

l
j j

l l
j

IN AC SC AC AC

S AC S AC AC SC j

Δ Δ = ∈

⊕ ⊕Δ = Δ ≤ ≤
(7)

The above equation, in conjunction with a pair of 
right and faulty ciphertexts, allow to infer a relation 
between lACΔ and lSCΔ .  It is helpful to restrict a 
list of possible candidates for the value of 1.K  The 
MixColumnsSerial layer propagates one single byte 
fault to four-byte differences in the input of the 
SubCells transformation. If we do brute force search 
for the input of the SubCells transformation, the 
complexity to recover one subkey is up to 264. This 
kind of search is not really practical. 
    We propose an effective approach to select the 
input difference of the SubCells transformation, so 
the input of the SubCells transformation could be 
obtained with less complexity. We take the 
derivation of lAC  as an example. We observe that 

one single byte error can lead to two 4-byte 
differences independently after the computation of 
the diffusion layer in 1lAC − , and the differences 
could result in the 64-bit differences in lACΔ as Fig. 
2 shows. This important property helps to do brute 
force search on lACΔ . We separate the one-byte 
fault into two 4-bit values. This approach simplifies 
the analysis and improve the attacking efficiency. 

SubCellsAddConstants ShiftRows MixColumnsSerial

SubCellsAddConstants ShiftRows MixColumnsSerial

SubCellsAddConstants ShiftRows MixColumnsSerial AddRoundKey

2lAC −

1lAC −

lAC

2lSC −

1lSC −

lSC

2lSR −

1lSR −

lSR

2lMC −

1lMC −

lMC

 
Fig. 2    One single-byte fault progagation path in the last three rounds of the LED cipher 
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On the basis of one single-byte inducing fault, there 
are four types of the values of lACΔ in Fig. 3. In 
every type value,  the set of lACΔ could be separated 
into two subsets of lACΔ which are easier to 
compute. On the basis of two subsets, the values of 

lACΔ shows the linear relationships between 
different columns. 
The equations are derived as follows: 

0 7 10 13

0 0 0 4 4 4
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Fig. 3    The four relationships among the fault progagation values in the LED cipher 
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Thus we could derive all possible values of lAC . By 
inducing random faults repeating the above approach 
and until lAC  has only one value. All bytes of 1K  
could be deduced as follows: 

1

( ) (13)
( ( ( ))).

l

l

l

K Y MC
Y MixColumnsSerial SR
Y MixColumnsSerial ShiftRows SubCells AC

= ⊕

= ⊕

= ⊕

  

  

 

(iii) After recovering the subkey K1, we could perform 
the following procedure for K2 of LED-128. We 
make advantage of the previous step (ii) to derive 
the output of the l-4-th rounds, and induce faults 
into the l-6-th round. After computing the input 
difference 4lAC −Δ and output difference 4lSC −Δ  in 
the S-boxes transformation, we decrease the 
number of 4lAC − candidates by repeating the 
proposed method and the collected faulty 
ciphertexts, until the set of 4lAC − candidates has 
only one element. All bytes of 4lAC − could be 
deduced. Thus, all bytes of 2K  could be deduced as 
follows: 

12

4

4
2

( ( ( )))
( ( ( (
( ( ( (
(

1
( (

( 4)

l

lK MC AR
MixColumnsSerial ShiftRows SubCells AC
AddConstants SubCells ShiftRows MixColumnsSerial
AddConstants SubCells ShiftRows MixColumnsSerial
AddConstants SubCells ShiftRows MixCo

−

−

= ⊕

= ⊕  

1

(
( ( ( (

)))))))))))))))).

lumnsSerial
AddConstants SubCells ShiftRows MixColumnsSerial
Y K⊕

 
(iv) On the basis of the key schedule, K=K1 in LED-64, 

and K=K1||K2 in LED-128. 

5. Attacking Complexity 

We summarize the attacking procedure to select subkey 
candidates for the 64-bit and 128-bit secret keys. The 
time complexity of brute-force search for one fault 
injection is  

2 (2 )x s s nu
s

⋅ ⎡ ⎤= ⋅ ⋅ ⎢ ⎥⎢ ⎥
,                       (15) 

where n  denotes the size of the SubCells transformation, 
s  denotes the input size of one S-box, and x denotes the 
number of S-boxes in parallel.  

In addition, an estimation of the number of faults 
necessary for the attack to be successful is vital. In the 
attacking procedure, the number of faulty ciphertexts to 
recover a subkey depends on the fault location and the 
fault model. 

We take the derivation of 1K  as an example. On the 
property of the SubCells layer, if 1K  is a subkey 
candidate, then 1

lK MC⊕Δ may be another subkey 
candidate. In other words, if the input candidates set of 
S-boxes is not null, then the input lAC may have several 
candidates. Thus, there are some candidates of lMC . It 
indicates that 1K  may have some possible elements. 

In the single-byte fault model, a random error could 
be induced at any round of the encryption. If the fault 
occurs in the last round, then only one single byte in the 
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input of the SubCells transformation will change, which 
could recover at most one byte of the last subkey by 
DFA. To recover the last subkey, it is necessary to 
induce many errors into different bytes. 

If the fault is induced at an ideal location before the 
last round, then the inputs difference and outputs 
difference of the SubCells transformation in this round 
contain only one nonzero byte. However, the output 
difference of ShiftRows and MixColumnsSerial has 
multibytes owing to the diffusion of linear 
transformation. Thus, the input difference of 
MixColumnsSerial in the last round contains multibytes 
after the computation of the last several rounds. The 
above idea is applied in the attacking procedure to 
improve the efficiency of fault injection. 

Since at least two errors can make one element in 
the intersection of K1, we continue deriving intersection 
of subkey candidates sets until the intersection has only 
one element. Thus, at least two fault ciphertexts are 
required to derive multibytes of one subkey. The 
theoretical minimum number of faulty ciphertexts to 
recover one subkey is defined as 

0   m=0,
2   1 m n,
m

if
w n if

⎧
⎪= ⎨⎡ ⎤ ≤ ≤⎪⎢ ⎥⎢ ⎥⎩

          (16) 

where n  represents the size of the SubCells layer, and 
m  represents the maximum number of bits in a subkey 
derived by two faulty ciphertexts. To derive the subkey, 
the value of m  equals the number of bits in the nonzero 
output difference of the nonlinear transformation in this 
round. If 0m = , then there is no bits of a subkey 
derived and thus 0w = . 

Thus, the overall attacking complexity to recover a 

secret key is  

2
( 1) 1

0 0,

2 1 ,x s

if m
u w g n g if m n

s m
+ ⋅ +

=⎧
⎪⋅ ⋅ = ⎡ ⎤⋅⎨ ⋅ ≤ ≤⎢ ⎥⎪ ⋅⎢ ⎥⎩

 (17) 

where g  denotes the number of subkeys to recover a 
secret key, n denotes the size of the SubCells layer, 
s denotes the input size of one S-box, x denotes the 
number of S-boxes in parallel and m  represents the 
maximum number of bits in a subkey derived by two 
faulty ciphertexts. 

For a 64-bit secret key, the attacking complexity in 
theory is about  

2
25 (4 1) 4 1 64 12 ( 2 )

4 64
+ ⋅ + ⎡ ⎤⋅

= ⋅ ⎢ ⎥⋅⎢ ⎥
                    (18) 

where g=1, n=64, x=4, s=4, m=64, and v=2. For a 128-
bit secret key, the attacking complexity in theory is 
about  

2
26 (4 1) 4 1 64 22 ( 2 )

4 64
+ ⋅ + ⎡ ⎤⋅

= ⋅ ⎢ ⎥⋅⎢ ⎥
                  (19) 

 for g=2, n=64, x=4, s=4, m=64,  and v=2. 

6. Experimental Results 

We implemented our attack on a PC using Visual C++ 
8.0 Compiler on a 2.53 GHz celeron with 2GB memory. 
The fault induction was simulated by computer software. 
In this situation, we ran the attack algorithm to 1000 
encryption unit with a random generated key.  

Fig. 4 shows the number of subkey candidates in 
three intersections of subkey candidates to recover one 
subkey. We define accuracy, reliability and latency for 
evaluating the experimental results in detail.  

 
Fig. 4      (color) Three intersections of subkey candidates in the 1000 experiments 
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Accuracy is a measure that defines how close the 
number of subkey candidates are to the true number of 
subkey candidates. Basically, the closer the 
experimental number of subkey candidates is to the true 
number, the more accurate the experiment is. Thus,  we 
consider the Root Mean-Square Error(RMSE) to 
measure the accuracy, where RMSE is given by 

               
1

1 [ ( ) ] ,
N

measured true
e

RMSE h e h
N =

= −∑            (20) 

where N is the number of experiments in a set and e is 
the index of the experiment, measuredh is the number of 
subkey candidates, and trueh is the number of ture 
subkeys. As we know, there is only one true subkey. 
The closer the RMSE value is to 0, the more accurate 
the experiments are. We divide 1000 experiments as 5 
groups in average, denoted as G1, G2, G3, G4 and  G5. 
The RMSE values  for every intersections of subkey 
candidates are shown in Table 1, where N=200, 1trueh =  
and {1, ,1000}e∈ . Thus, the 3rd intersection of 
subkey candidates is completely accurate, and we could 
derive the subkey in this intersection. That is, 4 fault 
ciphertexts are required to recover one subkey.  
Furthermore, the accuracy in every group for the same 
interaction is similar or equal.  

Table 1. One subkey recovery on accuracy by RMSE 

Groups 1st 
intersection 

2nd 
intersection 

3rd 
intersection

G1 19.46 1.79 0 
G2 19.54 2.99 0 
G3 19.38 1.62 0 
G4 19.67 1.24 0 
G5 20.05 1.89 0 

Table 2. One subkey recovery on reliability  

Groups 1st 
intersection 

2nd 
intersection 

3rd 
intersection

G1 0 65.0% 100% 
G2 0 64.0% 100% 
G3 0 66.0% 100% 
G4 0 67.5% 100% 
G5 0 65.5% 100% 

Reliability is the ratio of successful experiments out 
of all experiments made. If the attacker could derive 
only one subkey, the experiment is successful.  
Referring to Table 2, it is observed that the ratio of 
successful experiments in the 1st, 2nd and 3rd 
intersections of subkey candidates are 0, 65.6% and 

100%, respectively. That is, the reliability is 100% if the 
attacker induces 4 random faults to break a subkey. 
Furthermore, the reliability in every group for the same 
interaction is similar or equal. 

Latency is the time from the first fault injection to 
the recovery of the subkey in our software simulation. It 
is measured in seconds. Fig. 5 shows that the latency of 
1000 experiments. The time of 74.5% experiments is 
between 0.1s and 0.2s. 

Thus, 4 faulty ciphertexts are required to recover 
one subkey. The proposed DFA method requires 4 
faulty ciphertexts to recover the 64-bit secret key and 8 
faulty ciphertexts to recover 128-bit secret keys. 

              Fig. 5    One  subkey recovery on latency 

On the basis of the number of faulty ciphertexts in 
our simulated experiments, the attacking complexity in 
practice is  

2
26 (4 1) 4 64 12 ( 2 4)

4 64
+ ⋅ ⎡ ⎤⋅

= ⋅ ⋅⎢ ⎥⋅⎢ ⎥
                   (21) 

 to recover one subkey. Thus, the attacking complexity 
is about  

2
26 (4 1) 4 64 12 ( 2 4)

4 64
+ ⋅ ⎡ ⎤⋅

= ⋅ ⋅⎢ ⎥⋅⎢ ⎥
                   (22) 

 and  
2

27 (4 1) 4 64 12 ( 2 8)
4 64

+ ⋅ ⎡ ⎤⋅
= ⋅ ⋅⎢ ⎥⋅⎢ ⎥

                   (23) 

to break the LED-64 and LED-128 by the single byte 
differential fault analysis, respectively.      

7. Conclusion 

This paper examines single byte differential fault 
analysis on LED in software implementation. It shows 
that LED is vulnerable to the single byte differential 
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fault analysis. In the byte-oriented fault model, only 4 or 
8 ciphertexts in average is required to obtain the 64-bit 
and 128-bit secret key of LED, respectively. Our work 
provides a new reference to fault analysis on other block 
ciphers.  

In consequence, we are working on fault analysis on 
LED in hardware implementation. Furthermore, future 
analysis should be able to support more fault locations 
of LED, such as the key schedule. 
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