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Abstract 

Localization of sensor nodes in wireless sensor networks (WSNs) is very important since it associates spatial 
context with the data collected by sensor nodes and used in applications. Rapid development of wireless sensor 
technologies and wide applications of wireless sensor networks have also made security in sensor localization a 
primary concern as well as a great challenge. Without adequate security measures, the performance of sensor 
localization, e.g., the accuracy of localization results, cannot be ensured in hostile environments. In this paper, we 
propose a trust-based secure sensor localization scheme (TSLS) for WSNs following the theory of neural network 
(NN). The proposed TSLS scheme can ensure that unknown sensor nodes will get credible information to perform 
localization through the evaluation of beacon nodes in a WSN. The evaluation model is comprised of the evaluation 
of both the identity and the behavior of beacon nodes as well as a filtering mechanism to deal with the slander 
behaviors between beacon nodes. Simulation results show that the proposed TSLS scheme can improve the 
accuracy of sensor localization in hostile environments for both static and dynamic WSNs. 

Keywords: Wireless sensor networks, localization, security, trust, neural network.
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1. Introduction 

Along with the development of electronics and 
networking technologies, new technologies and 
applications of wireless sensor networks (WSNs) are 
rapidly emerging. Examples of sensor network 
applications include deployments for underwater 
detection and for intelligent monitoring and control in 
smart home scenarios. In short, applications of WSNs 
have been moving along the general trend of ubiquity to 
bring more convenience in many aspects of human life.  

Localization of sensor nodes is one of the basic 
services and has become a pivotal technological issue in 
WSNs. In most real applications, data collected from 
wireless sensors need to be associated with the 
respective locations of sensor nodes to make the data 

meaningful and useful. Location information is required 
for providing many services such as network topology, 
geographical coverage of networks, routing and other 
location-based services. Some novel and generic sensor 
localization algorithms have been proposed among 
which range-based localization algorithms1,2 and range-
free localization algorithms3,4 are the most recognized 
methods. Meanwhile, computational intelligence has 
been applied to solving various challenging problems in 
WSNs in recent years including sensor localization5-8. 
Chatterjee proposed the development of a Fletcher–
Reeves update-based conjugate gradient multilayered 
feed-forward neural network for multihop connectivity-
based localization of a large number of sensor nodes6. 
Massimo et al. proposed evolutionary algorithms to 
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ensure localization accuracy for WSNs7. Lavanya et al. 
introduced particle swarm optimization into sensor 
localization8 and compared its performance with 
localization based on artificial bee colony algorithms. 

Meanwhile, in many applications, sensor 
localization often has to confront with the threat of 
malicious attacks. Thus, the lack of effective security 
mechanisms has become a serious issue that can affect 
the correctness and reliability of localization 
mechanisms. Secure sensor localization has become a 
great challenge in WSNs. As the result, some methods 
have been proposed to ensure the security of sensor 
localization. Some of the methods implement 
verification measures to reduce the impact of the 
presence of false location information9,10 with the 
common shortcomings being that detection would fail 
should the signals from beacon nodes get blocked. 
Some other methods apply robust computing algorithms 
to improve the reliability of localization schemes11,12 
with the common shortcomings being that they could 
not effectively fight against conspiracy attacks when too 
many nodes have been compromised and hence become 
attackers. Still, some more methods have been proposed 
to use check pointing as the means of reducing the 
impact of attacks13. However, such methods would have 
to rely on centralized detection and can thus result in 
unbalanced load in the WSNs. 

Security threats for sensor localization may come in 
many different ways from both external hostile 
attacking nodes and internal compromised nodes. A 
secure localization scheme should be able to fight 
against both types of attacks. Although most external 
attacks can be dealt effectively with cryptographic 
techniques, attacks from internal compromised nodes 
would render such schemes less effective. Ultimately, 
the most important thing in a localization system is that 
sensors need an effective evaluation method so that they 
can get credible location information from beacon nodes 
in order to calculate their own locations correctly. 

Some methods have already been proposed to fight 
against attacks from internal compromised nodes, an 
issue that is more difficult to deal with. Srinivasan 
proposed a beacon trust system based on distributed 
reputation14 in which beacon nodes monitor each other 
to supervise the location service provided by the beacon 
nodes. This method can reduce the impact of attacks 
from malicious internal nodes to a certain degree, but it 
cannot resist conspiracy attacks. Xu et al. proposed a 

reputation–based revising scheme15 in which reputation 
values are used to reduce the impact of irregular signal 
patterns and environment noises. This method is only 
suitable in an more ideal environment since it fails to 
sufficiently consider malicious attacks. As an effective 
means of resolving security problems in sensor 
localization in WSNs, the notion of trust has been 
introduced. For example, reputation enabled self-
modification was proposed to deal with the acoustic 
target localization problem16. 

In this paper, we propose a trust-based secure sensor 
localization scheme in WSNs following the approach of 
neural network (NN), which we call the TSLS scheme. 
In our proposed scheme, we apply trust evaluation to all 
the beacon nodes so that trustworthy beacon nodes can 
be selected through evaluation to provide credible 
location information. We also perform some simulation 
to show that our proposed TSLS scheme can improve 
the accuracy of sensor localization in hostile 
environments. 

The main contributions of this paper are as follows. 
First, we propose a trust-based secure range-based 
sensor localization scheme to improve the performance 
of localization of unknown sensor nodes in WSNs. 
Second, we propose a trust evaluation model for beacon 
nodes that evaluates not only the identity but also the 
behavior of beacon nodes to determine their 
trustworthiness and hence the credibility of their 
location information they provide. Third, we introduce a 
median method in our proposed secure localization 
scheme to deal with slander behaviors between beacon 
nodes. Fourth, considering the dynamic characteristics 
of WSNs, we introduce the notion of probability into 
our simulation, analyze our proposed TSLS scheme 
with respect to the accuracy of sensor localization and 
compare our scheme with some other existing methods 
to demonstrate the effectiveness and advantages of our 
TSLS scheme. 

The rest of this paper is structured as follows. In 
Section 2, we present a framework for sensor 
localization based on the theory of neural network. In 
Section 3, we propose a trust model for sensor 
localization in WSNs. In Section 4, we present the 
details of the TSLS scheme and describe its working 
process with respect to neural network. In Section 5, we 
perform some simulation on the TSLS scheme to 
evaluate its performance and to compare it with some 
other existing methods. Finally, in Section 6, we 
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conclude this paper in which we also describe our future 
work. 

2. Neural Network based Framework for Sensor 
Localization  

In sensor localization, the location of an unknown 
sensor node is usually calculated or estimated using the 
location information provided by beacon nodes in which 
it is assumed that the beacon nodes are able to position 
themselves and the unknown sensor nodes need to 
determine their own locations based on location 
information from other nodes that have located 
themselves such as the beacon nodes. 

In general, unknown sensor nodes estimate their 
own locations based on location information from 
beacon nodes. Consequently, the correctness and 
reliability of the location information from beacon 
nodes becomes critical. However, since unknown sensor 
nodes are not capable of positioning themselves 
independently, it is difficult for them to verify the 
correctness of the location information from the beacon 
nodes. 

Thus, the goal is clear and simple, i.e., to derive 
localization results for unknown nodes based on 
location information from beacon nodes. This process 
can be modeled using the theory of neural network as a 
mapping from beacon information to localization results 
that requires some data processing in the middle. The 
theory of neural network can thus guide us to design a 
secure localization scheme in WSNs as neural network 
is a simplified model that is abstracted from artificial 
neural network with the point of view of information 
processing through mathematical methods. The 
structure and function of artificial neural can be shown 
in Fig. 1 in which the input layer simulates the dendrite 
of neurons to receive the input signals, P1 simulates the 
soma of neurons to process the received data, P2 

simulates the axon of neurons to control the data output, 
and the output layer simulates the synapse of neurons to 
output the results, respectively. 

 
Fig.1.  The structure and function of artificial neural. 

To achieve secure localization and to ensure the 
accuracy of localization results in hostile environments, 
we apply neural network classification in processing the 
information from the beacon nodes in WSNs, classify 
the beacon nodes using a threshold trust value set for the 
localization system, screen out untrusted beacon nodes 
and use position information only from trustworthy 
beacon nodes to perform localization for unknown 
sensor nodes. 

3. The Trust Model 

Based on the above framework, we first propose a trust 
evaluation model for the unknown sensor nodes to 
evaluate and establish trust on the beacon nodes, filter 
out untrustworthy beacon nodes, and then apply location 
information received from trustworthy beacon nodes for 
them to perform localization. Evaluation of the beacon 
nodes in our trust model includes the use of both 
identity evaluation and behavior evaluation and the 
corresponding trust evaluation scheme is therefore 
described in three parts: identity evaluation, behavior 
evaluation and colligation evaluation model. 

We assume in our description that every beacon 
node has a unique identifier ( )ID  and all the legal 
beacon nodes share a group key k in the network. The 
hash value of the ID, i.e., ( )H ID , of a legal beacon 
node is made public information. 

3.1. Identity evaluation 

The purpose of identity evaluation is to not use location 
information from illegal nodes. In the network, legal 
beacon node i  sends a message 
{ || ( , ) || ( || ( , ) || ( ))}i i i i i i i kID x y H ID x y H ID in which 

()H  denotes a hash function and {}k  denotes an 
encryption function using key k . 

All the neighboring beacon nodes to node i  verify 
the identity of i  after receiving the message from i  by 
applying decryption to the message with k , computes 

( || ( , ) || ( ))i i i iH ID x y H ID  using the public information 
( )iH ID  as well as the decrypted information, and then 

compares it with the received information. If the 
computed value is the same as the received one, beacon 
node i  passes the verification and the identity 
evaluation value on node i  is set to 1. Otherwise, the 
verification fails and the identity evaluation value for 
node i  is set to 0. 
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3.2. Behavior evaluation 

Identity evaluation cannot fight against attacks from 
compromised beacon nodes. Therefore, the detection of 
internal attacking nodes can rely on the evaluation of 
node behavior. In order to obtain a more reasonable 
evaluation result, in our model, we use both self-
evaluation and reference evaluation by other beacon 
nodes in the evaluation process.  

However, we need to deal with a new issue in 
reference evaluation of other beacon nodes, that is, 
malicious beacon nodes may slander their neighboring 
beacon nodes. In a real network, there may be some 
malicious beacon nodes who can slander other 
trustworthy beacon nodes, thus affecting trust 
evaluation on each other. To reduce the impact of this 
problem to localization, we introduce a filtering 
mechanism using a median value. After a beacon node 
collects the evaluation values on behavior from its 
neighboring beacon nodes, it will calculate the median 
evaluation value and apply it following the steps of the 
trust model described below so that the beacon node can 
reject the slanderous evaluation values that deviate from 
normal evaluation values and finally calculate a more 
reasonable value for behavior evaluation. 

The behavior evaluation value is determined using 
Eq. (1) in which 

jiBT  denotes the behavior evaluation 

value on beacon node iB  by beacon node jB , 

jisT denotes the behavior trust value on iB  based on  

self-evaluation by jB , 
NjisT  denotes the behavior trust 

value on iB  based on evaluation by jB ’s neighboring 

beacon nodes, ()Me  denotes the median function, and 

  denotes the weight for the evaluation values. 

(1 ) ( )
ji ji NjiB s sT T Me T                      (1) 

The behavior evaluation value from self-evaluation 
is determined using Eq. (2) in which 

jisT  denotes the 

behavior trust value on beacon node iB  from beacon 

node jB , R  denotes the normal transmission radius of 

beacon nodes, and jid  denotes the difference between 

the distance estimated by jB  using coordinate 

information claimed by iB  and the one estimated by 

using a ranging technique, such as time of arrival 
(TOA)17,18, time difference of arrival (TDOA)19,20, 
received signal strength indicator (RSSI)21,22 and angle 
of arrival (AOA)23,24. 

( ) /

0ji

ji
s

R d R d R
T

d R

   
   

                      (2) 

The evaluations by other beacon nodes are essential 
when behavior trust value of a beacon node is 
determined. As illustrated in Fig. 2, all the nodes 1B , 2B , 

3B and 4B  have legal IDs and share a key k . They are 
thus all legal nodes according to identity evaluation. But 
if 1B  lies to other nodes about its location, e.g., 1B  , it 
would be difficult for 2B to identify the false location 
information unless it is able to measure both signal 
strength and signal angle. If 2B takes into account the 
evaluations on 1B  from the other beacon nodes, 2B can 
easily detect that 1B  is not a trustworthy beacon node 
and can consequently reduce the trust value for 1B . 

1B

1B

2B

3B

4B  
Fig.2.  An example attack. 

Fig. 3 illustrates the algorithm for the behavior 
evaluation model that serves our proposed TSLS at 
beacon node iB . 

 
Fig.3.  Algorithm for the behavior evaluation model. 
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3.3. General evaluation 

Every beacon node can thus derive an identity trust 
value and a behavior trust value for each of its 
neighboring beacon nodes and thus compute a general 
evaluation value for each neighboring beacon node. The 
general trust value on iB  from beacon node jB  can be 

computed using Eq. (3) in which jiT  denotes the general 

trust value on iB  by jB  and,
jiIT  and 

jiBT  denote the 

identity trust value and the behavior trust value on iB  

by jB , respectively, ()Me  denotes the median function, 

and   denotes the weight for the evaluation values. 

     ( (1 ) ( ))
ji ji ji ji Njiji I B I s sT T T T T Me T                  (3) 

4. The Sensor Localization Scheme 

Our proposed TSLS scheme is an application of the 
multilayer feed-forward neural network theory for 
sensor localization in WSNs. The scheme filters out 
untrusted beacon nodes before completing secure 
localization. The structure of TSLS is similar to data 
handling in multilayered feed-forward neural network as 
shown in Fig. 4. 

...

...
...

...
...

...
...

...
...

...

 
Fig.4.  The structure of TSLS. 

There are three layers in our proposed TSLS, among 
which the middle layer includes three components for 
handling the data and for filtering out untrusted beacon 
nodes so that their information would not be used in 
sensor localization. Further details are described as 
follows: 

In the Input layer, location information is received 
from the beacon nodes. 

In the L1 layer, a beacon node analyzes the identity 
and behavior information of neighboring beacon nodes 
and transmits it out. 

In the L2 layer, a beacon node performs trust 
evaluation on its neighboring beacon nodes based on 
individual evaluation by its neighboring beacon nodes 
and by itself. 

In the L3 layer, an unknown sensor node derives a 
trust value on each and every of its neighboring beacon 
node, filters out untrusted beacon node by comparing 
the corresponding trust value with a trust threshold 
value, and then computes its location by using location 
information only from trusted beacon nodes. 

In the Output layer, reliable localization results 
computed using location information from the trusted 
beacon nodes are output. 

The proposed TSLS scheme can deal with attacks 
from compromised nodes due to the use of trust 
evaluation on the beacon nodes during sensor 
localization in WSNs, which helps in improving the 
accuracy of localization and makes sensor localization 
more secure. Following are the main steps of our 
algorithm. 

Step 1: Every beacon node send its location and 
related information to its neighboring beacon nodes as 
described in the identity evaluation model. 

Step 2: Each beacon node calculates an identity trust 
value and an behavior trust value on every other beacon 
node and computes the general trust value as described 
in the trust evaluation model. 

Step 3: Every unknown node collects the evaluation 
values from its neighboring beacon nodes and computes 
the average value using Eq. (4) in which 

miUT  denotes 

the trust value on beacon node iB  for unknown 

node mU , 
NmiUT  denotes the trust value on iB  evaluated 

by the neighboring beacon nodes to mU , and ()Me  

denotes the median function. Then the unknown node 
ranks the neighboring beacon nodes based on the trust 
values from high to low. 

                           = ( )
mi NmiU UT Me T                              (4) 

However, there is still the possibility of slander 
behavior of malicious beacon nodes in this phase, which 
would result in unknown sensor nodes getting false trust 
evaluation values on trustworthy beacon nodes and 
consequently eliminating trustworthy beacon nodes so 
that correct localization information cannot be obtained. 
This will affect the accuracy of final localization results. 
Therefore, we apply the median method to substitute the 
average method to derive the final trust value of an 
unknown sensor node on a beacon node so as to 
eliminate the deviation of the normal value and improve 
the security of localization. 

Step 4: Every unknown sensor node would select the 
trustworthy beacon nodes whose trust values are above 
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the threshold value T  and estimate its own location 

using the location information provided by these 
trustworthy beacon nodes through maximum likelihood 
estimation as follows. Suppose the number of 
trustworthy beacon nodes around an unknown sensor 
node is n  with coordinates 1 1 2 2( , ), ( , ),..., ( , )n nx y x y x y , 

respectively, and the distance between the unknown 
sensor node ( , )

m mU UU x y  and the beacon nodes are 

1 2, ,..., nd d d , respectively. Using Eq. (5), the location of 

the unknown sensor node can be calculated.  

         2 2 2( ) ( ) , 1,2,...,n
m mU n U n nx x y y d i           (5) 

In addition, n  distance equations about the 
unknown sensor node ( , )

m mU UU x y  and the n  beacon 

nodes 1 1 1( , )B x y , 2 2 2( , )B x y ,…, ( , )n n nB x y are displayed 

below in Eq. (6), resulting from subtracting the last 
equation from each of the first 1n   equations. 

    

2 2 2 2 2 2
1 1 1 1 1

2 2 2 2 2 2
1 1 1 1 1

2( ) 2( )

...

2( ) 2( )

m m

m m

n n U n n U n

n n n n U n n n n U n n

x x x x x y y y y y d d

x x x x x y y y y y d d    

         


         

  (6) 

The unknown sensor node mU ’s coordinate 

( , )
m mU Ux y  can then be calculated using Eq. (7). 

1
mU A b (7) 

The matrices in Eq. (7) can be expressed using those 
in Eq. (8) - (10) below. 

               
1 1

1 1

2 ...
n n

n n n n

x x y y

A

x x y y 

  
   
   

             (8) 

                  
2 2 2 2 2 2
1 1 1

2 2 2 2 2 2
1 1 1

...
n n n

n n n n n n

x x y y d d

b

x x y y d d  

     
  
      

            (9) 

            m

m

U

m
U

x
U

y

 
  
  

              (10) 

The final solution to Eq. (7) is shown in Eq. (11). 

                      1( )T T
mU A A A b                        (11) 

It requires that at least three beacon nodes be present 
and their credible location information be used for each 
unknown sensor node to complete localization. 
However, in practice, the above condition may not be 

met. Therefore, we need to make sure that the above 
requirement can be met through some mechanisms. In 
the TSLS scheme, we propose that the threshold value is 
made adjustable to suit different application 
environments. For instance, if the number of 
trustworthy beacon nodes is not enough to localize an 
unknown sensor node, we should increase the number 
of adopted beacon nodes by reducing the threshold 
value T  for the trustworthy beacon nodes. If the 

unknown sensor node still cannot complete its 
localization when the trust value of adopted beacon 
nodes falls below thresholdT , the localization fails. 

Each beacon node is evaluated based on its identity 
and behavior and the evaluation of beacon nodes 
includes evaluation performed both by an evaluating 
beacon node and by other beacon nodes in an objective 
way. Table 1 summarizes the list of notations that have 
been used throughout this paper. 

Table 1.  List of notations. 

Notation Explanation 

iB  Beacon node i  

mU  Unknown sensor node m  

jiT  
General trust value on beacon node i  from beacon 
node j  

jiIT  
Identity trust value on beacon node i  from beacon 
node j  

jiBT  
Behavior trust value on beacon node i  from beacon 
node j  

jisT  
Behavior trust value on beacon node i  based on 
beacon node j ’s self-evaluation 

NjisT  
Behavior trust value on beacon node i  based on 
evaluation by beacon node j ’s neighboring beacon 

nodes 

miUT  Trust value on beacon node i  for unknown node m  

NmiUT  
Trust value on beacon node i  based on evaluation by 
neighboring beacon nodes to unknown node m  

( , )p px y  Coordinate of beacon node p  

( , )
m mU Ux y Coordinate of unknown node m  

 
Note that the proposed TSLS scheme can be further 

optimized using back propagation feed-forward neural 
network (BPNN) according to the energy capacity of 
sensor nodes in WSNs. The BPNN model can be 
applied to the basic scheme to adjust the parameters of 
the evaluation model through analyzing the localization 
error, to train and optimize the model for trust 
evaluation of the beacon nodes, and to improve the 

Published by Atlantis Press 
      Copyright: the authors 
                   919



 Secure Sensor Localization in Wireless Sensor Networks based on Neural Network 

localization accuracy of sensors, which will be 
thoroughly studied in our future work. 

5. Simulation and analysis 

We have performed some simulation with the TSLS 
scheme to show its performance on sensor localization. 

The network configuration for our simulation is set 
up as follows: 20 unknown sensor nodes, 10 trustworthy 
beacon nodes and 5 malicious beacon nodes, all of 
which are deployed randomly in a 650×600m2 area. The 
false location information provided by malicious beacon 
nodes is generated randomly. The transmission radius of 
beacon nodes and unknown sensor nodes are 200m and 
50m, respectively. The threshold trust value for 
trustworthy beacon nodes is setting up to be 0.75 in the 
range of [0-1]. 

Localization error is an important measurement of 
performance for sensor localization in WSNs, which is 
calculated using Eq. (12) in which ( , )

m Um
Ux y  denotes 

the measured coordinates of unknown sensor node mU  

while ( , )
m Um

Ux y  denotes the actual coordinates and 

R denotes the transmission radius of the nodes. The 
simulation results on localization error for the 20 
unknown sensor nodes are shown in Fig. 5, from which 
we can see that the proposed TSLS scheme is effective 
in helping the unknown sensor nodes reduce 
localization error in hostile environments. 


2 2( ) ( )u u u u

u

x x y y
e

R

   
  
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(b) 

Fig.5.  Comparison of localization errors: (a) 0.3  ; (b) 
0.8  . 

Dynamism is one of the main characteristics of 
WSNs, that is, scale of the networks and locations of 
sensor nodes among many other factors are often 
changing along the time in real applications. Therefore, 
it is worth evaluating the performance of the proposed 
TSLS scheme under the assumption of network 
dynamism. We hereby introduce the notion of average 
localization error to evaluate our TSLS scheme using Eq. 
(13) in which N  denotes the number of unknown 
sensor nodes in a network. 

                            
1

/
N

i
i

e e N


                          (13) 

We now investigate the effect on the localization of 
unknown sensor nodes based on the locations of beacon 
nodes. In the evaluation, the deployment of the 20 
unknown sensor nodes and the 5 trustworthy beacon 
nodes in an area of 650×600m2 is shown in Fig. 6 (a). 
We can increase the power of the signals emitted from 
the beacon nodes to fully cover the entire area. The 
experiment starts at the 0th minute and then we make 
beacon node 22 report false location information 
without actually changing its location at the 1st minute, 
make beacon node 23 change its location without 
reporting correct location information at the 2nd minute, 
and make beacon node 24 change its location normally 
at the 3rd minute, i.e., it would provide updated 
information after moving to a new location as shown in 
Fig. 6 (b).  
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(a) 

 
(b) 

Fig.6.  Topology of beacon nodes and unknown nodes: (a) 
before the state changing; (b) afer the state changing. 

The average localization error of unknown nodes in 
the network computed using the proposed TSLS scheme 
and that using general localization without trust 
evaluation (GLS) are shown in Fig. 7. In order to raise 
the standard of trust on beacon nodes and extrude the 
performance of localization, we choose the threshold 
value for the trust of trustworthy beacon nodes to be 
0.95 and the weight for the evaluation values to be 0.8. 

The number of nodes also changes frequently in 
WSNs. We now investigate the effect on localization of 
unknown nodes when the number of beacon nodes in 
the network increases. We deploy 3 trustworthy beacon 
nodes and 10 unknown nodes to start with and will add 
one beacon node into the network at the interval of 1 
minute starting from the 1st minute, and trustworthy and 
malicious beacon nodes are added alternately. The 

malicious beacon nodes claim false location information 
randomly. The localization results of this experiment are 
shown in Fig. 8 from which we can see that the 
localization result of using GLS can be affected by 
malicious beacon nodes due to its inability of 
distinguishing beacon nodes and consequently filtering 
out false location information. In contrast, the proposed 
TSLS scheme is able to filter out false location 
information for localization, hence increasing the 
accuracy of sensor localization. 
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Fig.7.  Average localization error of unknown nodes when 

changing the status of beacon nodes. 
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Fig.8.  Average localization error of unknown nodes when 

adding beacon nodes into the network. 

In real applications, wireless sensor nodes often 
leave the network due to power outage or equipment 
failure. We now investigate the performance of the 
proposed TSLS scheme under this circumstance. 

We deploy 20 unknown sensor nodes and 5 
trustworthy and 3 malicious beacon nodes in the same 
area. We remove one beacon node from the network at 
the interval of one minute starting from the 1st minute 
and trustworthy and malicious beacon nodes are 
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removed alternately. The average localization errors for 
the 20 unknown sensor nodes are shown in Fig. 9 from 
which we can see that the localization error varies 
within a small range in the proposed TSLS scheme and 
the improvement is significant compared with general 
localization without trust evaluation (GLS). 
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Fig.9.  Average localization error of unknown nodes when 
removing beacon nodes from the network. 

The above simulation and analysis show significant 
performance improvement brought by the proposed 
TSLS scheme under different network scenarios. The 
first simulation illustrates the influence on sensor 
localization when different weights are assigned to the 
direct and indirect evaluation values in the computation 
of trust values by unknown sensor nodes. The second 
simulation shows the average localization error of 
unknown nodes when malicious beacon nodes provide 
false location information. The third simulation 
describes the localization results when new beacon 
nodes are added into the network, which includes both 
trustworthy and malicious beacon nodes. And the last 
simulation shows the average localization error of 
unknown sensor nodes when beacon nodes are removed 
from the network. 

The set of simulations have been focused on 
demonstrating the localization performance of unknown 
sensor nodes in both static and dynamic WSNs, thus 
fully considered the main characteristics of WSNs. The 
simulation results show that the proposed TSLS scheme 
can distinguish between trustworthy and malicious 
beacon nodes effectively, reduce the effect of malicious 
beacon nodes on sensor localization, and ultimately 
improve the security and accuracy of sensor localization 
in WSNs. It also indicates that the TSLS scheme can 

scale well not only in static but also in dynamic WSNs. 
Moreover, following the BPNN model, the TSLS 
scheme can be further optimized to suit different WSNs 
and to improve localization results. 

6. Conclusions 

In this paper, we first analyzed the security aspects of 
sensor localization in WSNs and the consequence of 
external and internal attacks to sensor localization and 
pointed out that cryptographic schemes cannot fight 
effectively against attacks from compromised beacon 
nodes. To deal with this security problem in sensor 
localization, we proposed TSLS, a trust based secure 
localization scheme, by relying on trust evaluation on 
beacon nodes in which we considered both the identities 
and the behaviors of the beacon nodes closely following 
the principles of neural network. In the proposed TSLS 
scheme, we introduced a filtering mechanism to prevent 
slander behavior of malicious beacon nodes. In trust 
evaluation, the derived trust values are no longer just the 
discrete values of 0 and 1, but a decimal value to 
achieve a higher level of granularity in trust evaluation. 
We also performed some simulations to evaluate the 
proposed TSLS scheme and to show that it can improve 
the accuracy of sensor localization for unknown sensor 
nodes in hostile environments in both static and 
dynamic WSNs. 

In the future, we will extend our TSLS scheme by 
considering more factors in trust evaluation and under 
different network scenarios to further improve the 
applicability, creditability and reliability of the 
evaluation results. We will also investigate other aspects 
of performance in sensor localization, such as 
computational cost and communication overhead, and 
analyze and compare the resulting schemes with other 
secure sensor localization methods. Further optimization 
of the TSLS scheme using the BPNN model is also part 
of our future work for improving sensor localization in 
WSNs. 
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